JPH01210762A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01210762A
JPH01210762A JP63036367A JP3636788A JPH01210762A JP H01210762 A JPH01210762 A JP H01210762A JP 63036367 A JP63036367 A JP 63036367A JP 3636788 A JP3636788 A JP 3636788A JP H01210762 A JPH01210762 A JP H01210762A
Authority
JP
Japan
Prior art keywords
frequency
signal
compressor
pressure
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63036367A
Other languages
Japanese (ja)
Other versions
JPH0559338B2 (en
Inventor
Nobuhiro Kusumoto
伸廣 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63036367A priority Critical patent/JPH01210762A/en
Publication of JPH01210762A publication Critical patent/JPH01210762A/en
Publication of JPH0559338B2 publication Critical patent/JPH0559338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To modify the driving frequency of a compressor and perform volume control by using a liquid temperature detecting means, an outside air temperature detecting means and a frequency detecting means to operate high pressure in an operation controller of an air conditioner. CONSTITUTION:A compressor 1, a heat source side heat exchanger 2, an expansion mechanism 3 and a use side heat exchanger 4 form a refrigerating cycle, and the compressor 1 is driven by an invertor 6. A liquid temperature detecting means 7 is provided in the heat exchanger 4, an outside air temperature detecting means 8 in the heat exchanger 2, and a frequency detecting means 9 in the compressor 1. The output of the detecting means 7, 8, 9 is taken in a high pressure operating means 10 and the operating means 10 outputs the operating results in a comparative means 11. The comparative means 11 compares the output of the operating means 10 with the prescribed pressure range to output actuating signals to a frequency reducing means 12, a frequency maintaining means 13 and a frequency increasing means 14. On the other hand, while the contact of a high pressure switch 15 is opened, the frequency reducing means 12 is preferentially actuated every 3min by the use of a timer 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮機の駆動周波数を変更して容量制御を行
う空気調和機の運転制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operation control device for an air conditioner that controls capacity by changing the drive frequency of a compressor.

(従来の技術) 従来、空気調和機において冷媒の圧力を検知して圧縮機
の負荷を制御する場合、圧力センサを用いることは公知
である(実開昭53−69764号公報等参照)。
(Prior Art) Conventionally, it has been known to use a pressure sensor when detecting the pressure of a refrigerant in an air conditioner to control the load on a compressor (see Japanese Utility Model Application Publication No. 53-69764, etc.).

また、圧縮機の安全装置として高圧圧力開閉器を設けて
、高圧圧力の異常上昇時に圧縮機の運転を停止させるこ
とは公知である(実開昭48−41041号公報等参照
)。
Furthermore, it is known to provide a high-pressure switch as a safety device for a compressor to stop the operation of the compressor when the high-pressure pressure increases abnormally (see Japanese Utility Model Publication No. 48-41041, etc.).

(発明が解決しようとする課題) しかし上記従来の技術では、高圧圧力に応じた圧縮機の
容量制御行うために高圧圧力センサを設けることが考え
られるが、圧力センサが高価なために、制御装置のコス
トが高くなる。
(Problem to be Solved by the Invention) However, in the above conventional technology, it is possible to provide a high pressure sensor to control the capacity of the compressor according to the high pressure, but since the pressure sensor is expensive, the control device costs will increase.

また高圧圧力の異常上昇時に高圧圧力開閉器を作動させ
て圧縮機を停止させる場合、瞬時的な高圧圧力上昇によ
り高圧圧力開閉器が作動して圧縮機を停止させ、安定し
た運転を妨げる。
In addition, when the high pressure switch is operated to stop the compressor when the high pressure increases abnormally, the high pressure switch is activated due to the instantaneous increase in high pressure, stopping the compressor and preventing stable operation.

(i1題を解決するための手段) 上記課題を解決するために1本請求項第1の発明におい
ては、第1図に示すようにインバータ6 により駆動さ
れるインバータ式圧縮機1.熱源側熱交換器2、膨張機
構3および利用側熱交換器4を備えた空気調和機におい
て、利用側熱交換器4の被冷却流体温度Teを検出する
流体温度検出手段7と、熱源側熱交換器2の空気温度T
a1rを検出する外気温度検出手段8と、圧縮機1の駆
動周波数FTを検出する周波数検出手段9と、流体温度
検出手段7.外気温度検出手段8および周波数検出手段
9の出力から高圧圧力HPを演算する高圧圧力演算手段
lOと、高圧圧力演算手段10の出力と所定圧力領域と
を比較し、高圧圧力演算手段10の出力が所定圧力領域
を越えているとき第1信号を、所定圧力領域内のとき第
2信号を、所定圧力領域に達していないとき第3信号を
それぞれ出力する比較手段11と、比較手段11からの
第1信号により圧縮機1の駆動周波数FTを所定値減少
させる信号を出力する周波数減少手段12と、比較手段
11からの第2信号により圧縮機1の駆動周波数F丁を
維持させる信号を出力する周波数維持手段13と、比較
手段11からの第3信号により圧縮機1の駆動周波数F
Tを所定値増加させる信号を出力する周波数増加手段1
4と、圧縮機1の高圧側圧力が設定圧力値以上になると
接点を開く高圧圧力開閉器15と、一定時間を設定する
タイマ手段16と、高圧圧力開閉器15の接点が開い′
ている間は、周波数維持手段3と周波数増加手段14の
作動を停止するとともに、周波数減少手段12をタイマ
手段16により設定された一定時間ごとに作動させる周
波数減少手段12の優先作動手段17とを備えている。
(Means for Solving Problem i1) In order to solve the above problem, in the invention of claim 1, an inverter type compressor 1. driven by an inverter 6 as shown in FIG. In an air conditioner equipped with a heat source side heat exchanger 2, an expansion mechanism 3, and a usage side heat exchanger 4, a fluid temperature detection means 7 for detecting the cooled fluid temperature Te of the usage side heat exchanger 4, and a heat source side heat exchanger 7 are provided. Air temperature T of exchanger 2
an outside air temperature detection means 8 for detecting a1r, a frequency detection means 9 for detecting the drive frequency FT of the compressor 1, and a fluid temperature detection means 7. The high pressure calculation means lO calculates the high pressure HP from the outputs of the outside air temperature detection means 8 and the frequency detection means 9, and the output of the high pressure calculation means 10 is compared with a predetermined pressure region, and the output of the high pressure calculation means 10 is determined. Comparing means 11 outputs a first signal when the pressure exceeds a predetermined pressure range, a second signal when the pressure falls within the predetermined pressure range, and a third signal when the predetermined pressure range is not reached; a frequency reduction means 12 that outputs a signal that reduces the drive frequency FT of the compressor 1 by a predetermined value by a first signal; and a frequency reduction means 12 that outputs a signal that maintains the drive frequency F of the compressor 1 by a second signal from the comparison means 11. The driving frequency F of the compressor 1 is determined by the third signal from the maintaining means 13 and the comparing means 11.
Frequency increasing means 1 that outputs a signal that increases T by a predetermined value
4, a high-pressure pressure switch 15 that opens a contact when the high-pressure side pressure of the compressor 1 exceeds a set pressure value, a timer means 16 that sets a certain period of time, and a contact of the high-pressure switch 15 that opens.
During this period, the operation of the frequency maintenance means 3 and the frequency increase means 14 is stopped, and the priority operation means 17 of the frequency reduction means 12 is activated, which operates the frequency reduction means 12 at regular intervals set by the timer means 16. We are prepared.

本請求項第2の発明においては第3図に示すように請求
項第1の発明の空気調和機の構成に加えて、流体温度目
標値Tsを設定する流体温度設定手段18と、流体温度
検出手段7および流体温度設定手段18の各信号を受け
て流体温度Teと流体温度目標値Tsとの温度差ΔTに
より圧縮機1の駆動周波数FTを減少、維持または増加
する周波数制御信号を出力する周波数制御信号発生手段
19と、高圧圧力開閉器15の接点が閉じている間は、
周波数減少手段121周波数維持手段13、周波数増加
手段14および周波数制御信号発生手段19の出力を受
けて、圧縮機1の駆動周波数FTを減少させる信号、維
持させる信号、増加させる信号の順に優先して出力する
選択手段21とを備えている。さらに、優先作動手段1
7において高圧圧力開閉器15の接点が開いている間は
周波数制御信号発生手段19の作動も停止する。
In the second aspect of the present invention, in addition to the configuration of the air conditioner of the first aspect of the invention, as shown in FIG. A frequency for outputting a frequency control signal for decreasing, maintaining, or increasing the driving frequency FT of the compressor 1 according to the temperature difference ΔT between the fluid temperature Te and the fluid temperature target value Ts upon receiving each signal from the means 7 and the fluid temperature setting means 18. While the contact between the control signal generating means 19 and the high pressure switch 15 is closed,
In response to the outputs of the frequency reduction means 121, the frequency maintenance means 13, the frequency increase means 14, and the frequency control signal generation means 19, priority is given to a signal for decreasing the drive frequency FT of the compressor 1, a signal for maintaining it, and a signal for increasing it. and a selection means 21 for outputting. Furthermore, priority actuation means 1
While the contact point of the high pressure switch 15 is open at 7, the operation of the frequency control signal generating means 19 is also stopped.

本請求項第3の発明においては第5図に示すように請求
項第2の発明の空気調和機の構成における被冷却流体温
度Toを検出する流体温度検出手段7に替えて圧縮機1
の吸入圧力LPを検出する低圧圧力検出手段20を、流
体温度目標値Tsを設定する流体温度設定手段18に替
えて低圧圧力目標[L P sを設定する低圧圧力設定
手段22を備えている。
In the third aspect of the present invention, as shown in FIG.
In place of the fluid temperature setting means 18 that sets the fluid temperature target value Ts, the low pressure detection means 20 that detects the suction pressure LP of the fluid temperature setting means 22 that sets the low pressure target [L P s is provided.

(作  用) 本発明は次のような作用をもたらす。(for production) The present invention provides the following effects.

すなわち、請求項第1の発明では設けられた流体温度検
出手段7、請求項第2の発明では流体温度制御に関連し
て設けられた流体温度検出手段7゜請求項第3の発明で
は低圧圧力制御に関連して設けられた低圧圧力検出手段
20を用いて高圧圧力を演算するため、高圧圧力検出手
段を設けるのに比べてコストが安くできる。
That is, in the first invention, the fluid temperature detection means 7 provided, in the second invention, the fluid temperature detection means 7 provided in connection with fluid temperature control, and in the third invention, the low pressure Since the high pressure is calculated using the low pressure detection means 20 provided in connection with the control, the cost can be reduced compared to providing the high pressure detection means.

また、高圧圧力の上昇時に、高圧圧力開閉器15が作動
して圧縮機lの駆動周波数FTを減少させることで、圧
縮機負荷を低減するため、瞬時的な高圧圧力上昇に対し
ても連続した運転を行える。
In addition, when the high pressure increases, the high pressure switch 15 operates to reduce the drive frequency FT of the compressor l, thereby reducing the compressor load. Able to drive.

(実施例) 以下請求項第1の発明の一実施例を第1図および第2図
に基づいて説明する。尚、本実施例は、常時最高負荷で
運転される空気調和機、例えば蓄熱式空気調和機である
(Embodiment) An embodiment of the invention according to claim 1 will be described below based on FIGS. 1 and 2. Note that this embodiment is an air conditioner that is always operated at maximum load, such as a regenerative air conditioner.

第1図において1は圧縮機、2は熱源側熱交換器、3は
膨張機構、4は利用側熱交換器であり、順次接続して冷
凍サイクルを構成しており、前記圧縮機1はインバータ
6により駆動されるインバータ式である。
In FIG. 1, 1 is a compressor, 2 is a heat exchanger on the heat source side, 3 is an expansion mechanism, and 4 is a heat exchanger on the user side, which are connected in sequence to form a refrigeration cycle, and the compressor 1 is an inverter. It is an inverter type driven by 6.

また前記利用側熱交換器4には被冷却流体としての蓄熱
材の温度Teを検出する流体温度検出手段7.前記熱源
側熱交換器2の空気温度Ta1rを検出する外気温度検
出手段8、前記圧縮機1には駆動周波数FTを検出する
周波数検出手段9が設けられている。
Further, the use-side heat exchanger 4 includes a fluid temperature detection means 7 for detecting the temperature Te of the heat storage material as the fluid to be cooled. The compressor 1 is provided with an outside temperature detection means 8 for detecting the air temperature Ta1r of the heat source side heat exchanger 2, and a frequency detection means 9 for detecting the drive frequency FT.

前記流体温度検出手段7と前記外気温度検出手段8と前
記周波数検出手段9との出力は高圧圧力演算手段10に
取り込まれ、該高圧圧力演算手段10は、被冷却流体温
度Te、空気温度Ta1rおよび駆動周波数FTから高
圧圧力HPを演算し、その結果を比較手段11に出力す
る。
The outputs of the fluid temperature detection means 7, the outside air temperature detection means 8, and the frequency detection means 9 are taken into the high pressure calculation means 10, and the high pressure calculation means 10 calculates the temperature Te of the fluid to be cooled, the temperature Ta1r of the air, and the temperature Ta1r of the cooled fluid. The high pressure HP is calculated from the drive frequency FT, and the result is output to the comparison means 11.

前記比較手段11においては、前記高圧圧力演算手段I
Oの出力と予じめ設定されている所定圧力領域(23k
g/flf≦HP≦24kg/cd)とを比較してその
結界により1周波数減少手段121周波数維持手段13
、周波数増加手段14に作動信号を出力する。すなわち
、高圧圧力HPが24kg/dを越えているときは第1
信号を前記周波数減少手段12に、 24kg/ci以
下23kg/a1以上のときは第2信号を前記周波数維
持手段13に、23kg/ad未満のときは第3信号を
前押周波数増加手段11!にそれぞれ出力する。そして
前記周波数減少手段12は第1信号に応動して、駆動周
波数FTをIOIIZM少し、前記周波数維持手段13
は第2信号に応動して、駆動周波数FTを維持し、前記
周波数増加手段14は第3信号に応動して、駆動周波数
FTをlOH2増加させる。
In the comparison means 11, the high pressure calculation means I
O output and a preset predetermined pressure area (23k
g/flf≦HP≦24kg/cd), and the barrier reduces the frequency by 1 frequency by 121 by the frequency maintaining device 13.
, outputs an activation signal to the frequency increasing means 14. In other words, when the high pressure HP exceeds 24 kg/d, the first
A signal is sent to the frequency reducing means 12, a second signal is sent to the frequency maintaining means 13 when it is less than 24 kg/ci and more than 23 kg/a1, and a third signal is sent to the frequency increasing means 11 when it is less than 23 kg/ad. Output each. In response to the first signal, the frequency reducing means 12 reduces the driving frequency FT by a little IOIIZM, and the frequency maintaining means 13
maintains the driving frequency FT in response to the second signal, and the frequency increasing means 14 increases the driving frequency FT by lOH2 in response to the third signal.

一方、前記圧縮機1と前記熱源側熱交換器2との間には
高圧圧力開閉器15が設けられてお一す、圧縮機1の高
圧側圧力が設定圧力値以上のときは、接点を開き、設定
圧力値未満のときは接点を閉じる。
On the other hand, a high pressure switch 15 is provided between the compressor 1 and the heat source side heat exchanger 2, and when the high pressure side pressure of the compressor 1 is higher than the set pressure value, the contact is closed. Open, and close the contact when the pressure is less than the set pressure value.

17は優先作動手段であり、前記高圧圧力開閉器15の
開閉状態に応じて作動する。すなわち、高圧圧力開閉器
15の接点が開いている間は、前記周波数維持手段13
と周一波数増加手段14の作動を停止するとと、もに1
周波数減少手段12をタイマ手段16により1.3分毎
に作動さ1せる。
Reference numeral 17 denotes a priority activation means, which operates according to the open/closed state of the high pressure switch 15. That is, while the contacts of the high pressure switch 15 are open, the frequency maintaining means 13
and when the operation of the frequency increasing means 14 is stopped, both 1
The frequency reduction means 12 is operated by the timer means 16 every 1.3 minutes.

次に、第2図に基づいて各手段の作動態様を説明する。Next, the operating mode of each means will be explained based on FIG.

尚、5l−323はステップ番号を示す。Note that 5l-323 indicates a step number.

第2図(イ)において、先ずSlにおいて、高圧圧力−
閉器15の接点の開閉状態を検知して接点が閉じている
場合は、第2図(ロ)のSttに進み、接点が開いてい
る場合は過負荷状態にあると判定して、S2に移る。S
2においては、圧縮Ia1の駆動周波数FTが30H2
以上であるが否かを判定し、3゜)IZ未満であるNO
の場合には室外機異常として、S3においてタイマ手段
16のリセットをしたのち、S4において圧縮機1を停
止し、30H2以上である’/ESの場合にはS2にお
いて駆動周波数FTをlOH2減少させたのち、S6に
おいてタイマ手段16をセットしてタイマ時間3分の計
測を始めて87に進む。S7においては、前記高圧圧力
開閉器15の開閉状態を検知して、接点が開いている場
合は、S8においてタイマ時間3分の計測が完了したか
否かを判定し、完了していないNOの場合には、S7に
戻り、完了したYESの場合にはS9においてタイマ手
段】6のリセットをしたのちS2に戻る。一方。
In Fig. 2 (a), first in Sl, high pressure -
If the open/closed state of the contact of the circuit breaker 15 is detected and the contact is closed, the process proceeds to Stt in Figure 2 (b), and if the contact is open, it is determined that there is an overload condition and the process proceeds to S2. Move. S
2, the drive frequency FT of compression Ia1 is 30H2
Determine whether it is above or not, and NO if it is less than 3゜IZ
In this case, the timer means 16 is reset in S3 as an abnormality in the outdoor unit, and then the compressor 1 is stopped in S4, and in the case of '/ES which is 30H2 or more, the driving frequency FT is decreased by lOH2 in S2. Thereafter, in S6, the timer means 16 is set to start counting the timer time of 3 minutes, and the process proceeds to 87. In S7, the open/closed state of the high-pressure pressure switch 15 is detected, and if the contact is open, it is determined in S8 whether or not the measurement of the timer time of 3 minutes has been completed, and if NO is not completed, it is determined. If so, the process returns to S7, and if YES, the timer means]6 is reset in S9, and then the process returns to S2. on the other hand.

S7において高圧圧力開閉器15の接点が閉じている場
合は、SIOにおいてタイマ手段16のリセットをした
のち、B以降の処理に進む。
If the contact of the high-pressure switch 15 is closed in S7, the timer means 16 is reset in SIO, and then the process proceeds to B and subsequent steps.

第2図(ロ)において、B以降の処理は、先ずS11に
おいてタイマ手段16をセットしてタイマ時間3分の計
測を始めて812に進む。S12においては高圧圧力開
閉器15の接点の開閉状態を検知して。
In FIG. 2(B), the process from B onward first sets the timer means 16 in S11 and starts counting the timer time of 3 minutes, and then proceeds to 812. In S12, the open/close state of the contacts of the high pressure switch 15 is detected.

接点が開いている場合は、過負荷状態にあると判定して
、S13においてタイマ手段16をリセットしたのち、
第2図(イ)の82に移り、接点が閉じている場合は、
S14において被冷却流体温度Taを、S15において
空気温度Ta1rを、S16において駆動周波数FTを
それぞれ検出し、S17において高圧圧力HPを演算に
より求め、S18に移る。S18において該高圧圧力H
Pの値により信号を出力する。
If the contact is open, it is determined that there is an overload condition, and after resetting the timer means 16 in S13,
Moving on to 82 in Figure 2 (a), if the contact is closed,
The cooled fluid temperature Ta is detected in S14, the air temperature Ta1r is detected in S15, and the drive frequency FT is detected in S16.The high pressure HP is calculated in S17, and the process moves to S18. In S18, the high pressure H
A signal is output depending on the value of P.

すなわち、 24kg/cutを越えている場合は、S
19において駆動周波数FTをl0Hz減少させたのち
、S20において、タイマ手段16をリセットしてSl
lに戻る。一方高圧圧力HPが24kg/crI以下、
23kg/cuf以上の場合はS12に戻る。さらに、
23kg/cd未満の場合は、S21においてタイマ時
間3分が経過しているか否かを判定し、経過していない
NOの場合にはS12に戻り、経過したYESの場合に
はS22において駆動周波数FTを1082増加させた
のち、S23においてタイマ手段16をリセットしてS
11に戻る。
In other words, if it exceeds 24kg/cut, S
After decreasing the drive frequency FT by 10Hz in step 19, in step S20, the timer means 16 is reset and
Return to l. On the other hand, the high pressure HP is 24 kg/crI or less,
If the weight is 23 kg/cuf or more, the process returns to S12. moreover,
If it is less than 23 kg/cd, it is determined in S21 whether or not the timer time of 3 minutes has elapsed.If NO, the process returns to S12, and if YES, the drive frequency FT is determined in S22. After increasing 1082, the timer means 16 is reset in S23 and S
Return to 11.

次に請求項第2の発明の一実施例を第2図(イ)。Next, an embodiment of the invention according to claim 2 is shown in FIG. 2(a).

第3図および第4図に基づいて説明する。尚、本実施例
は請求項第1の発明の実施例に同様な部分については説
明を省く。
This will be explained based on FIGS. 3 and 4. Incidentally, in this embodiment, descriptions of parts similar to the embodiment of the invention according to claim 1 will be omitted.

第3図に示すように、第1の発明の実施例の空気調和機
の構成に加えて、流体温度目標値Tsを設定する流体温
度設定手段18と、流体温度検出手段7および流体温度
設定手段18の各出力を受けて被冷却流体温度Teと流
体温度目標値Tsとの温度差△Tにより、圧縮機1の駆
動周波数FTを減少、維持または増加する周波数制御信
号を出力する周波数制御信号発生手段19を備えている
。さらに、21は選択手段であり高圧圧力開閉器15の
接点が閉じている間は、周波数減少手段12、周波数維
持手段13、周波数増加手段14および周波数制御信号
発生手段19の出力を受けて、受けた信号の優先順位を
判定して、圧縮機1の駆動周波数FTを減少させる信号
、維持させる信号、増加させる信号の順に優先して出力
するものである。尚、請求項第1の発明の実施例におい
ては被冷却流体を蓄熱材としたが、請求項第2の発明の
実施例における被冷却流体は室内空気である。
As shown in FIG. 3, in addition to the configuration of the air conditioner according to the first embodiment of the invention, a fluid temperature setting means 18 for setting a fluid temperature target value Ts, a fluid temperature detection means 7, and a fluid temperature setting means are provided. Frequency control signal generation that outputs a frequency control signal that decreases, maintains, or increases the drive frequency FT of the compressor 1 according to the temperature difference ΔT between the cooled fluid temperature Te and the fluid temperature target value Ts in response to each output of 18. Means 19 is provided. Further, reference numeral 21 denotes selection means, which receives the outputs of the frequency reduction means 12, the frequency maintenance means 13, the frequency increase means 14, and the frequency control signal generation means 19 while the contacts of the high-pressure pressure switch 15 are closed. The priority order of the signals is determined, and the signal for decreasing the drive frequency FT of the compressor 1, the signal for maintaining it, and the signal for increasing it are prioritized and output in that order. In the embodiment of the first aspect of the invention, the fluid to be cooled is a heat storage material, but in the embodiment of the second aspect of the invention, the fluid to be cooled is indoor air.

次に第2図(イ)および第4図に基づいて各手段の作動
態様を説明する。尚、第2図(イ)のフローチャートは
請求項第1の発明の作動態様と同様であるので引用して
説明を省く。ただし、図中のBに替えてCとする。S2
4〜S42はステップ番号を示す。
Next, the operation mode of each means will be explained based on FIG. 2(a) and FIG. 4. Incidentally, since the flowchart shown in FIG. 2(a) is similar to the operating mode of the invention according to claim 1, it will not be cited and explained. However, C is used instead of B in the figure. S2
4 to S42 indicate step numbers.

C以降の処理において、824〜S26は第2図(ロ)
のS14〜S17と同様であり、S25において高圧圧
力開閉器15の接点が閉じている場合はS27に進む。
In the process after C, 824 to S26 are as shown in FIG.
The process is similar to S14 to S17, and if the contact of the high pressure switch 15 is closed in S25, the process advances to S27.

S27において被冷却流体温度Teを検出し、828に
おいて流体温度目標値Tsを検知し、S29において温
度差ΔTを算出し、S30において温度差ΔTから圧縮
機1の駆動周波数FTを計算する。
The cooled fluid temperature Te is detected in S27, the fluid temperature target value Ts is detected in 828, the temperature difference ΔT is calculated in S29, and the drive frequency FT of the compressor 1 is calculated from the temperature difference ΔT in S30.

S31において、S30において求めた値が駆動周波数
FTを減少させるものであるが否かを判定し、駆動周波
数FTが減少するYESの場合はS37に進み、減少し
ないNOの場合はS32に進む。332〜S35におい
ての動作は、第2図(ロ)におけるS14〜S17に同
様である。S36においてはS35で求めた高圧圧力H
Pの値により信号を出力する。すなわち。
In S31, it is determined whether or not the value obtained in S30 reduces the drive frequency FT. If YES, the drive frequency FT will decrease, the process proceeds to S37; if NO, the process proceeds to S32. The operations in steps 332 to S35 are similar to steps S14 to S17 in FIG. 2(b). In S36, the high pressure H obtained in S35
A signal is output depending on the value of P. Namely.

24kg/cnfを越えている場合はS37に進み、2
4kg/cnl以下23kg/cd以上の場合はS25
に戻り、23kg/cJ未滴の場合はS39に進む。S
37においては駆動周波数FT&10H2減少させたの
ち、838においてタイマ手段16をリセットしてS2
4に戻る。S39においては、S30において求めた値
が駆動周波数FTを維持させるものであるか否かを判定
し、駆動周波数FTを維持させるYESの場合S25に
戻り、維持しないNoの場合はS40に進む。S40に
おいては、タイマ時間3分が経過しているか否かを判定
し、経過していないNOの場合はS25に戻り、経過し
た’VESの場合はS41において駆動周波数FTをl
OH2増加させたのち、S42においてタイマ手段16
をリセットして、S24に戻る。
If it exceeds 24kg/cnf, proceed to S37 and
S25 if 4kg/cnl or less 23kg/cd or more
Return to step S39 if 23 kg/cJ has not yet been dropped. S
At step 37, the drive frequency FT&10H2 is decreased, and at step 838, the timer means 16 is reset, and then at step S2
Return to 4. In S39, it is determined whether or not the value obtained in S30 allows the drive frequency FT to be maintained. If YES, the drive frequency FT is to be maintained, the process returns to S25; if NO, the process proceeds to S40. In S40, it is determined whether or not the timer time of 3 minutes has elapsed. If NO, the process returns to S25, and if 'VES has elapsed, the driving frequency FT is changed to l in S41.
After increasing OH2, the timer means 16 is activated in S42.
is reset and the process returns to S24.

次に、請求項第3の発明の一実施例を第2図(イ)、第
5図および第6図に基づいて説明する。
Next, an embodiment of the third aspect of the invention will be described based on FIG. 2(A), FIG. 5, and FIG. 6.

尚、本実施例においては請求項第2の発明に同様な部分
については説明を省く。
Incidentally, in this embodiment, descriptions of parts similar to those of the second aspect of the invention will be omitted.

第5図に示すように請求項第2の発明の実施例との相違
点は、複数台の室内丘ニットが設けられており、圧縮機
1の吸入圧力を一定に保ち、室内ユニットの運転制御は
各利用側熱交換器4,4に対応する膨張機構3.3にお
′いて流量制御し、圧縮機1の一入側には吸入圧力LP
を検出する低圧圧力検出手段20が設けられていること
である。また低圧圧力目標値LPsを設定する低圧圧力
設定手段22が設けられている。該低圧圧力検出手段2
0および該低圧圧力設定手段22は第3図の流体温度検
出手段7および流体温度設定手段18に替わるものであ
る。
As shown in FIG. 5, the difference from the embodiment of the second invention is that a plurality of indoor hill knits are provided, and the suction pressure of the compressor 1 is kept constant, and the operation control of the indoor unit is controlled. is controlled by the expansion mechanism 3.3 corresponding to each user-side heat exchanger 4, 4, and the suction pressure LP is controlled at the input side of the compressor 1.
A low pressure detection means 20 is provided for detecting the pressure. Also provided is a low pressure setting means 22 for setting a low pressure target value LPs. The low pressure detection means 2
0 and the low pressure setting means 22 replace the fluid temperature detection means 7 and the fluid temperature setting means 18 shown in FIG.

次に第2図(イ)および第6図に基づいて作動態様を特
徴する請求項第3の発明の作動態様は請求項第2の発明
の作動態様にほぼ同様であり、相違点は被冷却流体温度
Teに替えて低圧圧力LPを、流体温度目標値Tsに替
えて低圧圧力目標値LPsを用いることである。
Next, the operation mode of the third invention, which features the operation mode based on FIG. 2(a) and FIG. The low pressure LP is used instead of the fluid temperature Te, and the low pressure target value LPs is used instead of the fluid temperature target value Ts.

ただし、第2図(イ)中のBに替えてDとし、第6図中
の843〜S61はステップ番号を示す。
However, B in FIG. 2(a) is replaced with D, and 843 to S61 in FIG. 6 indicate step numbers.

尚1本発明の上記実施例では、熱源側熱交換器2に用い
る送風機の説明を省略したが、この送風機が回転数可変
型または運転台数可変型の場合には、この回転数または
運転台数を高圧圧力HPを演算するための高圧圧力演算
手段IOへの入力の1つとして加えても良い。
1. In the above embodiment of the present invention, the explanation of the blower used in the heat source side heat exchanger 2 was omitted, but if this blower is of a variable rotation speed type or variable number of operating units, the rotation speed or number of operating units may be changed. It may be added as one of the inputs to the high pressure calculation means IO for calculating the high pressure HP.

(発明の効果) 本発明においては、流体温度検出手段7.外気温度検出
手段81周波数検出手段9および高圧圧力演算手段IO
あるいは流体温度検出手段7に替えて低圧圧力検出手段
20によって高圧圧力HPを求め、さらに請求項第2の
発明においては室内温度制御に関連して設けられた流体
温度検出手段7゜請求項第3の発明においては低圧圧力
制御に関連して設けられた低圧圧力検出手段20を用い
るために、高圧圧力検出手段を設けるのに較べてコスト
が安くできる。
(Effects of the Invention) In the present invention, the fluid temperature detection means 7. Outside air temperature detection means 81 frequency detection means 9 and high pressure calculation means IO
Alternatively, the high pressure HP is determined by a low pressure detection means 20 instead of the fluid temperature detection means 7, and further, in the second aspect of the invention, the fluid temperature detection means 7 provided in connection with indoor temperature control. In the invention, since the low-pressure pressure detection means 20 provided in connection with the low-pressure pressure control is used, the cost can be reduced compared to providing a high-pressure pressure detection means.

また高圧圧力の上昇時に、高圧圧力開閉器15の作動に
応動して圧縮機1の駆動周波数FTを減少させることで
圧縮機負荷を低減するため、瞬時的な高圧圧力上昇に対
しては連続した運転を行える。
In addition, when the high pressure increases, the drive frequency FT of the compressor 1 is reduced in response to the operation of the high pressure switch 15 to reduce the compressor load. Able to drive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は請求項第1の発明の空気調和機の
構成図および制御動作のフローチャート。 第3図および第4図は請求項第2の発明の空気調和機の
構成図および制御動作の1部のフローチャー1−1”第
5図および第6図は請求項第3の発明の空気調和機の構
成図および制御動作の1部のフローチャー1−で′ある
。 l・・・圧縮機、2・・・熱源側熱交換器、3・・・膨
張機構、4・・・利用側熱交換器、6・・・インバータ
、7・・・流体温度検出手段、8・・・外気温度検出手
段、9・・・周波数検出手段、10・・・高圧圧力演算
手段、11・・・比較手段、12・・・周波数減少手段
、13・・・周波数維持手段、14・・・周波数増加手
段、15・・・高圧圧力開閉器、16・・・タイマ手段
、17・・・優先作動手段、18・・・流体温度設定手
段、19・・・周波数制御信号発生手段、20・・・低
圧圧力検出手段、21・・・選択手段、22・・・低圧
圧力設定手段。 特許出願人 ダイキン工業株式会社 第1図 第3図 第2図 (イ) 第2図(ロ) 第4図 第6図
1 and 2 are a block diagram and a flowchart of the control operation of an air conditioner according to the first aspect of the invention. 3 and 4 are a block diagram of the air conditioner according to the second invention and a flowchart 1-1 of a part of the control operation." This is a flowchart 1-' of a configuration diagram and a part of the control operation of the harmonizer. 1...Compressor, 2...Heat source side heat exchanger, 3...Expansion mechanism, 4...Using side Heat exchanger, 6... Inverter, 7... Fluid temperature detection means, 8... Outside temperature detection means, 9... Frequency detection means, 10... High pressure calculation means, 11... Comparison Means, 12... Frequency reduction means, 13... Frequency maintenance means, 14... Frequency increase means, 15... High pressure switch, 16... Timer means, 17... Priority activation means, 18...Fluid temperature setting means, 19...Frequency control signal generation means, 20...Low pressure detection means, 21...Selection means, 22...Low pressure setting means. Patent applicant Daikin Industries, Ltd. Company Figure 1 Figure 3 Figure 2 (A) Figure 2 (B) Figure 4 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)インバータ(6)により駆動されるインバータ式
圧縮機(1)、熱源側熱交換器(2)、膨張機構(3)
および利用側熱交換器(4)を備えた空気調和機におい
て、利用側熱交換器(4)の被冷却流体温度(Te)を
検出する流体温度検出手段(7)と、熱源側熱交換器(
2)の空気温度(Tair)を検出する外気温度検出手
段(8)と、圧縮機(1)の駆動周波数(FT)を検出
する周波数検出手段(9)と、流体温度検出手段(7)
、外気温度検出手段(8)および周波数検出手段(9)
の出力から高圧圧力(HP)を演算する高圧圧力演算手
段(10)と、高圧圧力演算手段(10)の出力と所定
圧力領域とを比較し、高圧圧力演算手段(10)の出力
が所定圧力領域を越えているとき第1信号を、所定圧力
領域内のとき第2信号を、所定圧力領域に達していない
とき第3信号をそれぞれ出力する比較手段(11)と、
比較手段(11)からの第1信号により圧縮機(1)の
駆動周波数(FT)を所定値減少させる信号を出力する
周波数減少手段(12)と、比較手段(11)からの第
2信号により圧縮機(1)の駆動周波数(FT)を維持
させる信号を出力する周波数維持手段(13)と、比較
手段(11)からの第3信号により圧縮機(1)の駆動
周波数(FT)を所定値増加させる信号を出力する周波
数増加手段(14)と、圧縮機(1)の高圧側圧力が設
定圧力値以上になると接点を開く高圧圧力開閉器(15
)と、一定時間を設定するタイマ手段(16)と、高圧
圧力開閉器(15)の接点が開いている間は、周波数維
持手段(13)と周波数増加手段(14)の作動を停止
するとともに、周波数減少手段(12)をタイマ手段(
16)により設定された一定時間ごとに作動させる周波
数減少手段(12)の優先作動手段(17)とを備えた
ことを特徴とする空気調和機。
(1) Inverter compressor (1) driven by inverter (6), heat source side heat exchanger (2), expansion mechanism (3)
and an air conditioner equipped with a user-side heat exchanger (4), a fluid temperature detection means (7) for detecting the cooled fluid temperature (Te) of the user-side heat exchanger (4), and a heat source-side heat exchanger. (
2) outside air temperature detection means (8) for detecting the air temperature (Tair), frequency detection means (9) for detecting the driving frequency (FT) of the compressor (1), and fluid temperature detection means (7).
, outside temperature detection means (8) and frequency detection means (9)
The output of the high pressure calculation means (10) is compared with a predetermined pressure region, and the output of the high pressure calculation means (10) is determined to be the predetermined pressure. Comparing means (11) that outputs a first signal when the pressure exceeds the pressure range, a second signal when the pressure falls within the predetermined pressure range, and a third signal when the predetermined pressure range is not reached;
Frequency reduction means (12) outputs a signal that reduces the driving frequency (FT) of the compressor (1) by a predetermined value in accordance with the first signal from the comparison means (11), and the second signal from the comparison means (11) The driving frequency (FT) of the compressor (1) is predetermined by a frequency maintaining means (13) that outputs a signal for maintaining the driving frequency (FT) of the compressor (1), and a third signal from the comparing means (11). frequency increasing means (14) that outputs a signal to increase the value; and a high pressure switch (15) that opens the contact when the high pressure side pressure of the compressor (1) exceeds the set pressure value.
), the timer means (16) for setting a certain period of time, and the high pressure switch (15), while the contacts of the high pressure switch (15) are open, the operation of the frequency maintaining means (13) and the frequency increasing means (14) is stopped. , the frequency reduction means (12) is replaced by the timer means (
16). An air conditioner characterized by comprising: preferential activation means (17) for the frequency reduction means (12), which is activated at regular intervals set by the method 16).
(2)インバータ(6)により駆動されるインバータ式
圧縮機(1)、熱源側熱交換器(2)、膨張機構(3)
および利用側熱交換器(4)を備え、かつ利用側熱交換
器(4)の被冷却流体温度(Te)を検出する流体温度
検出手段(7)と、流体温度目標値(Ts)を設定する
流体温度設定手段(18)と、流体温度検出手段(7)
および流体温度設定手段(18)の各信号を受けて被冷
却流体温度(Te)と流体温度目標値(Ts)との温度
差(ΔT)により、圧縮機(1)の駆動周波数(FT)
を減少、維持または増加させる周波数制御信号を出力す
る周波数制御信号発生手段(19)とを備えた空気調和
機において、熱源側熱交換器(2)の空気温度(Tai
r)を検出する外気温度検出手段(8)と、圧縮機(1
)の駆動周波数(FT)を検出する周波数検出手段(9
)と、流体温度検出手段(7)、外気温度検出手段(8
)および周波数検出手段(9)の出力から高圧圧力(H
P)を演算する高圧圧力演算手段(10)と、高圧圧力
演算手段(10)の出力と所定圧力領域とを比較し、高
圧圧力演算手段(10)の出力が所定圧力領域を越えて
いるとき第1信号を、所定圧力領域内のとき第2信号を
、所定圧力領域に達していないとき第3信号をそれぞれ
出力する比較手段(11)と、比較手段(11)からの
第1信号により圧縮機(1)の駆動周波数(FT)を所
定値減少させる信号を出力する周波数減少手段(12)
と、比較手段(11)からの第2信号により圧縮機(1
)の駆動周波数(FT)を維持させる信号を出力する周
波数維持手段(13)と、比較手段(11)からの第3
信号により圧縮機(1)の駆動周波数(FT)を所定値
増加させる信号を出力する周波数増加手段(14)と、
圧縮機(1)の高圧側圧力が設定圧力値以上になると接
点を開く高圧圧力開閉器(15)と、一定時間を設定す
るタイマ手段(16)と、高圧圧力開閉器(15)の接
点が開いている間は、周波数制御信号発生手段(19)
、周波数維持手段(13)および周波数増加手段(14
)の作動を停止するとともに、周波数減少手段(12)
をタイマ手段(16)により設定された一定時間ごとに
作動させる周波数減少手段(12)の優先作動手段(1
7)と、高圧圧力開閉器(15)の接点が閉じている間
は、周波数減少手段(12)、周波数維持手段(13)
、周波数増加手段(14)および周波数制御信号発生手
段(19)の出力を受けて、圧縮機(1)の駆動周波数
(FT)を減少させる信号、維持させる信号、増加させ
る信号の順に優先して出力する選択手段(21)とを備
えたことを特徴とする空気調和機。
(2) Inverter compressor (1) driven by inverter (6), heat source side heat exchanger (2), expansion mechanism (3)
and a fluid temperature detection means (7) that includes a user-side heat exchanger (4) and detects the cooled fluid temperature (Te) of the user-side heat exchanger (4), and sets a fluid temperature target value (Ts). fluid temperature setting means (18) and fluid temperature detection means (7).
In response to each signal from the fluid temperature setting means (18), the drive frequency (FT) of the compressor (1) is determined by the temperature difference (ΔT) between the cooled fluid temperature (Te) and the fluid temperature target value (Ts).
In an air conditioner equipped with a frequency control signal generating means (19) that outputs a frequency control signal that decreases, maintains, or increases the air temperature (Tai) of the heat source side heat exchanger (2),
an outside air temperature detection means (8) for detecting the temperature r), and a compressor (1
) for detecting the driving frequency (FT) of the frequency detecting means (9
), fluid temperature detection means (7), and outside air temperature detection means (8).
) and the output of the frequency detection means (9).
The high pressure calculation means (10) that calculates P) compares the output of the high pressure calculation means (10) with a predetermined pressure range, and when the output of the high pressure pressure calculation means (10) exceeds the predetermined pressure range. The first signal is compressed by a comparison means (11) that outputs a second signal when the pressure is within a predetermined pressure region and a third signal when the predetermined pressure region has not been reached, and the first signal from the comparison means (11). frequency reduction means (12) that outputs a signal that reduces the drive frequency (FT) of the machine (1) by a predetermined value;
and the second signal from the comparison means (11) causes the compressor (1
) and a third frequency maintaining means (13) for outputting a signal for maintaining the driving frequency (FT) of the
frequency increasing means (14) for outputting a signal that increases the drive frequency (FT) of the compressor (1) by a predetermined value;
A high-pressure pressure switch (15) that opens a contact when the high-pressure side pressure of the compressor (1) exceeds a set pressure value, a timer means (16) for setting a certain period of time, and a contact of the high-pressure pressure switch (15). While open, the frequency control signal generating means (19)
, frequency maintaining means (13) and frequency increasing means (14)
) and at the same time stop the operation of the frequency reduction means (12).
The priority activation means (1) of the frequency reduction means (12) operates at fixed time intervals set by the timer means (16).
7), and while the contacts of the high pressure switch (15) are closed, the frequency reducing means (12) and the frequency maintaining means (13)
, in response to the outputs of the frequency increasing means (14) and the frequency control signal generating means (19), a signal is given priority in the order of decreasing, maintaining, and increasing the drive frequency (FT) of the compressor (1). An air conditioner characterized by comprising: a selection means (21) for outputting.
(3)インバータ(6)により駆動させるインバータ式
圧縮機(1)、熱源側熱交換器(2)、膨張機構(3)
および利用側熱交換器(4)を備え、かつ圧縮機(1)
の吸入圧力(LP)を検出する低圧圧力検出手段(20
)と、低圧圧力目標値(LPs)を設定する低圧圧力設
定手段(22)と、低圧圧力検出手段(20)および低
圧圧力設定手段(22)の各信号を受けて吸入圧力(L
P)と低圧圧力目標値(LPs)との圧力差(ΔLP)
により圧縮機(1)の駆動周波数(FT)を減少、維持
または増加させる周波数制御信号を出力する周波数制御
信号発生手段(19)とを備えた空気調和機において、
熱源側熱交換器(2)の空気温度(Tair)を検出す
る外気温度検出手段(8)と、圧縮機(1)の駆動周波
数(FT)を検出する周波数検出手段(9)と、低圧圧
力検出手段(20)、外気温度検出手段(8)および周
波数検出手段(9)の出力から高圧圧力(HP)を演算
する高圧圧力演算手段(10)と、高圧圧力演算手段(
10)の出力と所定圧力領域とを比較し、高圧圧力演算
手段(10)の出力が所定圧力領域を越えているとき第
1信号を、所定圧力領域内のとき第2信号を、所定圧力
領域に達していないとき第3信号をそれぞれ出力する比
較手段(11)と、比較手段(11)からの第1信号に
より圧縮機(1)の駆動周波数(FT)を所定値減少さ
せる信号を出力する周波数減少手段(12)と、比較手
段(11)からの第2信号により圧縮機(1)の駆動周
波数(FT)を維持させる信号を出力する周波数維持手
段(13)と、比較手段(11)からの第3信号により
圧縮機(1)の駆動周波数(FT)を所定値増加させる
信号を出力する周波数増加手段(14)と、圧縮機(1
)の高圧側圧力が設定圧力値以上になると接点を開く高
圧圧力開閉器(15)と、一定時間を設定するタイマ手
段(16)と、高圧圧力開閉器(15)の接点が開いて
いる間は、周波数制御信号発生手段(19)、周波数維
持手段(13)および周波数増加手段(14)の作動を
停止するとともに、周波数減少手段(12)をタイマ手
段(16)により設定された一定時間ごとに作動させる
周波数減少手段(12)の優先作動手段(17)と、高
圧圧力開閉器(15)の接点が閉じている間は、周波数
減少手段(12)、周波数維持手段(13)、周波数増
加手段(14)および周波数制御信号発生手段(19)
の出力を受けて、圧縮機(1)の駆動周波数(FT)を
減少させる信号、維持させる信号、増加させる信号の順
に優先して出力する選択手段(21)とを備えたことを
特徴とする空気調和機。
(3) Inverter compressor (1) driven by inverter (6), heat source side heat exchanger (2), expansion mechanism (3)
and a user-side heat exchanger (4), and a compressor (1)
low pressure detection means (20
), a low pressure setting means (22) for setting a low pressure target value (LPs), a low pressure detection means (20), and a low pressure setting means (22).
Pressure difference (ΔLP) between P) and low pressure target value (LPs)
An air conditioner comprising: frequency control signal generating means (19) that outputs a frequency control signal that reduces, maintains or increases the drive frequency (FT) of the compressor (1),
An outside air temperature detection means (8) for detecting the air temperature (Tair) of the heat source side heat exchanger (2), a frequency detection means (9) for detecting the drive frequency (FT) of the compressor (1), and a low pressure A high pressure calculation means (10) that calculates high pressure (HP) from the outputs of the detection means (20), the outside temperature detection means (8), and the frequency detection means (9);
The output of 10) is compared with a predetermined pressure region, and when the output of the high pressure calculation means (10) exceeds the predetermined pressure region, the first signal is given, and when it is within the predetermined pressure region, the second signal is given as the predetermined pressure region. a comparison means (11) that outputs a third signal when the first signal has not reached the third signal, and a signal that reduces the drive frequency (FT) of the compressor (1) by a predetermined value based on the first signal from the comparison means (11). frequency reduction means (12); frequency maintenance means (13) for outputting a signal that maintains the drive frequency (FT) of the compressor (1) based on the second signal from the comparison means (11); and comparison means (11). frequency increasing means (14) for outputting a signal for increasing the driving frequency (FT) of the compressor (1) by a predetermined value in response to a third signal from the compressor (1);
), the high pressure switch (15) opens the contact when the high pressure side pressure of the high pressure switch (15) exceeds the set pressure value; stops the operation of the frequency control signal generating means (19), the frequency maintaining means (13) and the frequency increasing means (14), and the frequency decreasing means (12) is stopped at regular intervals set by the timer means (16). While the contacts of the priority activation means (17) of the frequency reduction means (12) and the high-pressure pressure switch (15) are closed, the frequency reduction means (12), the frequency maintenance means (13), and the frequency increase Means (14) and frequency control signal generating means (19)
The present invention is characterized by comprising a selection means (21) which receives the output of the compressor (1) and outputs a signal to decrease the drive frequency (FT) of the compressor (1), a signal to maintain it, and a signal to increase it in the order of priority. Air conditioner.
JP63036367A 1988-02-18 1988-02-18 Air conditioner Granted JPH01210762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036367A JPH01210762A (en) 1988-02-18 1988-02-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036367A JPH01210762A (en) 1988-02-18 1988-02-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01210762A true JPH01210762A (en) 1989-08-24
JPH0559338B2 JPH0559338B2 (en) 1993-08-30

Family

ID=12467864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036367A Granted JPH01210762A (en) 1988-02-18 1988-02-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01210762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200063A (en) * 2012-03-23 2013-10-03 Denso Corp Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200063A (en) * 2012-03-23 2013-10-03 Denso Corp Refrigeration cycle device

Also Published As

Publication number Publication date
JPH0559338B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US7918097B2 (en) Air conditioning system
US20070266719A1 (en) Air conditioner and method of controlling the same
US6705097B2 (en) Compressor-controlling device and method for air conditioner comprising a plurality of compressors
JPH01210762A (en) Air conditioner
JP2001272149A (en) Show case cooling device
JPS62162834A (en) Air conditioner
US6669102B1 (en) Method for operating air conditioner in warming mode
JPH08226732A (en) Air conditioning equipment
JPH09113075A (en) Indoor/outdoor separation type air conditioner
US6722576B1 (en) Method for operating air conditioner in warming mode
JPH07234045A (en) Air conditioner
JP3434094B2 (en) High pressure protection device and condensing pressure control device in refrigeration system
JP3326898B2 (en) Control device for heat pump device
JPH08178439A (en) Controller for refrigerator
JP3285395B2 (en) Refrigeration cycle
KR100635211B1 (en) Method for controlling linear expansion valve in air conditioner
JPH09152197A (en) Parallel compression type multi-compressor
JPH07234046A (en) Air conditioner
JP2802060B2 (en) Multi-room air conditioner
JP2001174112A (en) Air conditioner
JPH0689949B2 (en) Air conditioner
JPS59208343A (en) Capacity controlling device of air conditioner
JP2683135B2 (en) Multi-type air conditioner
JPH04158145A (en) Air conditioner
JPH01302071A (en) Refrigerator