JPH01208882A - Semiconductor magnetoresistance element - Google Patents

Semiconductor magnetoresistance element

Info

Publication number
JPH01208882A
JPH01208882A JP63034251A JP3425188A JPH01208882A JP H01208882 A JPH01208882 A JP H01208882A JP 63034251 A JP63034251 A JP 63034251A JP 3425188 A JP3425188 A JP 3425188A JP H01208882 A JPH01208882 A JP H01208882A
Authority
JP
Japan
Prior art keywords
semiconductor
electrodes
short
deposited
semiconductor magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034251A
Other languages
Japanese (ja)
Inventor
Masanori Samejima
正憲 鮫島
Kazuo Ogata
一雄 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63034251A priority Critical patent/JPH01208882A/en
Publication of JPH01208882A publication Critical patent/JPH01208882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To stably obtain a preferable magnetoresistance effect by forming a plurality of semiconductor resistors each having short-circuiting electrodes, and forming the electrodes on an insulation substrate for forming the resistors and the resistors. CONSTITUTION:After Cu is deposited on an alumina insulation substrate 11, the Cu is formed by photolithography and etching techniques in a desired pattern, and short-circuiting electrodes 13b are provided. Then, an InSb semiconductor magnetoresistance film 12 is deposited, and Cu 15 is further deposited. Then, the Cu is formed in the desired pattern of terminal electrodes 13a and short- circuiting electrodes 14. Eventually, the InSb is formed in a desired shape by photolithography and etching techniques as a magnetoresistance element. Thus, even when semiconductor resistance elements are provided in high density, high magnetoresistance effect can be stably obtained, and an irregularity can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体の磁気抵抗効果を利用して磁界の変化
を検出する各種センサ、例えば1回転センサ、位置検出
セyす等に用いられる半導体磁気抵抗素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor magnetic sensors used in various sensors that detect changes in magnetic fields by utilizing the magnetoresistive effect of semiconductors, such as one-rotation sensors, position detection sensors, etc. This relates to resistive elements.

従来の技術 従来、半導体に磁界を加えると抵抗が増加する現象は磁
気抵抗効果として知られておシ、この性質を利用した半
導体磁気抵抗素子は1位置検出。
Conventional Technology Conventionally, the phenomenon in which resistance increases when a magnetic field is applied to a semiconductor is known as the magnetoresistive effect, and semiconductor magnetoresistive elements that utilize this property detect one position.

歯車の回転検出センナ等に用いられている。従来の半導
体磁気抵抗素子を第4図に示す。第4図で1は基板であ
シ、アルミナ等の基材が用いられる。
Used in gear rotation detection sensors, etc. A conventional semiconductor magnetoresistive element is shown in FIG. In FIG. 4, reference numeral 1 indicates a substrate, and a base material such as aluminum or aluminum is used.

2は半導体磁気抵抗膜であシ、電子移動度が高い。2 is a semiconductor magnetoresistive film and has high electron mobility.

という理由からInSbが一役に用いられる。3は短絡
電標、4は端子電極である。3.4の電極材料としては
Cu 、ム1等が用いられる。前記短絡電極3は、磁気
抵抗効果の効率を高めるために必要であり、前記短絡電
極3で区切られた半導体の寸法lとWの比W / AF
は大きいほうがよく、一般にはw/J=1oが用いられ
る。第6図は第4図の磁気抵抗素子をB −B’で切っ
たときの断面図である。第4図に示した磁気抵抗素子は
、一般【は第6図に示すように蛇行形状化した、2つの
磁気抵抗素子を直列接続して端子6−7間に電圧を印加
して、6−6間に発生する電圧を出力として取り出す。
For this reason, InSb is used to play a role. 3 is a short-circuit electric sign, and 4 is a terminal electrode. As the electrode material of 3.4, Cu, Mu1, etc. are used. The shorting electrode 3 is necessary to increase the efficiency of the magnetoresistive effect, and the ratio of the dimensions l and W of the semiconductor separated by the shorting electrode 3 is W/AF
The larger the value, the better, and generally w/J=1o is used. FIG. 6 is a cross-sectional view of the magnetoresistive element shown in FIG. 4 taken along line B-B'. The magnetoresistive element shown in FIG. 4 is generally produced by connecting two magnetoresistive elements in series, each having a meandering shape as shown in FIG. The voltage generated between 6 and 6 is taken out as an output.

つまシ、セ/すとして用いる場合、第6図の点線で囲ま
れた部分が感知部となる。
When used as a tab or center, the part surrounded by the dotted line in FIG. 6 becomes the sensing part.

第4図及び第6図の半導体磁気抵抗素子の製造方法を第
7図に基づいて以下に示す。まず、基板1全面上に半導
体磁気抵抗膜2としてInSbの薄膜を形成する(第7
図a)。薄膜としてはInSbの単結晶を研摩して薄片
化したもの又は、  InSbの蒸着膜が用いられる。
A method for manufacturing the semiconductor magnetoresistive elements shown in FIGS. 4 and 6 will be described below based on FIG. 7. First, an InSb thin film is formed as the semiconductor magnetoresistive film 2 on the entire surface of the substrate 1 (seventh
Diagram a). As the thin film, a single crystal of InSb is polished into thin pieces, or a vapor-deposited film of InSb is used.

次に端子電極及び短絡電極用の金・、4膜8を蒸着又は
、メツキ法で成膜する(第7図b)。次てフォトリソグ
ラフィ技術及び、エツチング技術を用いて所望の電極パ
ターンの短絡電極3.端子電極4を形成する(第7図0
)。
Next, a gold film 8 for terminal electrodes and short-circuit electrodes is formed by vapor deposition or plating (FIG. 7b). Next, a desired electrode pattern is formed using photolithography and etching techniques. Forming the terminal electrode 4 (Fig. 70)
).

最後にフォトリソグラフィ技術及びエツチング技術を用
いて、不要部分のInSbを取シ除いて所望の磁気抵抗
素子のパターンを形成する(第7図d)。
Finally, using photolithography and etching techniques, unnecessary portions of InSb are removed to form a desired pattern of the magnetoresistive element (FIG. 7d).

前記エツチングにはエツチング液を用いる湿式法が用い
られる。以上が従来の半導体磁気抵抗素子及びその製造
法である。
A wet method using an etching solution is used for the etching. The above is the conventional semiconductor magnetoresistive element and its manufacturing method.

発明が解決しようとする課題 ところで、前述のとうり、短絡電極によって区切られた
半導体の形状は、その長さlと:嘔Wの比W/lが大き
いほうが、高い磁気抵抗効果を得られる。従って、lは
小さいことが望ましい。又、位置検出センサ及び回転セ
ンサ等に対する近年の要望は、微少変位の検出の傾向が
強まっており、第6図に示した感知部の面積は縮小化す
る必要がある。これに伴い第6図に示した蛇行形状の半
導体磁気抵抗の幅、つまり胃は小さくする必要が生じ、
最終的に前記lも小さくする必要がある。例えば、前記
磁気抵抗の;[W=100ミクロンのとき1=1oミク
ロンにしなくてはならない。lを決定するのは前記短絡
電極の加工精度であるからこの部分の精度をいかにして
高くするかが問題となる。ところが前述のとうり、短絡
電極の加工は湿式法によるエツチングで行っているので
あるが。
Problems to be Solved by the Invention As described above, when the shape of the semiconductor separated by the short-circuit electrode has a larger ratio W/l between the length l and :w, a higher magnetoresistive effect can be obtained. Therefore, it is desirable that l be small. Further, in recent years, demand for position detection sensors, rotation sensors, etc. is increasing toward detection of minute displacements, and the area of the sensing portion shown in FIG. 6 needs to be reduced. Along with this, it became necessary to reduce the width, or stomach, of the meandering semiconductor magnetoresistance shown in FIG.
Ultimately, it is necessary to reduce the above l as well. For example, for the magnetoresistance; [When W=100 microns, 1=10 microns must be set. Since l is determined by the processing accuracy of the short-circuiting electrode, the problem is how to improve the accuracy of this part. However, as mentioned above, the short-circuit electrode is processed by wet etching.

一般に知られているとうり湿式法によるエツチングには
サイドエツチング及び局部電池反応だよるエツチングの
局部的進行などの問題があるためて10ミクロンといっ
た微細寸法を安定して出すことには限界がある。その結
果磁気抵抗素子としての特性も、ばらつきが多くなって
いた。以上のように、従来の構造を持つ半導体磁気抵抗
素子では。
As is generally known, wet etching has problems such as side etching and local progress of etching due to local cell reactions, so there is a limit to the ability to stably produce fine dimensions of 10 microns. As a result, the characteristics as a magnetoresistive element also varied widely. As described above, in a semiconductor magnetoresistive element with a conventional structure.

素子の小型化に伴い高い磁気特性を安定して取り出せな
いと言う問題があった。
As devices become smaller, there has been a problem in that high magnetic properties cannot be stably obtained.

本発明ば、前記問題点に鑑みて、磁気抵抗素子の小型化
に対しても高A磁気抵抗効果を安定して取シ出せる半導
体磁気抵抗素子を提供するものである。
In view of the above problems, the present invention provides a semiconductor magnetoresistive element that can stably achieve a high A magnetoresistive effect even when the magnetoresistive element is miniaturized.

課題を解決するための手段 そのために本発明では、複数個の短絡電極を半導体磁気
抵抗膜を形成する絶縁基板上、及び前記半導体磁気抵抗
膜上に形成したものである。また前記絶縁基板上に形成
した短絡電極の真上には。
Means for Solving the Problems For this purpose, in the present invention, a plurality of shorting electrodes are formed on an insulating substrate on which a semiconductor magnetoresistive film is formed and on the semiconductor magnetoresistive film. Also, directly above the shorting electrode formed on the insulating substrate.

半導体磁気抵抗膜上に形成した短絡電極が存在しないよ
うな構造にしである。
The structure is such that there is no shorting electrode formed on the semiconductor magnetoresistive film.

作用 本発明の構造では、複数個の短絡電極を、従来の構造の
物に加えて、絶縁基板上にも形成している。しかも従来
の構造での短絡電極の間にも電極が存在する事になるの
で、前述した磁気抵抗膜の長さを従来の物に比べて短く
出来る。従って、磁気抵抗効果も大きくなる。更に、絶
縁基板上の複数個の短絡電極の間隔、及び、半導体磁気
抵抗膜上の複数個の短絡triの間隔は従来と変わる事
は無いので、エツチングによる制約は問題にならない。
Function: In the structure of the present invention, a plurality of shorting electrodes are also formed on the insulating substrate in addition to those in the conventional structure. Moreover, since electrodes are present between the short-circuit electrodes in the conventional structure, the length of the above-mentioned magnetoresistive film can be made shorter than in the conventional structure. Therefore, the magnetoresistive effect also increases. Furthermore, the spacing between the plurality of shorting electrodes on the insulating substrate and the spacing between the plurality of shorting tris on the semiconductor magnetoresistive film remain the same as in the prior art, so that restrictions due to etching do not pose a problem.

依って、素子の形状を小さくしても良好な磁気抵抗効果
を安定して得ることが出来る。以上のように1本発明の
構造にすることにょシ、素子形状を小さくしても、高い
磁気抵抗効果を安定して得る事が可能となる。
Therefore, even if the shape of the element is made small, a good magnetoresistive effect can be stably obtained. As described above, by adopting the structure of the present invention, it is possible to stably obtain a high magnetoresistive effect even if the element shape is made small.

実施例 以下1本発明による一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例【よシ作成した半導体磁気抵
抗素子の上面図である。第1図で11は絶縁基板であり
1本実施例ではアルミナ基板を用いた。12は半導体磁
気抵抗膜であり、In5bの蒸着膜をもちいた。13!
513bは短絡電極である。14は端子電極である。1
3a。
FIG. 1 is a top view of a semiconductor magnetoresistive element prepared according to an embodiment of the present invention. In FIG. 1, reference numeral 11 denotes an insulating substrate, and in this embodiment, an alumina substrate was used. Reference numeral 12 denotes a semiconductor magnetoresistive film, and a vapor-deposited film of In5b was used. 13!
513b is a shorting electrode. 14 is a terminal electrode. 1
3a.

13b及び14にはCuの蒸着膜を用いている。For 13b and 14, a deposited Cu film is used.

第2図は第1図のムー五′で切った時の断面図である。FIG. 2 is a sectional view taken along line 5' in FIG. 1.

本実施例では、半導体磁気抵抗膜2上の短絡電極132
Lは、アルミナ基板上に形成した短絡電標13b間のほ
ぼ中央上に形成した。又、短絡電極の備は約10ミクロ
ンであり1間隔は約20ミクロンとしている。
In this embodiment, the shorting electrode 132 on the semiconductor magnetoresistive film 2
L was formed approximately at the center between the short circuit electric marks 13b formed on the alumina substrate. Further, the length of the short-circuit electrodes is about 10 microns, and the distance between them is about 20 microns.

次て、本実施例の半導体磁気抵抗素子の製造方法を第3
図に基づき説明する。まず、アルミナの総置基板11上
1ccuを蒸着したのち、フォトリソグラフィ及びエツ
チング技術を用いてCuを所望のパターンに形成して短
絡電極13bを設ける(第3図2L)。次にInSbの
半導体磁気抵抗膜12を蒸着して、更K Cu 16を
蒸着する(第3図b)。
Next, the method for manufacturing the semiconductor magnetoresistive element of this example will be explained in the third step.
This will be explained based on the diagram. First, 1 ccu of alumina is deposited on the total substrate 11, and then Cu is formed into a desired pattern using photolithography and etching techniques to provide short-circuit electrodes 13b (FIG. 3, 2L). Next, a semiconductor magnetoresistive film 12 of InSb is deposited, and then K Cu 16 is deposited (FIG. 3b).

次に第3図&の工程と同様にして、Cu  を所望の端
子室113a及び短絡電極14のパターンに形成する。
Next, in the same manner as in the steps shown in FIG.

最後に、フォトリソ技術及びエツチング技術を用いてI
nSbを所望の形状に形成して、磁気抵抗素子の製造工
程は終了する。
Finally, using photolithography and etching techniques, I
The manufacturing process of the magnetoresistive element is completed by forming nSb into a desired shape.

以上が本発明による一実施例である。なお1本実施列で
は、電極材料としてCuを用いたが、他の材料1例えば
ムlを用いてもよい。
The above is one embodiment according to the present invention. In this embodiment, Cu was used as the electrode material, but other materials such as mulch may be used.

発明の効果 本発明の構造をとることにより、エツチング等の条件は
従来と変わる事なく、シかも、短絡電極間の距離を短く
出来るので、半導体磁気抵抗素子を高密度化したときで
も、従来の構造の物に比べて、高い磁気抵抗効果を安定
して取り出す事が可能となシ、その結果、ばらつきの少
ない素子が得られるという効果が得られる。
Effects of the Invention By employing the structure of the present invention, the etching conditions and other conditions remain the same as before, and the distance between the short-circuit electrodes can be shortened. Compared to conventional structures, it is possible to stably extract a high magnetoresistive effect, and as a result, it is possible to obtain an element with less variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体磁気抵抗素子の
上面図、第2図は第1図のム一ににおける断面図、第3
図は本発明の一実施例の製造工程を示す断面図、第4図
および第6図は従来の半導体磁気抵抗素子の上面図、第
6図は第4図のB −B′における断面図、第7図は従
来の半導体磁気抵抗素子の製造工程を示す断面図である
。 11・・・・・・絶縁基板、12・・・・・・半導体磁
気抵抗膜。 132L、13b・・・・・・短絡電極、14・・・・
・・端子電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 13図 1Jb   lI  lど 第7図 (の ((/J 顕さ−き、−\ 一1 NNXきびく ノーM しXvママ
FIG. 1 is a top view of a semiconductor magnetoresistive element according to an embodiment of the present invention, FIG. 2 is a cross-sectional view at the corner of FIG.
The figure is a sectional view showing the manufacturing process of an embodiment of the present invention, FIGS. 4 and 6 are top views of a conventional semiconductor magnetoresistive element, and FIG. 6 is a sectional view taken along B-B' in FIG. FIG. 7 is a cross-sectional view showing the manufacturing process of a conventional semiconductor magnetoresistive element. 11... Insulating substrate, 12... Semiconductor magnetoresistive film. 132L, 13b... Short circuit electrode, 14...
...Terminal electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 13 Figure 1 Jb lI ldo Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板に複数個の短絡電極を有する半導体磁気
抵抗を形成し、前記短絡電極を半導体磁気抵抗を形成す
る絶縁基板上及び前記半導体磁気抵抗上に形成したこと
を特徴とする半導体磁気抵抗素子。
(1) A semiconductor magnetoresistive device, characterized in that a semiconductor magnetoresistive device having a plurality of shorting electrodes is formed on an insulating substrate, and the shorting electrodes are formed on the insulating substrate forming the semiconductor magnetoresistive device and on the semiconductor magnetoresistive device. element.
(2)絶縁基板上に形成した短絡電極の真上には、半導
体磁気抵抗上に形成した短絡電極が存在しないことを特
徴とする請求項1に記載の半導体磁気抵抗素子。
(2) The semiconductor magnetoresistive element according to claim 1, wherein there is no shorting electrode formed on the semiconductor magnetoresistive material directly above the shorting electrode formed on the insulating substrate.
JP63034251A 1988-02-17 1988-02-17 Semiconductor magnetoresistance element Pending JPH01208882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034251A JPH01208882A (en) 1988-02-17 1988-02-17 Semiconductor magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034251A JPH01208882A (en) 1988-02-17 1988-02-17 Semiconductor magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH01208882A true JPH01208882A (en) 1989-08-22

Family

ID=12408949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034251A Pending JPH01208882A (en) 1988-02-17 1988-02-17 Semiconductor magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH01208882A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831698A (en) * 1971-08-28 1973-04-25
JPS517986A (en) * 1974-07-10 1976-01-22 Nippon Kokan Kk UZURYUTANSHOSOCHINIOKERU KENSHUTSUKOIRUNO JIDOSHINDASHISOCHI
JPS5587496A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Magnetic resistance element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831698A (en) * 1971-08-28 1973-04-25
JPS517986A (en) * 1974-07-10 1976-01-22 Nippon Kokan Kk UZURYUTANSHOSOCHINIOKERU KENSHUTSUKOIRUNO JIDOSHINDASHISOCHI
JPS5587496A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Magnetic resistance element

Similar Documents

Publication Publication Date Title
US20040031982A1 (en) Interdigitated integrated circuit capacitor
US5146201A (en) Magnetic sensor system including stacked hall effect devices detecting orthogonal magnetic fields
JP2587822B2 (en) Ferromagnetic magnetoresistive element
JPH05335650A (en) Ferromagnetic magnetic resistance element
JPH01208882A (en) Semiconductor magnetoresistance element
RU2753803C1 (en) Method for creating self-oriented magnetic sensor
JP2508259B2 (en) Superconducting three-terminal element and manufacturing method thereof
JPH03124047A (en) Integrated circuit device
JP2002252393A (en) Magnetic sensor
JPS61279167A (en) Manufacture of semiconductor device
JPH02177580A (en) Semiconductor magnetoresistance element and manufacture thereof
JPS6135976Y2 (en)
JPS63169058A (en) Thin film integrated circuit
JPS6353942A (en) Method of measuring mis alignment of mask pattern
JPS63202953A (en) Manufacture of semiconductor device
JPS6097660A (en) Semiconductor device
JPS60227459A (en) Integrated circuit device
JPH02248826A (en) Semiconductor pressure sensor
JPH03240210A (en) High-frequency chip coil
JPH01189937A (en) Manufacture of semiconductor device
JPS59220983A (en) Hall element
JPH01168051A (en) Manufacture of semiconductor device
JPH0223674A (en) Connection of wiring
JPH0265169A (en) Semiconductor device having capacitor element
JPH0258880A (en) Semiconductor magnetoresistance element