JPH01208372A - Production of surface-treated inorganic-fiber reinforced ceramic composite - Google Patents

Production of surface-treated inorganic-fiber reinforced ceramic composite

Info

Publication number
JPH01208372A
JPH01208372A JP63029835A JP2983588A JPH01208372A JP H01208372 A JPH01208372 A JP H01208372A JP 63029835 A JP63029835 A JP 63029835A JP 2983588 A JP2983588 A JP 2983588A JP H01208372 A JPH01208372 A JP H01208372A
Authority
JP
Japan
Prior art keywords
ceramic
treated inorganic
inorganic fibers
matrix
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63029835A
Other languages
Japanese (ja)
Other versions
JPH057352B2 (en
Inventor
Kenji Ichikawa
健治 市川
Noboru Tsukamoto
昇 塚本
Eiji Iida
栄司 飯田
Takeomi Yamamura
山村 武臣
Toshihiro Ishikawa
敏弘 石川
Masaki Shibuya
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Ube Corp
Original Assignee
Shinagawa Refractories Co Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Ube Industries Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP63029835A priority Critical patent/JPH01208372A/en
Publication of JPH01208372A publication Critical patent/JPH01208372A/en
Publication of JPH057352B2 publication Critical patent/JPH057352B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve fracture toughness, compressive strength, etc., by kneading specific reinforcing surface-treated inorganic fibers with ceramic powder and calcining the resultant mixture. CONSTITUTION:Inorganic fibers consisting of (a) an amorphous substance consisting of Si, MC (M is Ti or Zr) and O, (b) beta-SiC, MC, a solid solution of the beta-SiC with MC and/or respective crystalline fine particles of MC1-x (x is 0-1) and an aggregate of amorphous SiO2 and MO2 or a mixed system of the components (a) with (b) are coated with a solution of at least component selected from polytitanocarbosilanes or polyzirconocarbosilanes, silane coupling agents, phenolic resins having 500-20000 average molecular weight and petroleum pitch in an organic solvent and dried to afford reinforcing surface-treated inorganic fibers (A) having a surface layer of 0.1-50mum thickness. The resultant component (A) is then kneaded with ceramic powder or an organic substance capable of providing ceramic by heating to be a matrix (B) and the obtained mixture is press formed under 50-5000kg/cm<2> pressure and calcined at 600-2400 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表面処理無機繊維強化セラミック複合体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a surface-treated inorganic fiber-reinforced ceramic composite.

[従来の技術] 耐熱性および高強度を必要とされる分野においてセラミ
ックが使用されている。しかし−最に、セラミックは機
械的衝撃に弱く、また高温下においては機械的強度や耐
食性が低下するという欠点を有している。
[Prior Art] Ceramics are used in fields where heat resistance and high strength are required. However, ceramics have the disadvantage that they are susceptible to mechanical shock and their mechanical strength and corrosion resistance decrease at high temperatures.

これらの欠点を補うため、アルミナ、炭素などからなる
連続繊維、炭化ケイ素などからなる短繊維もしくはウィ
スカとセラミックとを複合させた複合体が提案されてい
る。例えば、特開昭第52−81309号公報には有機
ケイ素高分子化合物から得られた炭化ケイ素繊維で補強
された耐熱性セラミック複合体の製法が提案されている
In order to compensate for these drawbacks, continuous fibers made of alumina, carbon, etc., short fibers made of silicon carbide, etc., or composites made of whiskers and ceramics have been proposed. For example, JP-A-52-81309 proposes a method for producing a heat-resistant ceramic composite reinforced with silicon carbide fibers obtained from organosilicon polymer compounds.

特開昭第55−85644号公報には、ポリカルボシラ
ン、ポリシラン、ポリカルボシロキサンのような有機ケ
イ素高分子化合物を炭素繊維の表面に塗布し、この有機
ケイ素高分子化合物を無機化することによって、表面層
として炭化ケイ素を主体とするセラミック質を形成する
方法が提案されている。特開昭第59−53728号公
報には、あらかじめガラス質層を設けた後、ポリカルボ
シラン、ポリシラン、ポリカルボシロキサンのような有
機ケイ素高分子化合物を塗布し、上記高分子化合物を無
機化して表面層を形成する方法が提案されている。
JP-A No. 55-85644 discloses that by applying an organosilicon polymer compound such as polycarbosilane, polysilane, or polycarbosiloxane to the surface of carbon fiber and inorganizing the organosilicon polymer compound, , a method of forming a ceramic material mainly composed of silicon carbide as a surface layer has been proposed. JP-A No. 59-53728 discloses that after a glassy layer is provided in advance, an organosilicon polymer compound such as polycarbosilane, polysilane, or polycarbosiloxane is applied, and the polymer compound is inorganicized. Methods of forming the surface layer have been proposed.

[発明が解決しようとする[!] 特開昭第52−81309号公報記載の方法では、強化
性繊維とマトリックスであるセラミックとの接着性が劣
り、所望の機械的強度を示す複合体を得ることができな
い6 また特開昭第55−85644号公報記載の方法では、
中心層と表面層との接着性が悪いうえ、両層間に歪みが
残留するため、強化I Ift自体の引張強度や可とう
性が低く、得られた複合体の機械的強度は満足できるも
のではない。
[The invention tries to solve [! ] In the method described in JP-A No. 52-81309, the adhesion between reinforcing fibers and the ceramic matrix is poor, making it impossible to obtain a composite exhibiting the desired mechanical strength6. In the method described in Publication No. 55-85644,
Since the adhesion between the center layer and the surface layer is poor, and distortion remains between both layers, the tensile strength and flexibility of the reinforced I Ift itself are low, and the mechanical strength of the obtained composite is not satisfactory. do not have.

特開昭第59−53728号公報記載の方法は、得られ
た強化繊維それ自体のti械的強度は良好であるが5表
面層を形成する炭化物のセラミックとの濡れ性が十分で
なく、得られた複合体の機械的強度はやはり満足できる
ものではない。
In the method described in JP-A No. 59-53728, although the obtained reinforcing fibers themselves have good mechanical strength, the wettability of the carbide with the ceramic forming the surface layer is insufficient, and the The mechanical strength of the composites obtained is still not satisfactory.

本発明の目的は、中心層と表面層および表面層とマトリ
ックスの接着性が良好な表面処理無機繊維を用いること
により、破壊靭性、圧縮強度等の機械的強度に優れたセ
ラミック複合体の製造方法を提供することにある。
The purpose of the present invention is to produce a ceramic composite with excellent mechanical strength such as fracture toughness and compressive strength by using surface-treated inorganic fibers with good adhesion between the center layer and the surface layer, and between the surface layer and the matrix. Our goal is to provide the following.

[課題分解法するための手段] 本発明によれば、表面処理無機繊維を強化材とし、セラ
ミックをマトリックスとする表面処理無機繊維強化セラ
ミック複合体の製造方法において、(i)  Si、M
、CおよびOから実質的になる非晶質物質°、または (ii )  実π的にβ−5tC,MC,β−5iC
とMCの固溶体および/またはMC,−、の粒径が50
0Å以下の各結晶質超微粒子、および非晶質の5tOz
とMC2とからなる集合体、または(iii )  上
記(i)の非晶質物質と上記(ii)の結晶質超微粒子
集合体の混合系 [式中、MはTiまたはZrを示し、Xは0より大きく
1未満の数を示すコ からなる無機質線維に、 ■ 該無機質繊tnの原料であるポリチタノカルボシラ
ンまたはポリジルコノカルボシラン、■シランカップリ
ング剤I。
[Means for solving the problem] According to the present invention, in the method for manufacturing a surface-treated inorganic fiber-reinforced ceramic composite using surface-treated inorganic fibers as a reinforcing material and ceramic as a matrix, (i) Si, M
, an amorphous substance consisting essentially of C and O, or (ii) β-5tC, MC, β-5iC in real π
and MC solid solution and/or MC,-, particle size of 50
Each crystalline ultrafine particle of 0 Å or less and amorphous 5tOz
and MC2, or (iii) a mixed system of the amorphous material of (i) above and the crystalline ultrafine particle aggregate of (ii) [wherein M represents Ti or Zr, and X represents Inorganic fibers having a number greater than 0 and less than 1 include (1) polytitanocarbosilane or polyzirconocarbosilane, which is a raw material for the inorganic fibers (tn), and (2) silane coupling agent I.

■ フェノール樹脂、および ■ 石油ピッチ からなる群から運ばれた少なくとも1種を有機溶媒に溶
解した溶液を塗布乾燥し、得られた強化用表面処理無v
1繊維をマトリックスとなるセラミック例末または加熱
処理によりセラミック化する有機物に混練もしくは埋設
せしめて焼成することを特徴とする上記セラミック複合
体の製造方法が提供される。
A solution prepared by dissolving at least one of the group consisting of ■ phenolic resin and ■ petroleum pitch in an organic solvent is coated and dried, and the resulting surface is treated without surface treatment for reinforcement.
There is provided a method for manufacturing the ceramic composite described above, which comprises kneading or embedding one fiber in a ceramic powder serving as a matrix or an organic material that is turned into a ceramic by heat treatment, and then firing.

本発明において用いられる無機質1!維は、特公昭下6
0−1405号公報、特公昭下60−20485号公報
等に開示されたものである。
Inorganic substance used in the present invention 1! I am a special public official in the 6th century.
This is disclosed in Japanese Patent Publication No. 0-1405, Japanese Patent Publication No. 60-20485, etc.

本発明において、無機質ua維の表面に塗布される重合
体の1種であるポリチタノカルボシランおよびポリジル
コノカルボシランは、例えば米国特許4347347号
明細書、米国特許4359559号明細書に記載された
方法で製造することができる。上記ポリチタノカルボシ
ランおよびポリジルコノカルボシランは、10〜som
星%のシロキサンポリマーを含有することが好ましい。
In the present invention, polytitanocarbosilane and polyzirconocarbosilane, which are types of polymers applied to the surface of inorganic UA fibers, are described in, for example, US Pat. No. 4,347,347 and US Pat. No. 4,359,559. It can be manufactured using different methods. The polytitanocarbosilane and polyzirconocarbosilane have 10 to som
Preferably, it contains a star% of siloxane polymer.

同じ<=ti質繊維の表面に塗布されるシランカップリ
ング剤は、式 %式% [式中、Xは一0R1−CI、−NR2、−Rを示し、
YはCHz = C(CH3) CO0−1N H2C
Hz CH2N l−1−1CI−、Rを示し、ただし
Rは2価の脂肪族または芳香族残基を示す]の化合物が
一般に使用される。
The silane coupling agent applied to the surface of the same<=ti fiber has the formula % formula % [wherein X represents -R1-CI, -NR2, -R,
Y is CHz = C(CH3) CO0-1N H2C
Hz CH2N l-1-1CI-, where R represents a divalent aliphatic or aromatic residue] are generally used.

同じく無機質繊維の表面に塗布されるフェノール樹脂に
ついては、特に限定されるものではないが、有機溶剤に
室温で溶解するものが好ましく、例えば平均分゛子量M
wが500〜20,000のフェノール樹脂が好ましく
用いられる。フェノール樹脂としては、レゾール型また
はノボラック型のフェノール樹脂、例えばフェノール・
ホルマリン樹脂、クレゾール・ポルマリン樹脂、変性フ
ェノール樹脂、フェノール・フルフラール樹脂、レゾル
シン樹脂等を例示できる。
Similarly, the phenol resin applied to the surface of the inorganic fibers is not particularly limited, but it is preferably one that dissolves in an organic solvent at room temperature, for example, an average molecular weight M
A phenolic resin having w of 500 to 20,000 is preferably used. Phenolic resins include resol type or novolac type phenolic resins, such as phenol resins.
Examples include formalin resin, cresol/pormarine resin, modified phenol resin, phenol/furfural resin, and resorcinol resin.

本発明で用いる有機溶媒としては、エタノール、メタノ
ール等のアルコール系溶媒、ベンゼン、キシレン、トル
エン等の芳香族系溶媒、ヘキサン等の脂肪族系溶媒を例
示できる。
Examples of the organic solvent used in the present invention include alcoholic solvents such as ethanol and methanol, aromatic solvents such as benzene, xylene and toluene, and aliphatic solvents such as hexane.

上記重合体、シランカップリング剤およびフェノール樹
脂で処理した無機質繊維を用いてセラミック複合体を製
造する場合、焼成工程時に無機質繊維の表面層を形成す
る重合体等の無機化が進行し、表面層が中、6層の無機
質繊維と一体化、あるいは強固に接着した多孔質の境界
層を形成する。形成された多孔質境界層は、マトリック
スであるセラミックとの間にアンカー効果等を生じ、こ
のため得られたセラミック複合体は圧縮強度等の機械的
強度が優れたものとなる。
When manufacturing a ceramic composite using inorganic fibers treated with the above polymer, silane coupling agent, and phenolic resin, mineralization of the polymers forming the surface layer of the inorganic fibers progresses during the firing process, and the surface layer forms a porous boundary layer that is integrated with or strongly adhered to six layers of inorganic fibers. The formed porous boundary layer produces an anchoring effect etc. with the ceramic matrix, so that the obtained ceramic composite has excellent mechanical strength such as compressive strength.

次ぎに、本発明に用いる表面処理無機繊維の製造方法に
ついて説明する。
Next, a method for manufacturing the surface-treated inorganic fiber used in the present invention will be explained.

本発明で用いる重合体、シランカップリング剤およびフ
ェノール樹脂の無機質繊維への塗布方法としては、例え
ば適当な安定な溶剤に重合体等を溶解した後、この溶液
をスプレー法、はけ塗り法または浸漬法等により無機質
繊維に塗布する。これを乾燥して、均一な厚さの表面層
を有する表面処理無機繊維を製造する1表面層の厚さは
0.1〜50μm、好ましくは0.2〜10μmである
The method for applying the polymer, silane coupling agent, and phenolic resin used in the present invention to inorganic fibers includes, for example, dissolving the polymer, etc. in a suitable stable solvent, and then applying this solution by spraying, brushing, or Apply to inorganic fibers using a dipping method or the like. This is dried to produce a surface-treated inorganic fiber having a surface layer of uniform thickness. The thickness of one surface layer is 0.1 to 50 μm, preferably 0.2 to 10 μm.

無機質繊維の直径は5〜20μm、好ましくは7〜15
μmである0表面処理無機繊維の長さは0゜2〜50m
mが好ましく、チョップ状であってもよい。
The diameter of the inorganic fiber is 5 to 20 μm, preferably 7 to 15 μm.
The length of 0 surface treated inorganic fiber is 0゜2~50m in μm.
m is preferable, and it may be chopped.

複合体中−における表面処理無機繊維は、ランダムに配
列したものの他にも、一方向に引き揃えたシート状物、
または平織、朱子織、模紗織、紋織、袋織、からみ織、
らせん織、三次元織等の各種形状を必要に応じ採用する
ことができる。
The surface-treated inorganic fibers in the composite may be arranged in a random manner, or in a sheet-like form aligned in one direction.
Or plain weave, satin weave, mock weave, patterned weave, bag weave, karami weave,
Various shapes such as spiral weave and three-dimensional weave can be adopted as necessary.

本発明で用いる7トリツクスとなるセラミックの具体例
としては、炭化ケイ素、炭化チタニウム、炭化ジルコニ
ウム、炭化バナジウム、炭化ニオブ、炭化タンタル、炭
化ホウ素、炭化クロム、炭化タングステン、炭化モリブ
デン等の炭化物セラミック;窒化ケイ素、窒化チタン、
窒化ジルコニウム、窒化バナジウム、窒化ニオブ、窒化
タンタル、窒化ホウ素、窒化アルミニウム、窒化ハフニ
ウム等の窒化物セラミック;アルミナ、シリカ、マグネ
シア、ムライト、コージライト等の酸化物セラミック;
硼ケイ酸塩ガラス、高シリカ含有ガラス、アルミノケイ
酸塩ガラス等のガラスセラミック、コークス、カーボン
ブラック、土状黒鉛、鱗状黒鉛等のカーボン等が挙げら
れる。これらのセラミックは2種以上が混合されたもの
であってもよい。
Specific examples of ceramics forming the 7-trix used in the present invention include carbide ceramics such as silicon carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, boron carbide, chromium carbide, tungsten carbide, and molybdenum carbide; silicon, titanium nitride,
Nitride ceramics such as zirconium nitride, vanadium nitride, niobium nitride, tantalum nitride, boron nitride, aluminum nitride, hafnium nitride; oxide ceramics such as alumina, silica, magnesia, mullite, cordierite;
Examples include glass ceramics such as borosilicate glass, high silica glass, and aluminosilicate glass, and carbon such as coke, carbon black, earthy graphite, and scaly graphite. Two or more types of these ceramics may be mixed.

またマトリックスには、Si、AI等の金属粉を必要に
応じ添加してもよい。
Further, metal powder such as Si or AI may be added to the matrix as necessary.

本発明の表面処理無機繊維強化セラミック複合体の製造
方法において、表面処理無機繊維をセラミックに混練ま
たは埋設せしめる方法としては、以下に例示するそれ自
体公知の方法を採用できる。
In the method for manufacturing the surface-treated inorganic fiber-reinforced ceramic composite of the present invention, the following methods known per se can be employed as a method for kneading or embedding the surface-treated inorganic fibers in the ceramic.

セラミック粉状マトリックスまたはセラミック粉状7ト
リツクスと結合剤とからなる混和体に強化用繊維を混練
または配設せしめる方法、強化用uli維と上記セラミ
ック粉状7トリツクスまたは上記混和体を交互に配設せ
しめる方法、あらかじめ強化用繊維を設置しておき、そ
の間隙に上記セラミック粉状マトリックスまたは上記混
和体を充填する方法等である。
A method of kneading or disposing reinforcing fibers in a mixture consisting of a ceramic powder matrix or ceramic powder 7 Trix and a binder, and alternately arranging reinforcing uli fibers and the above ceramic powder 7 Trix or the above mixture. There is a method in which reinforcing fibers are placed in advance and the gaps are filled with the ceramic powder matrix or the blend.

強化用無a繊維とセラミックとの集合体を焼成する方法
としては、ラバープレス、金型プレス笠を用いて上記集
合体を50〜5000 k g / c m2の圧力下
で加圧成形した後、加熱炉で600〜2400℃の温度
範囲で焼成する方法、50〜5000kg/cm2の圧
力で加圧したまま600〜2400・℃の温度範囲でポ
ットプレス焼成する方法等を例示できる。
The method for firing the aggregate of reinforcing a-free fibers and ceramic is to press-form the aggregate under a pressure of 50 to 5000 kg/cm2 using a rubber press or a mold press shade, and then Examples include a method of firing in a heating furnace in a temperature range of 600 to 2,400°C, and a method of pot press firing in a temperature range of 600 to 2,400°C while pressurized at a pressure of 50 to 5,000 kg/cm2.

上記焼成は、真空中、あるいは窒素、アルゴン、−酸化
炭素、水素等から選ばれる不活性ガスの雰囲気中で行う
ことができる。
The above-mentioned firing can be performed in a vacuum or in an atmosphere of an inert gas selected from nitrogen, argon, carbon oxide, hydrogen, and the like.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

以下の実施例はおいて、部は重量部を示す。In the following examples, parts indicate parts by weight.

実施例1〜3、比較例1〜2 ジメチルジクロロシランを全圧ナトリウムで脱塩素縮合
して合成されたポリジメチルシラン100重量部に対し
ポリボロシロキサン3重量部を添加し、窒素中で350
°Cで熱縮合した6得られた式(Si  CH2)のカ
ルボシラン単位から主としてなる主鎖骨格を有し、該カ
ルボシラン単位のケイ素原子に水素原子およびメチル基
を有しているポリカルボシランに、チタンアルコキシド
を加えて、窒素中、340℃丁架橋重合して、カルボシ
ラン単位100部と式→T i O+−のチタノキサン
10部とからなるポリチタノカルボシランを得た。得ら
れたポリチタノカルボシランの数平均分子量は約250
0であった。
Examples 1 to 3, Comparative Examples 1 to 2 3 parts by weight of polyborosiloxane was added to 100 parts by weight of polydimethylsilane synthesized by dechlorination condensation of dimethyldichlorosilane with full pressure sodium, and 350 parts by weight of polyborosiloxane was added in nitrogen.
A polycarbosilane having a main chain skeleton mainly composed of carbosilane units of the formula (Si CH2) obtained by thermal condensation at °C and having a hydrogen atom and a methyl group on the silicon atom of the carbosilane unit, Titanium alkoxide was added and crosslinked polymerization was carried out at 340° C. in nitrogen to obtain a polytitanocarbosilane consisting of 100 parts of carbosilane units and 10 parts of titanoxane of the formula →T i O+−. The number average molecular weight of the polytitanocarbosilane obtained was approximately 250.
It was 0.

上記ポリチタノカルボシランを溶融紡糸後、空気中、1
90℃で不融化処理し、窒素中、1350℃で熱処理し
て無機質繊維を得な。
After melt spinning the above polytitanocarbosilane, in air, 1
Infusibility treatment is performed at 90°C, and heat treatment is performed at 1350°C in nitrogen to obtain inorganic fibers.

該無機質繊維の束に、フェノール樹脂(日立化成、V 
P 80’3 )のエタノール溶液をスプレー法により
塗布し、゛乾燥して複合体用強化繊維を作成した。この
強化用繊維は直径が約8.5μmであり、乾燥後の塗布
厚さは0.9μmであった。この強化用繊維を約2mm
の長さに切断し、電融アルミナ、黒鉛、溶融シリカおよ
びフェノール樹脂バインダーの混合物からなるマトリッ
クス中に添加し、十分混練した後、ラバープレスにより
2t/cm2の圧力で成形した。得られた成形体を窒素
気流中にて、300℃/ h rの速度で1200℃ま
で昇温し、同温度で3時間焼成した。
A phenol resin (Hitachi Chemical, V
An ethanol solution of P 80'3 ) was applied by spraying and dried to prepare reinforcing fibers for composites. This reinforcing fiber had a diameter of about 8.5 μm, and a coating thickness after drying of 0.9 μm. Approximately 2mm of this reinforcing fiber
The mixture was cut into lengths, added to a matrix consisting of a mixture of fused alumina, graphite, fused silica, and a phenolic resin binder, thoroughly kneaded, and then molded using a rubber press at a pressure of 2 t/cm 2 . The temperature of the obtained molded body was raised to 1200°C at a rate of 300°C/hr in a nitrogen stream, and fired at the same temperature for 3 hours.

表  1 比較例1  実 マトリックス組成(%) 電融アルミナ      45 鱗状黒鉛        25 溶融シリカ       20 フェノール樹脂     10 強化用繊維(%)      − 焼成体特性 見掛は気孔率(%’)   17.5 素化重        2.85 曲げ強度(kg/am2)    105弾性率(kg
/m12)    1050圧縮強度(kg/cm2)
    115施例1  実施例2  実施例3  比
較例20.5   1゜OO,51,0 18,019,017,320,4 2,842,812,962,25 なお、比較例】は強化用繊維を添加しない焼成体を実施
例1と同様の方法で製造したものであり、比較例2は表
面処理がない以外は実施例1と同様の強化用繊維を添加
して実施例1と同様の方法で焼成体を製造したものであ
る。
Table 1 Comparative Example 1 Actual matrix composition (%) Fused alumina 45 Scale graphite 25 Fused silica 20 Phenol resin 10 Reinforcing fiber (%) - Appearance of fired body properties: Porosity (%') 17.5 Primed weight 2 .85 Bending strength (kg/am2) 105 Modulus of elasticity (kg
/m12) 1050 compressive strength (kg/cm2)
115 Example 1 Example 2 Example 3 Comparative Example 20.5 1゜OO,51,0 18,019,017,320,4 2,842,812,962,25 Comparative Example] A fired body without additives was produced in the same manner as in Example 1, and Comparative Example 2 was produced in the same manner as in Example 1 with the addition of the same reinforcing fibers as in Example 1, except that there was no surface treatment. A fired body was manufactured.

得られた焼成体の物性値は、表1に示されるように、弾
性率が低く、圧縮強度、曲げ強度は著しく向上している
As shown in Table 1, the physical properties of the obtained fired body are that the modulus of elasticity is low, and the compressive strength and bending strength are significantly improved.

実施例4 実施例1と同様にして合成した無機質繊維の束に、γ−
アミノプロピルトリエトキシシラン11、N (CH2
)、Si (OEt)、の水溶液をスプレー法により塗
布し、乾燥して複合体用強化繊維を作成した。γ−アミ
ノプロピルトリエトキシシラン上記強化用繊維を約2m
mの長さに切断し、電磁アルミナ(45%)、鱗状黒鉛
(25%)、溶融シリカ(20%)、フェノール樹脂(
10%)の混合物からなるマトリックス中に添加し、十
分に混練した後、ラバープレスにて2 t / c m
 2の圧力で成形した.得られた成形体を、窒素気流中
にて300℃/ h rの昇温速度で1200℃まで昇
温し、同温度で3時間焼成した。
Example 4 A bundle of inorganic fibers synthesized in the same manner as in Example 1 was coated with γ-
Aminopropyltriethoxysilane 11,N (CH2
), Si (OEt), was applied by a spray method and dried to prepare reinforcing fibers for composites. γ-aminopropyltriethoxysilane Approximately 2 m of the above reinforcing fibers
Cut into lengths of m, electromagnetic alumina (45%), scaly graphite (25%), fused silica (20%), phenolic resin (
10%) into a matrix consisting of a mixture of
Molded at a pressure of 2. The obtained molded body was heated to 1200°C at a temperature increase rate of 300°C/hr in a nitrogen stream, and fired at the same temperature for 3 hours.

得られた焼成体の物性値を以下に示す。The physical property values of the obtained fired body are shown below.

繊維添加量〈%)0.5 見掛は気孔率(%)  18.6 嵩比重        2.29 曲げ強度(kg/c+@2)  1 6 8弾性率(k
g/+*s2)   1 0 5 0圧縮強度(kg/
cs2)   1 7 9実施例5 フェノール樹脂エタノール溶液の代わりに石油ピッチの
キシレン溶液を用いた以外は、実施例1と同様にして焼
成体を製造した.石油ピッチの乾燥後の塗布厚さは1.
3μmであった。
Fiber addition amount (%) 0.5 Apparent porosity (%) 18.6 Bulk specific gravity 2.29 Bending strength (kg/c+@2) 1 6 8 Modulus of elasticity (k
g/+*s2) 1 0 5 0 Compressive strength (kg/
cs2) 1 7 9 Example 5 A fired body was produced in the same manner as in Example 1, except that a xylene solution of petroleum pitch was used instead of the phenol resin ethanol solution. The coating thickness of petroleum pitch after drying is 1.
It was 3 μm.

得られた焼成体の物性値を以下に示す。The physical property values of the obtained fired body are shown below.

繊維添加量(%)1.0 見掛は気孔率(%)  19.9 嵩比重        2.25 曲げ強度(kg/c論”)  1 4 8弾性率(kg
/m112)   9 4 0圧縮強度(kg/c+e
2)   1 4 5実施例6 フェノール樹脂のエタノール>8Hの代わりに実施例1
で得られたポリチタノカルボシランのキシレン溶液を用
いた以外は、実施例1と同様にして表面処理無機繊維を
製造した.ポリチタノカルボシランの乾燥後の塗布厚さ
は2.5μmであった。
Fiber addition amount (%) 1.0 Apparent porosity (%) 19.9 Bulk specific gravity 2.25 Bending strength (kg/c theory) 1 4 8 Modulus of elasticity (kg
/m112) 9 4 0 Compressive strength (kg/c+e
2) 1 4 5 Example 6 Example 1 instead of ethanol > 8H in phenolic resin
Surface-treated inorganic fibers were produced in the same manner as in Example 1, except that the xylene solution of polytitanocarbosilane obtained in Example 1 was used. The coating thickness of polytitanocarbosilane after drying was 2.5 μm.

上記表面処理無機繊維を約2mmの長さに切断し、電融
アルミナ(45%)、鱗状黒鉛(25%)、溶融シリカ
(20%)、フェノール樹脂(10%)の混合物からな
るマトリックス中に添加し、十分に混練した後、ラバー
プレスにて2 t / c m2の圧力で成形した.得
られた成形体を窒素気流中で300℃/ h rの昇温
遠度で1200″Cまで昇温し、同温度で3時間焼成し
た。
The above surface-treated inorganic fibers were cut into lengths of approximately 2 mm and placed in a matrix consisting of a mixture of fused alumina (45%), scale graphite (25%), fused silica (20%), and phenolic resin (10%). After adding and thoroughly kneading, it was molded using a rubber press at a pressure of 2 t/cm2. The obtained molded body was heated to 1200''C in a nitrogen stream at a heating speed of 300°C/hr, and fired at the same temperature for 3 hours.

得られた焼成体の物性値と以下に示す。The physical property values of the obtained fired body are shown below.

繊維添加量(%)0.5 見掛は気孔率(%’)  19.2 電比重        2.27 曲げ強度(kg/am2)  1 4 7弾性率(kg
/sm2)  1 0 0 1圧縮強度(kg/am”
>   1 5 4実施例7 実施例1に記載のポリカルボシランに、ジルコニウム(
fV)アルコキシドを加えて、窒素中、320℃で架橋
重合して、カルボシラン単位100部と式→Zi−0+
 のジルコノキサン10部とからなるポリジルコノカル
ボシランを得た.得られたポリジルコノカルボシランの
数平均分子量は約2900であった.このポリジルコノ
カルボシランを溶融紡糸後、空気中、192°Cで不融
化処理し、窒素中、1 300℃で熱処理してM機質繊
維を得た。該無機質繊維の直径は9μInであった。こ
の無機質繊維の束に、上記ポリジルコノカルボシランの
キシレン溶液をスプレー法により塗布し、乾燥して複合
材料用強化繊維を作成した。
Fiber addition amount (%) 0.5 Apparent porosity (%') 19.2 Electrical specific gravity 2.27 Bending strength (kg/am2) 1 4 7 Elastic modulus (kg
/sm2) 1 0 0 1 Compressive strength (kg/am”
> 1 5 4 Example 7 Zirconium (
fV) Add an alkoxide and perform crosslinking polymerization at 320°C in nitrogen to form 100 parts of carbosilane units and the formula →Zi-0+
A polyzirconocarbosilane consisting of 10 parts of zirconoxane was obtained. The number average molecular weight of the obtained polyzirconocarbosilane was approximately 2,900. After melt-spinning this polyzirconocarbosilane, it was subjected to infusibility treatment at 192°C in air and heat treated at 1300°C in nitrogen to obtain M texture fiber. The diameter of the inorganic fiber was 9 μIn. A xylene solution of the above-mentioned polyzirconocarbosilane was applied to this bundle of inorganic fibers by a spray method, and dried to produce reinforcing fibers for composite materials.

乾燥後の塗布厚さは0.5μmであった。The coating thickness after drying was 0.5 μm.

この強化繊維を約2mmの長さに切断し、電融アルミナ
(45%)、黒鉛(25%)、ン容融シリカ(20%)
およびフェノール樹脂バインダー(10%)の混合物か
らなるマトリックス中に添加し、十分混練した後、ラバ
ープレスにより2 t / c m2の圧力で成形した
 44)られな成形体を窒素気流中にて300℃/ h
 rの速度で1200℃まで昇温し、同温度で3時間焼
成した。
This reinforcing fiber was cut into lengths of about 2 mm, and mixed with fused alumina (45%), graphite (25%), and fused silica (20%).
and a phenolic resin binder (10%), thoroughly kneaded, and then molded using a rubber press at a pressure of 2 t/cm2.44) The molded product was heated at 300°C in a nitrogen stream. /h
The temperature was raised to 1200° C. at a rate of 30° C., and firing was performed at the same temperature for 3 hours.

得られた焼成体の物性値を以下に示す。The physical property values of the obtained fired body are shown below.

繊維添加量(%)0.5 見掛は気孔率(%)  18.8 嵩比重       2.79 曲げ強度(kg/am2)  169 弾性率(kg/nm2)   980 圧縮強度(kg/cWA2)   168発明の効果 上記の説明から明らかなように、本発明によれば、本発
明の表面処理無機繊維を用いた焼成体は、表面処理無機
繊維の中心層と表面層および表面層とマトリックスであ
るセラミックとの接着性が良好なため、圧縮強度、曲げ
強度に優れたセラミック複合体の製造方法が提供される
Fiber addition amount (%) 0.5 Apparent porosity (%) 18.8 Bulk specific gravity 2.79 Bending strength (kg/am2) 169 Elastic modulus (kg/nm2) 980 Compressive strength (kg/cWA2) 168 invention Effects As is clear from the above description, according to the present invention, the fired body using the surface-treated inorganic fibers of the present invention has a core layer and a surface layer of the surface-treated inorganic fibers, and a surface layer and a matrix ceramic. Because of its good adhesion, a method for producing a ceramic composite with excellent compressive strength and bending strength is provided.

特許出願人    品川白煉瓦株式会社宇部興産株式会
社 代 理 人    弁理士 小林正明
Patent applicant Shinagawa White Brick Co., Ltd. Ube Industries Co., Ltd. Agent Patent attorney Masaaki Kobayashi

Claims (4)

【特許請求の範囲】[Claims] (1)表面処理無機繊維を強化材とし、セラミックをマ
トリックスとする表面処理無機繊維強化セラミック複合
体の製造方法において、 (i)Si,M,CおよびOから実質的になる非晶質物
質、または (ii)実質的にβ−SiC,MC,β−SiCとMC
の固溶体および/またはMC_1_−_xの粒径が50
0Å以下の各結晶質超微粒子、および非晶質のSiO_
2とMO_2とからなる集合体、または(iii)上記
(i)の非晶質物質と上記(ii)の結晶質超微粒子集
合体の混合系 [式中、MはTiまたはZrを示し、Xは0より大きく
1未満の数を示す] からなる無機質繊維に、 (1)該無機質繊維の原料であるポリチタノカルボシラ
ンまたはポリジルコノカルボシラン、
(1) A method for producing a surface-treated inorganic fiber-reinforced ceramic composite using surface-treated inorganic fibers as a reinforcing material and ceramic as a matrix, including: (i) an amorphous material consisting essentially of Si, M, C, and O; or (ii) substantially β-SiC, MC, β-SiC and MC
Solid solution of and/or particle size of MC_1_-_x is 50
Each crystalline ultrafine particle of 0 Å or less and amorphous SiO_
2 and MO_2, or (iii) a mixed system of the amorphous substance of (i) above and the crystalline ultrafine particle aggregate of (ii) [wherein M represents Ti or Zr, and represents a number greater than 0 and less than 1] (1) polytitanocarbosilane or polyzirconocarbosilane, which is a raw material of the inorganic fiber;
(2)シランカップリング剤、(2) silane coupling agent, (3)フェノール樹脂、および(3) phenolic resin, and (4)石油ピッチ からなる群から選ばれた少なくとも1種を有機溶媒に溶
解した溶液を塗布乾燥し、得られた強化用表面処理無機
繊維をマトリックスとなるセラミック粉末または加熱処
理によりセラミック化する有機物に混練もしくは埋設せ
しめて焼成することを特徴とする上記セラミック複合体
の製造方法。
(4) A solution of at least one selected from the group consisting of petroleum pitch dissolved in an organic solvent is applied and dried, and the resulting reinforcing surface-treated inorganic fiber is used as a matrix of ceramic powder or an organic material that can be made into a ceramic by heat treatment. A method for producing the above-mentioned ceramic composite, which comprises kneading or embedding the composite in a ceramic material and then firing the composite material.
JP63029835A 1988-02-10 1988-02-10 Production of surface-treated inorganic-fiber reinforced ceramic composite Granted JPH01208372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029835A JPH01208372A (en) 1988-02-10 1988-02-10 Production of surface-treated inorganic-fiber reinforced ceramic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029835A JPH01208372A (en) 1988-02-10 1988-02-10 Production of surface-treated inorganic-fiber reinforced ceramic composite

Publications (2)

Publication Number Publication Date
JPH01208372A true JPH01208372A (en) 1989-08-22
JPH057352B2 JPH057352B2 (en) 1993-01-28

Family

ID=12287073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029835A Granted JPH01208372A (en) 1988-02-10 1988-02-10 Production of surface-treated inorganic-fiber reinforced ceramic composite

Country Status (1)

Country Link
JP (1) JPH01208372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321310A (en) * 2020-11-04 2021-02-05 黑龙江冠瓷科技有限公司 Preparation method of nanoparticle toughened high-toughness SiC product
CN113264749A (en) * 2021-05-28 2021-08-17 上海宝新特种沥青混凝土有限公司 Anti-crack asphalt mixture and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321310A (en) * 2020-11-04 2021-02-05 黑龙江冠瓷科技有限公司 Preparation method of nanoparticle toughened high-toughness SiC product
CN113264749A (en) * 2021-05-28 2021-08-17 上海宝新特种沥青混凝土有限公司 Anti-crack asphalt mixture and preparation method thereof

Also Published As

Publication number Publication date
JPH057352B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
JPS60226462A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
US5354602A (en) Reinforced silicon carboxide composite with boron nitride coated ceramic fibers
US5438025A (en) Silicon oxycarbonitride by pyrolysis of polycyclosiloxanes in ammonia
JPS61111974A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
EP0742184B1 (en) Method of forming Ceramic matrix composites using modified hydrogen silsesquioxane resin
EP0549224B1 (en) Ceramic matrix composites and method for making same
US5955194A (en) Silicon carboxide composite reinforced with ceramic fibers having a surface enriched in boron nitride
JPH01208372A (en) Production of surface-treated inorganic-fiber reinforced ceramic composite
JP2003040685A (en) Oxide fiber composite material and method of manufacturing the same
JPH0931756A (en) High heat-resistant ceramic fiber and its production
JPH02258679A (en) Production of ceramic composite material
JPH01207474A (en) Reinforcing fiber for composite material and production thereof
JPH02259163A (en) Reinforcing fiber for composite material
JPH0388778A (en) Carbonaceous inorganic fiber-reinforced ceramic composite material
EP0702664B1 (en) Silicon carboxide composite reinforced with ceramic fibers having a surface enriched in boron nitride
JPH0757715B2 (en) Fiber-reinforced carbonaceous composite material
JPS623079A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
JPS63265862A (en) Inorganic fiber reinforced composite carbon material and its production
JP2547111B2 (en) Heat resistant fiber reinforced inorganic composite material
JPH02204373A (en) Fiber reinforced ceramic composite material
JPH0764653B2 (en) Fiber reinforced carbon material
JPH04342469A (en) Production of fiber-reinforced ceramic
Lu Fabrication of a silicon carbide fiber-reinforced ceramic composite by the polymer pyrolysis method
JPS63123875A (en) Inorganic fiber reinforced ceramic composite body
JPS62297278A (en) Inorganic fiber reinforced ceramic composite body and manufacture