JPH01207975A - Molecular electronics device - Google Patents

Molecular electronics device

Info

Publication number
JPH01207975A
JPH01207975A JP63033307A JP3330788A JPH01207975A JP H01207975 A JPH01207975 A JP H01207975A JP 63033307 A JP63033307 A JP 63033307A JP 3330788 A JP3330788 A JP 3330788A JP H01207975 A JPH01207975 A JP H01207975A
Authority
JP
Japan
Prior art keywords
film
elements
polyaniline
element isolation
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63033307A
Other languages
Japanese (ja)
Inventor
Seiichi Iwamatsu
誠一 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63033307A priority Critical patent/JPH01207975A/en
Publication of JPH01207975A publication Critical patent/JPH01207975A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor

Abstract

PURPOSE:To prevent an increase in a leakage current between elements, by forming electret films at element isolation regions when molecular electronics elements are integrated. CONSTITUTION:Polyaniline 2 and the like which acts as a polymeric functional film is formed on the surface of an insulation film 1 and then, sodium and so on are doped in advance in polyaniline 2. Then, a source 5 and drain 6 are formed by doping iodine in sodium-doped polyaniline. A gate insulation film 3 is formed at a gate region on the surface of sodium-doped polyaniline and further, an electrode and the like of a gate 4 are formed through the gate insulation film. Then, an FET and the like are formed to act as polymeric functional elements. The resultant electret films 7 consisting of high polymer are formed at element isolation regions of the polymeric functional elements. Thus, a leakage current between elements decreases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複数個の機能性高分子による分子素子及び半導
体素子を一つの基板上に形成する際に必要な素子分離の
構造・構成に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure and configuration of device isolation necessary when forming molecular devices and semiconductor devices using a plurality of functional polymers on one substrate. It is.

[従来の技術] 従来、機能性高分子による分子素子の素子分離には、ポ
リイミド膜等の絶縁膜が用いられるのか通例てあり、又
、半導体素子の素子分離にはSiO□膜等の絶縁膜が用
いられるのか通例であった。
[Prior Art] Conventionally, an insulating film such as a polyimide film has been used for element isolation of molecular devices using functional polymers, and an insulating film such as a SiO□ film has been used for element isolation of semiconductor elements. was commonly used.

[発明か解決しようとする課題] しかし、上記従来技術によると、素子分離用絶縁膜と、
半導体基板あるいは、機能性高分子基板との境界面に、
絶縁膜の有している電荷によって誘起されるこれら基板
に誘起される電荷層か形成され、素子間リーク電流か増
大すると云う問題点かあった。
[Problem to be solved by the invention] However, according to the above-mentioned conventional technology, an insulating film for element isolation,
At the interface with a semiconductor substrate or a functional polymer substrate,
There is a problem in that a charge layer is formed on the substrate, which is induced by the charge possessed by the insulating film, and leakage current between devices increases.

本発明は、かかる従来技術の問題点をなくし、素子間リ
ーク電流の無い素子分離技術を提供する事を目的とする
It is an object of the present invention to eliminate the problems of the prior art and to provide an element isolation technique without inter-element leakage current.

[課題を解決するための手段] 上記問題点を解決するために、本発明は、分子エレクト
ロニクス装置に関し、 (1)複数の高分子機能素子を−っの基板上に形成して
成る分子エレクトロニクス装置の素子分離領域には少く
ともエレクトレット膜を形成する手段をとる車、及び、 (2)複数の半導体素子を一つの基板上に形成して成る
半導体装置の素子分離領域には少くともエレクトレット
膜を形成する手段をとる事、等である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention relates to a molecular electronics device, and includes: (1) a molecular electronics device in which a plurality of polymeric functional elements are formed on a substrate; (2) At least an electret film is formed in the element isolation region of a semiconductor device in which a plurality of semiconductor elements are formed on a single substrate. taking measures to form such a system.

[実 施 例] 以下、実施例により本発明を詳述する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明の一実施例を示す分子エレクトロニクス
装置の要部の断面図である。すなわち、ガラス等から成
る絶縁基板lの表面には高分子機能膜であるポリアニリ
ン2等か形成され、該ポリアニリン2には、予しめナト
リウム等がトープされ、該ナトリウム・トープ・ポリア
ニリンにヨウ素をトープしてソース5、及びトレイン6
を形成し、前記ナトリウム・トープ・ポリアニリンの表
面のケート領域にはケート絶縁膜3を形成し、該ケート
絶縁膜を介してゲート4の電極か形成等して電界効果ト
ランジスタ等を形成して高分子機能素子となし、該高分
子機能素子の素子分離領域には高分子から成るエレクト
レット膜7を形成して成る。該エレクトレット膜7は、
例えばポリイミド膜等による素子分離膜上に形成しても
良く、又、素子を多層に重ねて形成する場合には、層間
にエレクトレット膜を挟んだり、層間にポリイミド膜等
とエレクトレット膜を多層にして挟んて形成しても良い
ことは云うまてもない。鎖側の場合には電界効果トラン
ジスタてあり、素子分離不良は、ゲート下のり一の電流
増大不良として現われることとなる。
FIG. 1 is a sectional view of a main part of a molecular electronics device showing one embodiment of the present invention. That is, a polymeric functional film such as polyaniline 2 is formed on the surface of an insulating substrate l made of glass or the like, the polyaniline 2 is doped with sodium or the like in advance, and the sodium-topped polyaniline is doped with iodine. and source 5, and train 6
A gate insulating film 3 is formed in the gate region on the surface of the sodium-topped polyaniline, and an electrode of a gate 4 is formed through the gate insulating film to form a field effect transistor or the like. A molecular functional element is formed, and an electret film 7 made of a polymer is formed in the element isolation region of the polymer functional element. The electret film 7 is
For example, it may be formed on an element isolation film such as a polyimide film, or when forming elements in multiple layers, an electret film may be sandwiched between the layers, or a polyimide film or the like and an electret film may be multilayered between the layers. Needless to say, they may be formed by sandwiching them. In the case of a chain side, there is a field effect transistor, and an element isolation failure appears as a current increase failure under the gate.

第2図は本発明の他の実施例を示す半導体装置の要部の
断面図である。すなわち、半導体基板1の表面には通常
の製造法により、フィールド膜2、ゲート酸化膜3、ソ
ース5及びトレイン6の拡散層及びゲート4の電極が形
成され、この場合はMO3型FETとなし、前記フィー
ルド酸化膜2の表面には高分子膜等から成るエレクトレ
ット膜7か形成されて成る。尚該エレクトレット膜7は
必すしもフィールド酸化膜2の表面に形成する必要はな
く、フィールド酸化II! 2をはふいて、半導体基板
lの素子分離領域表面に直接形成しても良い事は云うま
てもない。又、素子分離領域はMOS  FETのみな
らずバイポーラ トランジスタによるICにも必要であ
り、バイポーラ トランジスタによるICの素子分離に
も氷菓を適用てきる事は云うまてもなく、又、トレンチ
・マイツレ−ジョン等の深い誘電体分離領域にも氷菓か
適用てきる事も云うまでもない。本例の場合にはフィー
ルド酸化膜と半導体基板との境界面に形成される反転層
をエレクトレット膜がらの電界により消し去る事により
、素子間リーク電流を防止できる事かよく判る。
FIG. 2 is a sectional view of a main part of a semiconductor device showing another embodiment of the present invention. That is, a field film 2, a gate oxide film 3, diffusion layers for a source 5 and a train 6, and an electrode for a gate 4 are formed on the surface of a semiconductor substrate 1 by a normal manufacturing method, and in this case, an MO3 type FET is formed. An electret film 7 made of a polymer film or the like is formed on the surface of the field oxide film 2. It should be noted that the electret film 7 does not necessarily have to be formed on the surface of the field oxide film 2; It goes without saying that it may be formed directly on the surface of the element isolation region of the semiconductor substrate 1 by wiping off 2. In addition, element isolation regions are necessary not only for MOS FETs but also for ICs using bipolar transistors, and it goes without saying that ice cream can also be applied to element isolation for ICs using bipolar transistors. Needless to say, ice cream can also be applied to deep dielectric isolation regions such as the like. In this example, it is clearly seen that inter-element leakage current can be prevented by erasing the inversion layer formed at the interface between the field oxide film and the semiconductor substrate by the electric field of the electret film.

[発明の効果] 本発明の如く、分子エレクトロニクス素子の集積化時の
素子間分離領域にエレクトレット膜を形成する事により
、素子間リーク電流の増大を防止てきる効果かある。
[Effects of the Invention] As in the present invention, by forming an electret film in the isolation region between elements when molecular electronic elements are integrated, an increase in inter-element leakage current can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す分子エレクトロニクス
装置の要部の断面図であり、第2図は本発明の他の実施
例を示す半導体装置の要部の断面図である。 1・・・・・絶縁基板 11・・・・半導体基板 2・・・・・ポリアニリン 12・・・・フィールド酸化膜 3.13・・ケート絶縁膜 4.14・・ケート 5.15・・ソース 6.16・・トレイン 7.17・・エレクトレット膜 以」二 出願人 セイコーエプソン株式会社
FIG. 1 is a sectional view of a main part of a molecular electronics device showing one embodiment of the present invention, and FIG. 2 is a sectional view of a main part of a semiconductor device showing another embodiment of the invention. 1... Insulating substrate 11... Semiconductor substrate 2... Polyaniline 12... Field oxide film 3.13... Kate insulating film 4.14... Kate 5.15... Source 6.16...Train 7.17...Electret membrane"2 Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)複数の高分子機能素子を一つの基板上に形成して
成る分子エレクトロニクス装置の素子分離領域には少く
ともエレクトレット膜が形成されて成る事を特徴とする
分子エレクトロニクス装置。
(1) A molecular electronics device comprising a plurality of polymer functional elements formed on one substrate, characterized in that at least an electret film is formed in an element isolation region.
(2)複数の半導体素子を一つの基板上に形成して成る
半導体装置の素子分離領域には少くともエレクトレット
膜が形成されて成る事を特徴とする分子エレクトロニク
ス装置。
(2) A molecular electronics device comprising at least an electret film formed in an element isolation region of a semiconductor device formed by forming a plurality of semiconductor elements on one substrate.
JP63033307A 1988-02-16 1988-02-16 Molecular electronics device Pending JPH01207975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033307A JPH01207975A (en) 1988-02-16 1988-02-16 Molecular electronics device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033307A JPH01207975A (en) 1988-02-16 1988-02-16 Molecular electronics device

Publications (1)

Publication Number Publication Date
JPH01207975A true JPH01207975A (en) 1989-08-21

Family

ID=12382899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033307A Pending JPH01207975A (en) 1988-02-16 1988-02-16 Molecular electronics device

Country Status (1)

Country Link
JP (1) JPH01207975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677041A (en) * 1993-03-25 1997-10-14 Texas Instruments Incorporated Integrated circuits formed in radiation sensitive material and method of forming same
US6246102B1 (en) * 1990-09-28 2001-06-12 Texas Instruments Incorporated Integrated circuits, transistors, data processing systems, printed wiring boards, digital computers, smart power devices, and processes of manufacture
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
US8304283B2 (en) 2002-03-27 2012-11-06 Mitsubishi Chemical Corporation Method for producing organic electronic device including converting a precursor for a semiconductor layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246102B1 (en) * 1990-09-28 2001-06-12 Texas Instruments Incorporated Integrated circuits, transistors, data processing systems, printed wiring boards, digital computers, smart power devices, and processes of manufacture
US5677041A (en) * 1993-03-25 1997-10-14 Texas Instruments Incorporated Integrated circuits formed in radiation sensitive material and method of forming same
US5691089A (en) * 1993-03-25 1997-11-25 Texas Instruments Incorporated Integrated circuits formed in radiation sensitive material and method of forming same
US5942374A (en) * 1993-03-25 1999-08-24 Texas Instruments Incorporated Integrated circuits formed in radiation sensitive material and method of forming same
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
US8304283B2 (en) 2002-03-27 2012-11-06 Mitsubishi Chemical Corporation Method for producing organic electronic device including converting a precursor for a semiconductor layer

Similar Documents

Publication Publication Date Title
US4889829A (en) Method for producing a semiconductor device having a silicon-on-insulator structure
KR940016837A (en) Semiconductor memory device and manufacturing method thereof
JPS63308386A (en) Semiconductor device and manufacture thereof
EP0915522A3 (en) Semiconductor device comprising a capacitor and method of manufacturing the same
KR930001409A (en) Bi CMOS device and its manufacturing method
KR950028198A (en) Capacitor Manufacturing Method
KR960019497A (en) Semiconductor device having SOI structure and manufacturing method thereof
KR910010741A (en) Semiconductor integrated circuit device
JPH01207975A (en) Molecular electronics device
KR940022840A (en) Memory cell manufacturing method and structure of semiconductor device
JPS6465873A (en) Manufacture of semiconductor element
KR940001505B1 (en) Semiconductor device
EP1168451A3 (en) Semiconductor device, and radiation detection device and radiation detection system having same
KR920018985A (en) An integrated circuit having a charge coupled device and a method of manufacturing the same.
JPH0595117A (en) Thin film transistor and its manufacture
JP2690067B2 (en) Active matrix substrate
KR970030676A (en) Semiconductor device and manufacturing method thereof
JPH02307271A (en) Semiconductor device
JP3312683B2 (en) MOS type semiconductor device and manufacturing method thereof
KR960036045A (en) Semiconductor connecting device and manufacturing method thereof
JPS55107229A (en) Method of manufacturing semiconductor device
JPH04318964A (en) Semiconductor device and manufacture thereof
JPH0341479Y2 (en)
JP3079215B2 (en) Method for operating field effect device
JPS6489366A (en) Semiconductor device