JPH01207194A - Activated sludge treatment by using immobilized carrier - Google Patents

Activated sludge treatment by using immobilized carrier

Info

Publication number
JPH01207194A
JPH01207194A JP3363688A JP3363688A JPH01207194A JP H01207194 A JPH01207194 A JP H01207194A JP 3363688 A JP3363688 A JP 3363688A JP 3363688 A JP3363688 A JP 3363688A JP H01207194 A JPH01207194 A JP H01207194A
Authority
JP
Japan
Prior art keywords
activated sludge
aeration
settling
treated water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3363688A
Other languages
Japanese (ja)
Inventor
Junji Kawagoe
川越 順二
Toshimitsu Fujino
藤野 俊光
Koji Matayoshi
康治 又吉
Osamu Miki
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3363688A priority Critical patent/JPH01207194A/en
Publication of JPH01207194A publication Critical patent/JPH01207194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To enhance the sepn. efficiency of treated water and activated sludge by partitioning the internal space of a water tank body by an inside cylinder having a slope, forming the upper part of an aerating part in the lower central part as a settling part and forming a flow passage circulating from the aerating part to a settling part. CONSTITUTION:The temporarily treated water W1 overflowing from the upper part of the inside cylinder 4 and the activated sludge 6 sticking around the fine powder of granulated blast-furnace slag flows down in a secondary reaction part 9. A biological treatment progresses further in this process and the sludge of a relatively large sp. gr. is settled and separated. An inside cylindrical umbrella part 13 is provided with <=30 deg. angle of inclination to prevent deposition and putrefaction of the settled sludge. The secondarily treated water W2 overflowing from the lower part of an outside cylinder 8 to the outside through a secondary treatment part 9 flows upward in the settling part 10. The activated sludge is separated therein and since the activated sludge has the large sp. gr., the intrusion of the activated sludge into the treated water by the flow in the settling part 10 occurring in the flow in the aerating part 5 is obviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水及び産業廃水(以下廃水と記述する)中
の有機物質を容易且つ効率的に除去することのできる活
性汚泥処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an activated sludge treatment method that can easily and efficiently remove organic substances from sewage and industrial wastewater (hereinafter referred to as wastewater). It is.

〔従来の技術〕[Conventional technology]

一般に廃水の活性汚泥処理は、次のように行われている
Activated sludge treatment of wastewater is generally performed as follows.

処理場に集められた廃水は沈砂池、最初沈澱池等によっ
て土砂、粗大な浮遊物質等の大部分を除去した後、曝気
槽に於いて活性汚泥処理を行うことにより廃水中の汚濁
物質を分解し、次の最終沈澱池(以下沈澱池と記述する
)に於いて活性汚泥の沈降分離が行われ、上澄水は塩素
消毒等を施された後放流される。一方、沈澱池に於いて
沈降した活性汚泥は返送汚泥として曝気槽に戻され、ま
た、一部は余剰汚泥として抜き取られ、消化、脱水。
The wastewater collected at the treatment plant is passed through a settling basin, initial settling basin, etc. to remove most of the sediment, coarse suspended solids, etc., and then activated sludge treatment is performed in an aeration tank to decompose the pollutants in the wastewater. Then, the activated sludge is separated by sedimentation in the next final settling tank (hereinafter referred to as settling tank), and the supernatant water is chlorinated and then discharged. On the other hand, the activated sludge that has settled in the settling tank is returned to the aeration tank as return sludge, and some of it is extracted as surplus sludge for digestion and dewatering.

焼却処理を経て処分されている。It is disposed of through incineration.

このような廃水処理を効率的に行い、処理コストの低減
、都市部における省スペース化を図る研究は以前より多
く為されており、高速エアレーション沈澱池を利用した
活性汚泥法(以下、高効率活性汚泥法と記述する)もそ
の一つである。
Many studies have been conducted to efficiently treat wastewater, reduce treatment costs, and save space in urban areas. (described as sludge method) is one of them.

高効率活性汚泥法は、従来別個の水槽を用いて行われて
いた活性汚泥法中の曝気プロセスと最終沈澱プロセスを
、内部をコンクリートあるいは鋼板製の隔壁によって曝
気部と沈澱部に仕切られた単一の水槽内で実行すること
により、返送汚泥プロセスを省略し、処理に要する電力
費の低減を図ると共に、曝気部内の有機性浮遊物質量 
IJixedLiquor Volatile 5us
pended 5olids (以下MLVSSと記述
する。これは曝気槽中の好気性微生物の濃度を表し、廃
水処理能力と強い相関がある。)を2.500mg/ 
j!から5.500mg/ j!の高濃度に保持するこ
とにより廃水処理能力を向上させ、従来6時間から8時
間を要するとされていた曝気時間を、約2時間から3時
間で行わせることにより廃水処理曝気槽の設置面積を低
減させる活性汚泥法である。
The high-efficiency activated sludge method replaces the aeration process and final sedimentation process in the activated sludge method, which used to be carried out using separate water tanks, with a single tank with an interior partitioned into an aeration section and a settling section by a partition wall made of concrete or steel plates. By executing the process in one water tank, the return sludge process is omitted, reducing the electricity cost required for treatment, and reducing the amount of organic suspended solids in the aeration section.
IJixedLiquor Volatile 5us
suspended 5olids (hereinafter referred to as MLVSS. This represents the concentration of aerobic microorganisms in the aeration tank and has a strong correlation with wastewater treatment capacity) at 2.500mg/
j! From 5.500mg/j! By maintaining a high concentration of water, the wastewater treatment capacity is improved, and the installation area of the wastewater treatment aeration tank can be reduced by reducing the aeration time, which conventionally required 6 to 8 hours, to approximately 2 to 3 hours. This is an activated sludge method that reduces

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような高効率活性汚泥法は、廃水の処理効率を向上
させ、特に下水処理場の省スペース化を図る上では、極
めて有効な方法であるが、次のような2つの問題点を有
している。1つは、処理水質の問題である。従来の高効
率活性汚泥法においては、活性汚泥の比重が軽いために
活性汚泥と処理水の分離効率が悪く、曝気の作用により
曝気部の内部に生じる急速な流れの影響が沈澱部に及び
やすい高効率活性汚泥法においては、処理水中にしばし
ば活性汚泥が混入し、処理水質を悪化させる。今1つは
、MLVSS低下の問題である。本来、活性汚泥の安定
した高濃度保持は極めて困難であり、実際の処理におい
てはMLVSSがせいぜい2.000mg/ 1程度ま
でしか上昇せず、曝気時間を5時間以下に抑えることは
著しく困難である。
Although this high-efficiency activated sludge method is an extremely effective method for improving wastewater treatment efficiency and saving space in sewage treatment plants, it has the following two problems. ing. One problem is the quality of treated water. In the conventional high-efficiency activated sludge method, because the specific gravity of activated sludge is low, the separation efficiency of activated sludge and treated water is poor, and the rapid flow generated inside the aeration section due to the aeration effect easily affects the settling section. In the high-efficiency activated sludge method, activated sludge often mixes into the treated water, deteriorating the quality of the treated water. Another problem is the decline in MLVSS. Originally, it is extremely difficult to maintain a stable high concentration of activated sludge, and in actual treatment, the MLVSS increases only to about 2.000 mg/1 at most, and it is extremely difficult to suppress the aeration time to 5 hours or less. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来の高効率活性汚泥法の問題点を解決する
ために、高炉水砕を粒径0.2n+a+以下の粉状に粉
砕したもの(以下、高炉水砕微粉と記述する)を高速エ
アレーション沈澱池に添加することにより、活性汚泥の
比重を高めることにより処理水との分離効率を高め、更
にMLVSSの高濃度保持を容易にすることを目的とし
ている。
In order to solve the problems of the conventional high-efficiency activated sludge method, the present invention has developed a method to crush granulated blast furnace granules into powder with a particle size of 0.2n+a+ or less (hereinafter referred to as granulated blast furnace granulated powder) at high speed. By adding it to the aeration sedimentation tank, the purpose is to increase the specific gravity of activated sludge, thereby increasing the separation efficiency from treated water, and making it easier to maintain a high concentration of MLVSS.

〔作用〕[Effect]

本発明者は、高速エアレーション沈澱池を用いた活性汚
泥法について研究する過程で、処理水中への活性汚泥の
混入による処理水質の低下やMLvSSの低下による処
理効率の低下が頻繁に発生することに着目し、これを解
決するために、高炉水砕微粉を高速エアレーション沈澱
池内に添加する新しい高効率活性汚泥法を発明した。
In the process of researching an activated sludge method using a high-speed aeration sedimentation tank, the present inventor discovered that the quality of treated water frequently deteriorates due to the mixing of activated sludge into the treated water, and the treatment efficiency decreases due to a decrease in MLvSS. In order to solve this problem, we developed a new highly efficient activated sludge method in which granulated blast furnace powder is added to a high-speed aeration sedimentation tank.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

第1図は、高速エアレーション沈澱池の内部の機構が明
らかになるように縦方向断面を示すと共に添加された高
炉水砕微粉の高速エアレーション沈澱池内での流れを示
している。水槽本体1は、内筒4と外筒8によって曝気
部5と二次反応部9と沈澱部10に分割される。曝気部
5.二次反応部9及び沈澱部10の容積比は、一般の公
共下水処理場の場合、5対1対4程度が適当であるが、
これは廃水の性状や求められる処理水質に応じて変更さ
せる。内筒4と水槽本体1に囲まれた曝気部5には、前
述の高炉水滓が添加されている。流入水Wは、水槽本体
l底付近の流入口2から曝気部5内に流入し、散気装置
3から噴出する空気AO及び攪拌装置12により曝気部
5内を循環させられ、生物処理が施される。流入は、水
槽・本体l上部より曝気部5内に挿入したパイプによっ
て行ってもよい。内筒4の上部から溢れ出た一時処理水
W。
FIG. 1 shows a longitudinal section to clarify the internal mechanism of the high-speed aeration sedimentation tank, and also shows the flow of added blast furnace granulated powder inside the high-speed aeration sedimentation tank. The water tank body 1 is divided into an aeration section 5, a secondary reaction section 9, and a settling section 10 by an inner cylinder 4 and an outer cylinder 8. Aeration section 5. The appropriate volume ratio of the secondary reaction section 9 and settling section 10 is about 5:1:4 in the case of a general public sewage treatment plant.
This will be changed depending on the properties of the wastewater and the required quality of the treated water. The above-mentioned blast furnace water slag is added to the aeration part 5 surrounded by the inner cylinder 4 and the water tank body 1. The inflow water W flows into the aeration part 5 from the inlet 2 near the bottom of the aquarium main body l, is circulated in the aeration part 5 by the air AO ejected from the aeration device 3 and the stirring device 12, and is subjected to biological treatment. be done. The inflow may be performed by a pipe inserted into the aeration part 5 from the upper part of the water tank/main body l. Temporarily treated water W overflowing from the top of the inner cylinder 4.

と高炉水砕微粉の周りに付着発達した活性汚泥6は、内
筒4と外筒8に囲まれた二次反応部9を流下する。この
過程で生物処理が更に進行するとともに、比較的比重の
大きい汚泥が沈降分離される。
The activated sludge 6 that has developed around the granulated blast furnace powder flows down a secondary reaction section 9 surrounded by an inner cylinder 4 and an outer cylinder 8. In this process, biological treatment further progresses, and sludge with a relatively high specific gravity is sedimented and separated.

なお、内筒傘部13には30°以上の傾斜角を持たせ、
沈降した汚泥の堆積、腐敗を防ぐ。二次処理部9を経て
外筒8の下部から外側に溢れ出た二次処理水W2 は、
沈澱部10の中を上向きに流れて行く。
In addition, the inner cylinder umbrella part 13 has an inclination angle of 30 degrees or more,
Prevents sedimented sludge from accumulating and rotting. The secondary treated water W2 that has passed through the secondary treatment section 9 and overflowed from the lower part of the outer cylinder 8 to the outside is
It flows upward in the settling section 10.

ここでは、一般の上向流式沈澱池と同じ原理で活性汚泥
が沈澱分離されるが、従来の活性汚泥に比べて高炉水砕
微粉を含有しているために比重が大きく、曝気部5内の
流れに起因する沈澱部10内の流れによって処理水中に
活性汚泥が混入することはない。上澄水W、は、流出溝
11から排出される。
Here, activated sludge is separated by sedimentation using the same principle as a general upflow type sedimentation tank, but compared to conventional activated sludge, it has a higher specific gravity because it contains granulated blast furnace powder, and is separated inside the aeration section 5. Activated sludge will not be mixed into the treated water due to the flow in the settling section 10 caused by the flow. The supernatant water W is discharged from the outflow groove 11.

二次反応部9と沈澱部10に於いて処理水から分離した
高炉水砕微粉を含有する分離汚泥りは、内筒4及び外筒
8と水槽水一体との間を自重により落下し、再び曝気部
5内に戻る。余剰汚泥り、は汚泥排出ロアより排出され
別途処理される。曝気部5内のMLVSSは、好気性の
微生物が高炉水砕微粉の周りに非常に多く付着、生育す
るため、3.000mg/ 1から6.000mg/ 
j!と高濃度に保持される。したがって、曝気時間が2
時間から3時間程度の高効率処理が安定して行われると
共に、微生物の自己消化が活発に行われ、余剰汚泥D1
 の発生量は、平常の処理時に標準活性汚泥法の約50
%まで低減される。
The separated sludge containing the granulated blast furnace powder separated from the treated water in the secondary reaction section 9 and settling section 10 falls between the inner cylinder 4 and outer cylinder 8 and the water tank water unit due to its own weight, and is reused again. Return to the aeration section 5. Excess sludge is discharged from the sludge discharge lower and treated separately. The MLVSS in the aeration section 5 is 3.000mg/1 to 6.000mg/ because aerobic microorganisms adhere and grow around the granulated blast furnace powder in large numbers.
j! and is retained at a high concentration. Therefore, the aeration time is 2
Highly efficient treatment is carried out stably for about 3 hours, and self-digestion of microorganisms is actively carried out, resulting in excess sludge D1
The amount generated by the standard activated sludge method is approximately 50% during normal treatment.
%.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

一実施例1− 水槽本体(容量461)を内筒及び外筒によって曝気部
(23Il)、  二次反応部(5fl)、  沈澱部
(181’)に仕切り、曝気部に粒径0.03〜0.0
5mの高炉水滓1fitJを690 g (曝気槽1m
l当り約30kgに相当)添加し、第1表に示す組成と
性状を有する人工下水処理を行った。処理時間と処理水
質の関係を第2表に示す。第2表の結果より、高速エア
レーション沈澱池に高炉水滓微粉を添加した活性汚泥処
理は、2〜3時間の曝気により、処理水のB OD s
 は、5〜7mg/l(除去率97〜98%)  CO
DXNが7〜18mg/ 12 (除去率82〜93%
) であり、良好な処理水が得られることが明らかにな
った。
Example 1 - The main body of the water tank (capacity 461) is divided into an aeration section (23 Il), a secondary reaction section (5 fl), and a settling section (181') by an inner cylinder and an outer cylinder, and the aeration section has particles with a particle size of 0.03 to 0.0
690 g of 1 fitJ of 5 m blast furnace water slag (1 m aeration tank)
(equivalent to about 30 kg per liter) was added to perform artificial sewage treatment having the composition and properties shown in Table 1. Table 2 shows the relationship between treatment time and treated water quality. From the results in Table 2, activated sludge treatment in which blast furnace water slag fine powder is added to a high-speed aeration sedimentation tank can reduce the BOD s of treated water by aeration for 2 to 3 hours.
is 5-7 mg/l (removal rate 97-98%) CO
DXN is 7-18mg/12 (removal rate 82-93%
), and it became clear that good treated water could be obtained.

第        1        表(g/m’) 第       2       表 −実施例2− 全容量200m’の円筒形の水槽を、表面に防食塗装を
施した鋼製の板で仕切り、生活廃水の処理を実施した結
果を第3表に示す。曝気時間は、3時間及び2時間とし
た。
Table 1 (g/m') Table 2 - Example 2 - Results of treating domestic wastewater by partitioning a cylindrical water tank with a total capacity of 200 m' with steel plates with anti-corrosion coating on the surface. are shown in Table 3. The aeration time was 3 hours and 2 hours.

これより高炉水滓を活性汚泥の固定活性担体に用いた、
曝気−沈澱一体型活性汚泥処理装置は、実下水を効率的
に処理しうることが確認された。
From this, blast furnace water slag was used as a fixed active carrier for activated sludge.
It was confirmed that the integrated aeration-sedimentation activated sludge treatment device can efficiently treat actual sewage.

第       3       表 〔発明の効果〕 高速エアレーション沈澱池に高炉水砕微粉を添加した、
活性汚泥処理を行う本発明の方法は、活性汚泥法を用い
る廃水の処理において、処理水質の向上及びM L V
 S Sの高濃度保持による高効率処理の実現に著しく
効果がある。更に本発明の装置を用いることによって、
活性汚泥の固定化担体を再生処理することなく循環使用
することが可能になった。
Table 3 [Effects of the invention] Granulated blast furnace powder was added to the high-speed aeration sedimentation tank.
The method of the present invention for activated sludge treatment improves the quality of treated water and improves M L V in the treatment of wastewater using the activated sludge method.
This method is extremely effective in realizing highly efficient processing by maintaining a high concentration of SS. Furthermore, by using the device of the present invention,
It has become possible to recycle the activated sludge immobilization carrier without reprocessing it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の生物処理装置の断面図である。 1:水槽本体      2:流入口 3:散気装置      4:内筒 5:8X%気部 6:高炉水砕微粉を含有した活性汚泥 7:汚泥排出口     8:外筒 9:二次反応部     1o:沈#部11:流出溝 
     12:把拌装置13:内筒傘i      
W:流入水W1ニー次処理水    w2二二次処理水
W3:上澄水      AO,、A:空気D:高炉水
砕微粉を含有した分離汚泥 D1:余剰汚泥 特許出願人    新日本製鐵 株式會社代  理  
人      小  堀   益 (はが2名)第1図 W−J L−A。
FIG. 1 is a sectional view of the biological treatment apparatus of the present invention. 1: Water tank body 2: Inlet 3: Diffusion device 4: Inner cylinder 5: 8X% gas section 6: Activated sludge containing granulated blast furnace powder 7: Sludge discharge port 8: Outer cylinder 9: Secondary reaction section 1o :Sinking part 11:Outflow groove
12: Gripping device 13: Inner cylinder umbrella i
W: Inflow water W1 Secondary treated water W2 Secondary treated water W3: Supernatant water AO, A: Air D: Separated sludge containing granulated blast furnace powder D1: Excess sludge Patent applicant Nippon Steel Corporation Representative Reason
Masu Kobori (2 people) Figure 1 W-J L-A.

Claims (1)

【特許請求の範囲】[Claims] 1、傾斜面を持った内筒で水槽本体の内部空間を仕切り
、中央下部を曝気部とし、その上方を沈澱部として、前
記曝気部から前記沈澱部に循環する流路を形成した廃水
処理装置を使用し、活性汚泥の固定化担体としての高炉
水滓を前記循環流路に投入し、前記曝気部に流入した廃
水を活性汚泥処理した後で前記沈澱部に送り、該沈澱部
で処理済み廃水を活性汚泥と分離して排水し、活性汚泥
を前記内筒の傾斜面に沿って沈降させ、前記内筒の下方
空間を経由して前記曝気部に循環させることを特徴とす
る高炉水滓を使用した廃水処理方法。
1. A wastewater treatment device in which the internal space of the tank body is partitioned by an inner cylinder with an inclined surface, the central lower part is an aeration part, the upper part is a settling part, and a flow path is formed to circulate from the aeration part to the settling part. Blast furnace water slag as an immobilized carrier for activated sludge is introduced into the circulation flow path, and the wastewater flowing into the aeration section is treated with activated sludge and then sent to the settling section, where the wastewater has been treated. A blast furnace slag characterized in that wastewater is separated from activated sludge and drained, the activated sludge is allowed to settle along the inclined surface of the inner cylinder, and is circulated to the aeration section via the space below the inner cylinder. Wastewater treatment method using.
JP3363688A 1988-02-15 1988-02-15 Activated sludge treatment by using immobilized carrier Pending JPH01207194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3363688A JPH01207194A (en) 1988-02-15 1988-02-15 Activated sludge treatment by using immobilized carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3363688A JPH01207194A (en) 1988-02-15 1988-02-15 Activated sludge treatment by using immobilized carrier

Publications (1)

Publication Number Publication Date
JPH01207194A true JPH01207194A (en) 1989-08-21

Family

ID=12391939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3363688A Pending JPH01207194A (en) 1988-02-15 1988-02-15 Activated sludge treatment by using immobilized carrier

Country Status (1)

Country Link
JP (1) JPH01207194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010874A (en) * 2001-06-29 2003-01-14 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
KR100446107B1 (en) * 2002-07-23 2004-08-30 최흥진 Bioreactor for Treating Wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332966A (en) * 1976-09-08 1978-03-28 Kobe Steel Ltd Cleaning of wastewater and apparatus therefor
JPS6084198A (en) * 1983-05-31 1985-05-13 Ngk Insulators Ltd Activated sludge treating apparatus
JPS6053399B2 (en) * 1981-06-16 1985-11-25 松下電器産業株式会社 memory control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332966A (en) * 1976-09-08 1978-03-28 Kobe Steel Ltd Cleaning of wastewater and apparatus therefor
JPS6053399B2 (en) * 1981-06-16 1985-11-25 松下電器産業株式会社 memory control device
JPS6084198A (en) * 1983-05-31 1985-05-13 Ngk Insulators Ltd Activated sludge treating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010874A (en) * 2001-06-29 2003-01-14 Ebara Corp Method and apparatus for high-speed biological treatment of organic sewage
KR100446107B1 (en) * 2002-07-23 2004-08-30 최흥진 Bioreactor for Treating Wastewater

Similar Documents

Publication Publication Date Title
US3563888A (en) Method and apparatus for treating waste-containing liquor
US4029575A (en) Phosphorus removal from waste water
JP2002505191A (en) Surge anoxic mixed continuous batch reaction system
CN106698861A (en) Oversize steel enterprise comprehensive wastewater advanced treatment recycling technique and system
JPH06226292A (en) Biological sewage treating device
US5316668A (en) Wastewater treatment plant and apparatus
CN108275780A (en) The nitrogenous petrochemical wastewater processing unit of novel height and the method for parameter adjustment
US3567629A (en) Process and plant for treating sewage
CN1277942A (en) System for treatment of water or wastewater, and method using such system
CN1061949C (en) Comprehensive effluent disposal technology for wet spinning acrylic fibers industry
CN107337321A (en) Anaerobic digestion of kitchen wastes wastewater treatment equipment
RU2136610C1 (en) Method of degassing of activated sludge and device for its embodiment
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JPH01207194A (en) Activated sludge treatment by using immobilized carrier
KR100246493B1 (en) Sewage and waste water disposal plant
JPH10192888A (en) Method and apparatus for cleaning wastewater
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JP3331887B2 (en) Carrier expansion phase wastewater treatment equipment
JP2709357B2 (en) Aerobic wastewater treatment equipment
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
KR20020075046A (en) The treating method of high concentration organic waste water
NO773230L (en) DEVICE FOR TREATMENT OF A WATER MEDIUM
RU2136614C1 (en) Device for biological elimination of organic substances, nitrogen and phosphorus compounds from sewage waters