JPH01206297A - Decommissioning of nuclear reactor building utilizing sea water buoyancy - Google Patents

Decommissioning of nuclear reactor building utilizing sea water buoyancy

Info

Publication number
JPH01206297A
JPH01206297A JP3029588A JP3029588A JPH01206297A JP H01206297 A JPH01206297 A JP H01206297A JP 3029588 A JP3029588 A JP 3029588A JP 3029588 A JP3029588 A JP 3029588A JP H01206297 A JPH01206297 A JP H01206297A
Authority
JP
Japan
Prior art keywords
building
reactor
reactor building
seawater
decommissioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3029588A
Other languages
Japanese (ja)
Other versions
JPH0769474B2 (en
Inventor
Sumio Iwashima
岩島 澄雄
Shigeru Ogoshi
大越 茂
Shinichi Furuhari
古張 信市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3029588A priority Critical patent/JPH0769474B2/en
Publication of JPH01206297A publication Critical patent/JPH01206297A/en
Publication of JPH0769474B2 publication Critical patent/JPH0769474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PURPOSE:To reduce the schedule of decommissioning and plan the reduction of exposure and waste by enclosing a reactor, introducing sea water in a pit and a water passage floating the building and regulating sea water level. CONSTITUTION:The circumferential yard of a nuclear reactor building 1 is excavated, a water channel 3 up to a coast is formed and a water gate 4 for damming up between sea and the water channel 3 is provided in the coast. An opening part of the building 1 is filled with concrete and made a closed structure without flowing out inner radioactive waste and the like. The circumference of the building 1 is excavated, jacked up and the separation of base rock and the building 1 is performed. Next, sea water is flowed in the water channel 3, the whole building is floated, towed up to the most suitable place in a permanently keeping area at the circumference of the coast.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水浮力利用による原子炉建屋の廃炉工法に係
り、特に高レベルの放射能を汚染された機器、配管を備
えた原子炉建屋全体を海水浮力を利用して浮上、移動さ
せて埋設するのに好適な海水浮力利用による原子炉建屋
の廃炉工法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of decommissioning a nuclear reactor building using seawater buoyancy, and particularly to a nuclear reactor building equipped with equipment and piping contaminated with high levels of radioactivity. This invention relates to a decommissioning method for a nuclear reactor building that utilizes seawater buoyancy, which is suitable for levitating and moving the entire body using seawater buoyancy before burying it.

〔従来の技術〕[Conventional technology]

一般に原子炉を有する原子炉建屋は、燃料を始めとして
高放射能レベルに汚染された容器、配管等の機械設備を
保有しているため、廃炉計画を行う場合、機器の切断手
順、被曝対策、撤去方法等詳細な事前検討を行うことが
要求される。
In general, reactor buildings containing nuclear reactors contain mechanical equipment such as fuel, containers, and piping that are contaminated with high levels of radioactivity. , it is required to conduct a detailed preliminary study of the removal method, etc.

原子炉建屋の解体に当っては、コンクリート構造物の機
械的破壊または高温破壊のいずれかによって行われてい
る。機械的破壊としては、管理***9機械的衝撃による
圧砕または拡張、カッターによる切断等の方法が行われ
ている。また、高温破壊では火炎による溶解または加熱
による材料の熱膨張差及びコンクリート強度の低下を応
用した破壊工法が行われている。
Demolition of nuclear reactor buildings is carried out either by mechanical destruction or high-temperature destruction of concrete structures. Mechanical destruction methods include controlled blasting, crushing or expansion by mechanical impact, and cutting with a cutter. In addition, for high-temperature destruction, a destruction method is used that utilizes the difference in thermal expansion of materials and the reduction in concrete strength due to melting or heating by flame.

破壊されたコンクリート及び配管2機械設備の部材は、
不燃物、金属材及び可燃物等に区分され、放射能レベル
の高い物質は濃縮されて廃棄物としてドラ11缶詰めし
て破棄する工法が取られている。
Destroyed concrete and piping 2 mechanical equipment parts are as follows:
Materials are classified into non-combustible materials, metal materials, and combustible materials, and materials with high radioactivity levels are concentrated and discarded as waste by being disposed of in cans.

従来、特開昭55−49461 号公報に記載しである
ようにコンクリート構築物の深孔解体工法及び特開昭5
6−52269号公報に記載されているコンクリート構
造物の破壊工法が一般建築物の建物破壊方法として行わ
れているが、原子炉建屋の場合は、上記コンクリート構
造物の破壊工法のような方法では放射性物質を周辺エリ
アに拡散するなどの欠点がある。
Conventionally, there has been a deep hole demolition method for concrete structures as described in Japanese Patent Application Laid-Open No. 55-49461 and Japanese Patent Application Laid-open No. 55-4946
The concrete structure destruction method described in Publication No. 6-52269 is used as a building destruction method for general buildings, but in the case of nuclear reactor buildings, the above-mentioned concrete structure destruction method cannot be used. It has disadvantages such as spreading radioactive materials to the surrounding area.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、高放射能レベルに汚染された機器、配
管及びコンクリート構造物を解体するために、建物周辺
への放射性廃棄物の拡散防止及び作業員の被曝対策等の
管理を徹底して行わなければならず、なお、放射線に汚
染された廃棄物は数千トンのオーダで発生するため、ド
ラム缶詰めによって半永久的に保管管理するスペースが
ぼう大なものになる。それと同時に廃炉工数の増加も著
しく、コストアップするという問題を有していた。
In order to dismantle equipment, piping, and concrete structures contaminated with high radioactivity levels, the above conventional technology requires thorough management to prevent the spread of radioactive waste around the building and to prevent radiation exposure of workers. However, since radiation-contaminated waste is generated in the order of several thousand tons, canning in drums requires a huge amount of space for semi-permanent storage and management. At the same time, there was a significant increase in the number of man-hours required for decommissioning, leading to a problem of increased costs.

本発明の目的は、廃炉作業を行うための工期を大幅に短
縮し、かつ、被曝低減及び廃棄物量の削減をはかること
ができる海水浮力利用による原子炉建屋の廃炉工法を提
供することにある。
The purpose of the present invention is to provide a method for decommissioning a nuclear reactor building using seawater buoyancy, which can significantly shorten the construction period for decommissioning work, and reduce exposure to radiation and the amount of waste. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、原子炉建屋の周辺に竪穴を形成して、この
竪穴と海岸に至るまでの水路を設け、かつ、廃炉すべき
上記原子炉建屋を密閉構造として上記竪穴と上記水路に
海水を導き、上記原子炉建屋全体を浮上させ、上記水路
の海岸部に水門を設置して海水レベルの調整を行うこと
により、上記原子炉建屋全体を浮上、移動させて上記海
岸に導き、あらかじめ永久保管場所として定めたエリア
に埋設するようにして達成するようにした。
The above purpose is to form a pit around the reactor building, provide a waterway from this pit to the coast, and to make the reactor building to be decommissioned into a sealed structure so that seawater can be poured into the shaft and the waterway. The entire reactor building will be floated, and a water gate will be installed on the coast of the waterway to adjust the seawater level, and the entire reactor building will be floated, moved, guided to the coast, and stored permanently in advance. This can be achieved by burying it in a designated area.

〔作用〕[Effect]

原子炉建屋の撤去に当って、周辺ヤードを堀削して、か
つ、海岸に至るまでの水路を形成し、海岸には海と水路
の間をせき止める水門を設け、原子炉建屋外壁は鉄筋コ
ンクリート製で、開口部は、運転床上のブローアウトパ
ネル以外はとんど設けてない設計となっているので、廃
炉に当っては開口部をコンクリートで充填し、内部の放
射性廃棄物等が流出しない密閉構造とする。放射性汚染
が比較的低レベルである周辺建物を解体、撤去し、移設
が可能となるように原子炉建屋周辺を堀削し、原子炉建
屋の基礎を削り出し、ジヤツキアップして岩盤と原子炉
建屋の切り離しを行う。次に、水路に海水を流入し、建
物全体を浮上させて海岸周辺で永久保管エリアに最適な
場所まで曳行し、その場所へ埋設するようにした。
When the reactor building was removed, the surrounding yard was excavated and a waterway was created to reach the coast. A water gate was installed on the coast to block the waterway from the sea, and the outer wall of the reactor building was made of reinforced concrete. The openings are designed to have almost no openings other than the blowout panel on the operating floor, so during decommissioning the openings will be filled with concrete to prevent the radioactive waste inside from flowing out. The structure shall be closed. Demolish and remove surrounding buildings with relatively low levels of radioactive contamination, excavate the area around the reactor building to make it possible to relocate it, carve out the foundation of the reactor building, and jack up the bedrock and reactor building. Perform the separation. Seawater was then pumped into the channel, causing the entire building to float to the surface and be towed around the coast to a suitable location for a permanent storage area, where it could be buried.

〔実施例〕〔Example〕

以下本発明の廃炉工法の一実施例を第1図〜第5図を用
いて詳廁に説明する。
An embodiment of the decommissioning method of the present invention will be described in detail below with reference to FIGS. 1 to 5.

第5図に原子力発電所の建物全体のレイ−アウトを示す
。原子炉建屋1の周辺には、タービン建屋11.補助ボ
イラ建屋12.サービス建屋13゜海水熱交換建屋14
.取水建屋15.排気筒16゜所内変圧器17等が配置
されている。プラントの設計寿命が過ぎて廃炉に至る場
合、あらかじめ放射能に汚染されていない建屋あるいは
汚染されていても比較的低レベルな建屋については、従
来技術である破壊工法で撤去する。特にR子炉建屋1の
核燃料物質を有する原子炉炉心部及び原子炉格納容器内
部の機器設備については、放射能レベルは最も高く、配
管切断等を行うと、内部流体が流出し、それらが非常に
高レベルの放射能を持っているため、充分な被曝対策等
を行わなければならない。
Figure 5 shows the overall layout of the nuclear power plant building. Around the reactor building 1, there are turbine buildings 11. Auxiliary boiler building 12. Service building 13゜Seawater heat exchange building 14
.. Water intake building 15. An in-house transformer 17 and the like are arranged at 16 degrees of the exhaust pipe. When a plant is to be decommissioned after its design life has expired, buildings that have not been contaminated with radioactivity, or buildings that are contaminated but at a relatively low level, are removed using conventional destructive methods. In particular, the radioactivity level is the highest in the reactor core containing nuclear fuel material in the R reactor building 1 and the equipment inside the reactor containment vessel. Because they have high levels of radioactivity, sufficient measures must be taken to prevent exposure to radiation.

第1図はその断面図で、第2図は第1図の平面図である
。原子炉建屋1の撤去に当って、上記したように放射能
レベルの比較的低レベルである建屋を破壊工法で撤去し
た後に、原子炉建屋1の周辺に連壁2を立ち上げる。こ
のとき、プラント建設時に連壁2が設置され、埋設され
ているのでこれを利用するかまたは原子炉建屋1の周辺
に新たに設置する。
FIG. 1 is a sectional view thereof, and FIG. 2 is a plan view of FIG. 1. When removing the reactor building 1, as described above, the building with relatively low radioactivity levels is removed using the destructive method, and then the continuous wall 2 is erected around the reactor building 1. At this time, since the continuous wall 2 was installed at the time of plant construction and is buried, it can be used or a new one can be installed around the reactor building 1.

連壁2が完成してから海岸に至るまでの水路3を設ける
。水路3は垂直用りでなく、法面7をつけたものとして
施工工事がやりやすい形状とする。
A waterway 3 is provided from the completion of the continuous wall 2 to the coast. The waterway 3 is not vertical, but has a slope 7 to facilitate construction work.

海岸と水路3の合流点には水門4を設け、水路3内の水
面レベルの調整が行えるようにする。水門4の近くには
仮設ポンプを設置して海水レベル5以上の水面レベルま
で上げるように海水を汲み上げることができるようにす
る。
A water gate 4 is provided at the confluence of the coast and the waterway 3, so that the water level within the waterway 3 can be adjusted. A temporary pump will be installed near the water gate 4 so that seawater can be pumped up to a water level higher than seawater level 5.

原子炉建屋1の周辺が堀削され、海岸に至るまでの水路
3が完成したら、原子炉建屋1の基礎と岩盤との切り離
し工事を行う。これは、原子炉建屋1の基礎部のマンメ
イドロックを平面的に縦横に削り、堀削穴8を形成して
多数のジヤツキアップ装置6で建屋1全体を数m持ち上
げて行う。
Once the area around the reactor building 1 has been excavated and the waterway 3 leading to the coast has been completed, work will be carried out to separate the foundation of the reactor building 1 from the bedrock. This is done by cutting the man-made rock at the foundation of the reactor building 1 horizontally and vertically, forming drilling holes 8, and lifting the entire building 1 by several meters using a large number of jack-up devices 6.

原子炉建屋1と岩盤の分離作業が終ったら、水路3内に
海水を導いて、海水レベル5より水路3内の水面レベル
を高くして建屋1全体を浮上させる。次に、M了解建屋
1を曳行して水門4まで運び、海水レベル5と水面レベ
ルを同一にして水門4を開く。次に、建屋1をあらかじ
め永久保管場所として定めたエリアまで曳行する。
After the separation work between the reactor building 1 and the bedrock is completed, seawater is introduced into the waterway 3 to raise the water surface level in the waterway 3 higher than the seawater level 5 and float the entire building 1 to the surface. Next, the M-clearance building 1 is towed and carried to the water gate 4, and the water gate 4 is opened when the seawater level 5 is made the same as the water surface level. Next, the building 1 is towed to an area previously determined as a permanent storage location.

原子炉建屋1には、第3図に示すように、上部に開閉自
在の空気逃げ用穴9を、横外壁に開閉自在の海水流入口
10を設けて、海水中に沈めて永久管理<H管が可能な
ようにしである。なお、原子炉建屋1を海水中に沈めて
廃棄する場合は、内部の放射性物質が空気逃げ用穴9及
び海水流入口10より外部に漏洩しないように閉塞する
As shown in Fig. 3, the reactor building 1 is provided with an air escape hole 9 that can be opened and closed at the top, and a seawater inlet 10 that can be opened and closed on the side outer wall, and is submerged in seawater for permanent management. The tube is as possible. In addition, when the reactor building 1 is submerged in seawater and disposed of, the air escape hole 9 and the seawater inlet 10 are closed to prevent radioactive substances inside from leaking to the outside.

また 第4図に示すように、海水中でなく、海岸の一部
に埋設して廃炉する場合は、原子炉建屋1を収容できる
容積分だけ堀削し、原子炉建屋1の設置場所から上記と
同様海水浮力利用により原子炉建屋1を曳行して廃棄場
所に移設して埋設す ・る。
In addition, as shown in Figure 4, when decommissioning the reactor by burying it in a part of the coast instead of in seawater, the excavation is done by a volume that can accommodate the reactor building 1, and the As above, reactor building 1 will be towed using seawater buoyancy, relocated to the disposal site, and buried.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、原子炉建屋を廃炉するに
当って機器、内部配管を解体することなく建屋全体を移
設、撤去することができ、次のような効果がある。
According to the present invention described above, when decommissioning a nuclear reactor building, the entire building can be relocated or removed without dismantling the equipment and internal piping, and the following effects are achieved.

(1)従来、解体撤去していた廃炉方法に比べて放射線
被曝対策をほとんど行わないので、被曝対策にかかるコ
ストが低減できる。
(1) Compared to the conventional decommissioning method, which involved dismantling and removing the reactor, almost no radiation exposure countermeasures are taken, so the cost of radiation exposure countermeasures can be reduced.

(2)コンクリート構造物及び配管機器の解体撤去がな
くなるため、作業工程を短縮化できる。
(2) Since there is no need to dismantle and remove concrete structures and piping equipment, the work process can be shortened.

(3)廃炉に当っての放射性廃棄物の量が著しく低減す
る。
(3) The amount of radioactive waste generated during decommissioning will be significantly reduced.

(4)解体撤去をしないのでトレーラ、トラック等で輸
送する物流コストを低減することができる。
(4) Since there is no disassembly and removal, the logistics cost of transporting by trailer, truck, etc. can be reduced.

(5)工期の短縮化がはかれ、かつ、作業能率の低下を
さけることができる。
(5) The construction period can be shortened and a decrease in work efficiency can be avoided.

(6)原子力建屋を海水による浮力を利用して浮上して
曳行するので、曳行が容易である。
(6) Towing is easy because the nuclear power building is floated and towed using the buoyancy of seawater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の海水浮力利用による原子炉建屋の廃炉
工法を説明するための断面図、第2図は第1図の平面図
、第3図は原子炉建屋を海水中に沈める場合の空気逃げ
用穴と海水流入口の説明図、第4図は廃炉となった原子
炉建屋を海岸の一部に埋設する場合の断面図、第5図は
原子力発電所の主要建屋の配置を示す平面図である。 1・・・原子炉建屋、2・・・連壁、3・・・水路、4
・・・水門、5・・・海面、6・・・ジヤツキアップ装
置、7・・・法面、8・・・堀削穴、9・・・空気逃げ
用穴、10・・・海水流入躬3図
Figure 1 is a cross-sectional view to explain the decommissioning method of a reactor building using seawater buoyancy according to the present invention, Figure 2 is a plan view of Figure 1, and Figure 3 is a case in which the reactor building is submerged in seawater. Figure 4 is a cross-sectional view of a decommissioned reactor building buried in a part of the coast, Figure 5 is the layout of the main buildings of the nuclear power plant. FIG. 1... Reactor building, 2... Continuous wall, 3... Waterway, 4
... Water gate, 5 ... Sea surface, 6 ... Jack up device, 7 ... Slope, 8 ... Drilling hole, 9 ... Air escape hole, 10 ... Seawater inflow 3 figure

Claims (1)

【特許請求の範囲】 1、放射線で汚染された燃料炉心部の炉内構造物、原子
炉圧力容器、原子炉格納容器及び他の機器、配管類を有
する使用済み原子炉建屋の撤去方法において、前記原子
炉建屋の周辺に竪穴を形成して該竪穴と海岸に至るまで
の水路を設け、かつ、廃炉すべき前記原子炉建屋を密閉
構造として前記竪穴と前記水路に海水を導き、前記原子
炉建屋全体を浮上させ、前記水路の海岸部に水門を設置
して海水レベルの調整を行うことにより、前記原子炉建
屋全体を浮上、移動させて前記海岸に導き、あらかじめ
永久保管場所として定めたエリアに埋設することを特徴
とする海水浮力利用による原子炉建屋の廃炉工法。 2、前記放射線で汚染された原子炉圧力容器、原子炉格
納容器、機器、配管及びコンクリート構造物を有する原
子炉建屋を解体することなく、前記建屋の基礎部を形成
する岩盤、人工岩盤を堀削してジャッキアップ装置を取
付けて、前記建屋の基礎部と前記岩盤との切り離しを行
い、密閉構造とした前記原子炉建屋を海水によつて浮上
させる特許請求の範囲第1項記載の海水浮力利用による
原子炉建屋の廃炉工法。 3、前記原子炉建屋は、一部に海水を流入される開閉可
能な流入口を設けてあり、前記原子炉建屋の浮き上がり
調整を行うようにしてある特許請求の範囲第1項または
第2項記載の海水浮力利用による原子炉建屋の廃炉工法
[Claims] 1. A method for removing a used nuclear reactor building having reactor internal structures of a fuel reactor core contaminated with radiation, a reactor pressure vessel, a reactor containment vessel, and other equipment and piping, including: A vertical hole is formed around the reactor building, a waterway is provided between the vertical hole and the coast, and the reactor building to be decommissioned is made into an airtight structure, and seawater is introduced into the vertical hole and the waterway. By levitating the entire reactor building and adjusting the seawater level by installing a water gate on the coast of the waterway, the entire reactor building was floated, moved, and guided to the coast, where it was predetermined as a permanent storage location. A method of decommissioning a nuclear reactor building that utilizes the buoyancy of seawater and is characterized by burying the reactor building within a certain area. 2. Excavating the bedrock and artificial bedrock that form the foundation of the reactor building without dismantling the reactor building, which has the reactor pressure vessel, reactor containment vessel, equipment, piping, and concrete structures contaminated with radiation. Seawater buoyancy according to claim 1, in which the reactor building, which has a sealed structure, is floated by seawater by cutting and installing a jack-up device to separate the foundation of the building from the rock. Decommissioning method for nuclear reactor building by utilization. 3. The reactor building is partially provided with an inlet that can be opened and closed to allow seawater to flow in, and the floating of the reactor building is adjusted. The decommissioning method for reactor buildings using seawater buoyancy described above.
JP3029588A 1988-02-12 1988-02-12 Decommissioning method of reactor building by utilizing buoyancy of seawater Expired - Lifetime JPH0769474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3029588A JPH0769474B2 (en) 1988-02-12 1988-02-12 Decommissioning method of reactor building by utilizing buoyancy of seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029588A JPH0769474B2 (en) 1988-02-12 1988-02-12 Decommissioning method of reactor building by utilizing buoyancy of seawater

Publications (2)

Publication Number Publication Date
JPH01206297A true JPH01206297A (en) 1989-08-18
JPH0769474B2 JPH0769474B2 (en) 1995-07-31

Family

ID=12299744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029588A Expired - Lifetime JPH0769474B2 (en) 1988-02-12 1988-02-12 Decommissioning method of reactor building by utilizing buoyancy of seawater

Country Status (1)

Country Link
JP (1) JPH0769474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156472A1 (en) * 1998-02-10 2001-06-16 Adell Argiles Josep Maria System for the mobilisation or movement of buildings.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156472A1 (en) * 1998-02-10 2001-06-16 Adell Argiles Josep Maria System for the mobilisation or movement of buildings.

Also Published As

Publication number Publication date
JPH0769474B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JP2010101144A (en) Energy supply system reusing existing underground cavity
GB2038076A (en) Method of disposing of shut-down nuclear power plants
JPH01206297A (en) Decommissioning of nuclear reactor building utilizing sea water buoyancy
EP1517337B1 (en) Method for disposing of power station facility directly below the original location
JP7070998B2 (en) Reactor building flooding equipment and reactor building flooding method
KR102116379B1 (en) Method for processing a nuclear reactor
Carroll et al. Sodium Reactor Experiment decommissioning. Final report
Engovatov et al. Providing rationale for the possibility of decommissioning Bilibino nuclear cogeneration plant based on the onsite disposal option
Yu et al. Research on key technology of deep foundation pit support construction for bearing platform under complex geological conditions
JPS62291600A (en) Wet type overhauling method of nuclear reactor facility
JP2000131496A (en) Storage method and facility of activated concrete
JPS62141260A (en) Construction method for sinking existing structure
Marguet The Nuclear Island
JP2639132B2 (en) Final waste disposal site
Endsley Saxton Nuclear Experimental Corporation, Containment Vessel (CV) Concrete Removal: Decommissioning in a Flood Plan
JP2581602B2 (en) Waste treatment method
CN112030997A (en) Foundation pit supporting structure adjacent to high-speed rail
JP2021012184A (en) Nuclear reactor building flooding water device and nuclear reactor building flooding water method
JPS62242899A (en) Nuclear reactor processing method
CN115538960A (en) Bored pile slurry circulation system on municipal road and construction method
Coates et al. HARTLEPOOL POWER STATION: MAJOR ENGINEERING FEATURES.
Scott et al. Additional Aspects of the Enrico Fermi Atomic Power Plant
JPS6311721A (en) Construction of concrete container in deep underground
JP2013181921A (en) Method for dismantling radioactive contaminated facility
Wahl Foundation caisson provides underground containment for nuclear power plant