JPH01206230A - Magnetic spring support type apparatus for measuring imbalance - Google Patents

Magnetic spring support type apparatus for measuring imbalance

Info

Publication number
JPH01206230A
JPH01206230A JP3075988A JP3075988A JPH01206230A JP H01206230 A JPH01206230 A JP H01206230A JP 3075988 A JP3075988 A JP 3075988A JP 3075988 A JP3075988 A JP 3075988A JP H01206230 A JPH01206230 A JP H01206230A
Authority
JP
Japan
Prior art keywords
magnetic
vibration
vibrating
fixed board
steel balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3075988A
Other languages
Japanese (ja)
Other versions
JPH0658278B2 (en
Inventor
Takashi Kono
敬 河野
Osami Matsushita
松下 修巳
Takao Terayama
孝男 寺山
Masanori Kawachi
河内 正範
Hideo Tomizawa
富沢 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3075988A priority Critical patent/JPH0658278B2/en
Publication of JPH01206230A publication Critical patent/JPH01206230A/en
Publication of JPH0658278B2 publication Critical patent/JPH0658278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To measure highly precisely the imbalance of a rotating body such as a VTR cylinder, by providing a vibrating plate on a fixed board with interposition of a magnetic spring support means made up of steel balls and magnets and by detecting vibrations of this vibrating plate by means of a non-contact- type sensor. CONSTITUTION:A vibrating stage 2 is supported movably on a foundation fixed board 8 with three or more steel balls 5 interposed, while a magnetic circuit is constituted by magnets 4 and a magnetic body (foundation fixed board 8) so that the steel balls 5 are held therebetween. By a magnetic spring effect of this magnetic circuit, a spring rigidity being uniform in all directions around some static point is given between the vibrating stage and the foundation fixed board 8. When a VTR cylinder 1 mounted on the vibrating stage 2 rotates, the vibrating stage 2 vibrates. Vibration sensor 6 and 7 are constructed by eddy-current-type or optical-type non-contact sensors, and they measure vibrations without applying useless forces to a vibration system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転体のふつりあい測定装置に係り、特に、V
TRシリンダ、小型モータ等小形で高いつりあわせ精度
を要求する回転体の支持のためのバランス台(以下振動
台)を軟に支持するための好適な磁気支持型のふつりあ
い測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a balance measuring device for a rotating body, and in particular, to a balance measuring device for a rotating body.
The present invention relates to a suitable magnetic support type balance measuring device for softly supporting a balance table (hereinafter referred to as a vibration table) for supporting small rotating bodies such as TR cylinders and small motors that require high balance accuracy.

〔従来の技術〕[Conventional technology]

ふつりあい測定装置は、ふつりあいを有するワークを振
動台上に回転可能に支え、この振動台とベースとの間に
、ワークを回転させた際に振動台が適当なふつりあい振
動を行うようにばねを設けこの振動をピックアップによ
り測定する機構をその基本的構造としている。従来の装
置では、ばねは板ばねが用いられており、ピックアップ
には接触型の動電型ピックアップが多く用いられていた
The balance measurement device rotatably supports a workpiece having a balance on a vibration table, and a device is installed between the vibration table and a base so that the vibration table vibrates at an appropriate balance when the workpiece is rotated. Its basic structure is a mechanism that includes a spring and measures this vibration with a pickup. In conventional devices, leaf springs are used as springs, and contact-type electrodynamic pickups are often used as pickups.

ふつりあい81哩足袋置は、その回転数と装置の固有振
動数の関係から、固有振動数が回転数より高いハードタ
イプと、固有振動数が回転数より小さいソフトタイプに
わかれる。VTRシリンダ等の小形で、ふつりあい量の
小さなものには、ソフトタイプが用いられる。
Based on the relationship between the number of rotations and the natural frequency of the device, the Futariai 81-tabi holder can be divided into a hard type whose natural frequency is higher than the number of rotations, and a soft type whose natural frequency is lower than the number of rotations. A soft type is used for small items such as VTR cylinders with a small normal amount.

第7図に従来のソフトタイプふつりあい測定装置の一例
を示す。板ばね15により、振動台2をつり下げ、その
振動を接触式の動電型変位ピックアップ16で検出する
構造となっている。
FIG. 7 shows an example of a conventional soft type balance measuring device. The vibration table 2 is suspended by a leaf spring 15, and its vibration is detected by a contact type electrodynamic displacement pickup 16.

このような構成でV、TRシリンダのように小型軽量の
回転体のふつりあいを測定するためには、板ばねの剛性
をこれに伴って非常に小さくしなければならない。この
ため、この装置自体の機械的強度は非常に弱いものとな
る。また、板ばねの横方向の剛性を非常に小さいものと
したため、他の方向(回転軸方向及び上下方向)の剛性
も相対的に低下し、これらの方向への振動も起りやすく
、正確な測定をさまたげる。また、板ばね剛性の横方向
と上下、あるいは回転と上下の達成も問題となる。
In order to measure the balance of a small and lightweight rotating body such as a V or TR cylinder with such a configuration, the stiffness of the leaf spring must be made extremely small. Therefore, the mechanical strength of this device itself is very weak. In addition, since the stiffness of the leaf spring in the lateral direction is extremely small, the stiffness in other directions (rotational axis direction and vertical direction) is also relatively reduced, and vibrations in these directions are likely to occur, making accurate measurement difficult. hinder. In addition, achieving the stiffness of the leaf spring in the lateral direction and vertical direction, or in the rotational and vertical directions, is also a problem.

変位ピックアップについても、接触型の変位ピックアッ
プを使用しているため、ピックアップ内の摩擦による減
衰の影響が出る恐れがある。
As for the displacement pickup, since a contact-type displacement pickup is used, there is a risk of damping due to friction within the pickup.

以上のように従来の装置により、VTRシリンダ等の小
型で、ふつりあい量の小さな回転体のふつりあい測定を
行うにはいくつかの問題点があった。
As described above, there are several problems in measuring the balance of a small rotating body such as a VTR cylinder with a small balance amount using the conventional apparatus.

なお、この種の装置として関連するものは、特開昭55
−60834号、特開昭55−39066号、特開昭6
1−223527号等が挙げられる。
A related device of this type is disclosed in Japanese Unexamined Patent Application Publication No. 55
-60834, JP-A-55-39066, JP-A-6
1-223527 and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のふつりあい測定装置は、振動系の支持に板ばねを
使用しており、ワーク自体が小型軽量になると、それに
従い、板ばね剛性も小さくする必要がある。しかしなが
ら、板ばねの剛性をあまり小さくすると構造的強度が低
下する問題や、縦あるいはねじれとの達成により、測定
精度が低下する問題があった。また、振動測定にも接触
型ピックアップが用いられるため、この内部摩擦により
Conventional balance measuring devices use leaf springs to support the vibration system, and as the workpiece itself becomes smaller and lighter, the rigidity of the leaf spring must also be reduced accordingly. However, if the stiffness of the leaf spring is too small, there is a problem that the structural strength decreases, and there is a problem that measurement accuracy decreases due to the vertical or torsional effect. Also, since contact-type pickups are used for vibration measurements, due to this internal friction.

測定精度が低下する問題もあった。There was also the problem of reduced measurement accuracy.

本発明の目的は、VTRシリンダ等の小型回転体のふつ
りあいを高精度に測定する装置を実現するため、非常に
小さなばね定数で、ワークを安定にささえる機構を備え
た磁気ばね支持型ふつりあい測定装置提供することにあ
る。
The purpose of the present invention is to provide a magnetic spring support type balance device that is equipped with a mechanism to stably support a workpiece with a very small spring constant, in order to realize a device that can measure the balance of a small rotating body such as a VTR cylinder with high precision. Our goal is to provide measuring equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、3ヶ以上の鋼球を介して1回転体及び回転
体の軸受を含む振動台を滑かな基礎平板上に移動可能に
ささえ、かつ、この鋼球をはさみ込むように磁石と磁性
体により磁気回路を構成し、この間の磁気ばね効果によ
って、振動台と基礎平板上との間に、ある静止点まわり
全方向に均一なばね剛性を持たせることにより達成され
る。
The above purpose is to movably support a vibration table including a rotating body and bearings for the rotating body on a smooth flat base plate through three or more steel balls, and to attach a magnet and magnetic material to sandwich the steel balls. This is achieved by constructing a magnetic circuit using the body, and using the magnetic spring effect between them to provide uniform spring stiffness in all directions around a certain stationary point between the vibration table and the flat base plate.

また、振動測定を渦電流型あるいは光学式の非接触セン
サを用いることにより、振動系に無用な力を加えずに振
動を測定する。
Furthermore, by using an eddy current type or optical non-contact sensor for vibration measurement, vibration can be measured without applying unnecessary force to the vibration system.

〔作用〕[Effect]

振動台をささえる3個あるいはそれ以上の鋼球は、振動
台及び定盤と点接触しているのみであるから、移動にと
もなう摩擦による損失はほとんどなく、振動系のふつり
あい振動、をさまたげることはない。またばね系は、磁
気ばね効果を利用したもので、板ばねのような、達成を
起すことはない。
Since the three or more steel balls supporting the vibration table are in only point contact with the vibration table and the surface plate, there is almost no loss due to friction during movement, and the normal vibration of the vibration system is suppressed. There isn't. Also, the spring system utilizes the magnetic spring effect, and does not cause the same effect as leaf springs.

振動センサも、非接触型であるから、従来の接触型のよ
うに振動系の負荷となることはない、このように、この
磁気ばね支持型のふつりあい測定装置では、振動系に対
し、外部から影響を与える因子がほとんどなく、この振
動系は、ふっりあいに起因する遠心力に正確に対応した
ふつりあい振動を行う。このため、小型の回転体の非常
に小さなふつりあいでも高精度で測定することができる
The vibration sensor is also a non-contact type, so it does not place a load on the vibration system like conventional contact types.In this way, this magnetic spring supported normal measurement device does not require any external vibration to be applied to the vibration system. There are almost no influencing factors, and this vibration system performs balanced vibration that accurately corresponds to the centrifugal force caused by the close contact. Therefore, even very small balances of small rotating bodies can be measured with high precision.

〔実施例〕〔Example〕

以下1本発明の一実施例VTRを例にして第1図により
説明する。ふつりあいを持つVTRシリンダ1は、シリ
ンダ支え3を介して、振動台2上に固定されている。シ
リンダ支え3は、適当なりランプ機構を持ち、複数個の
シリンダを交換可能な構造となっている。振動台2の上
側面には、その4隅に永久磁石4が設けられている。振
動台2は、永久磁石4の磁力線中心線と同一中心線を持
つ位置にある4個の鋼球5により、定盤8上で移動可能
に支えられている。振動台2及び定盤8の鋼球5が接触
する面及び鋼球5の表面は非常に滑かに仕上られており
、この部分における摩擦はほとんどない。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 1, taking a VTR as an example. A balanced VTR cylinder 1 is fixed on a vibration table 2 via a cylinder support 3. The cylinder support 3 has a suitable ramp mechanism and has a structure in which a plurality of cylinders can be replaced. Permanent magnets 4 are provided at the four corners of the upper surface of the vibration table 2. The vibration table 2 is movably supported on a surface plate 8 by four steel balls 5 located at positions having the same center line as the center line of the magnetic force line of the permanent magnet 4. The surfaces of the vibrating table 2 and the surface plate 8 with which the steel balls 5 come into contact and the surfaces of the steel balls 5 are finished very smoothly, and there is almost no friction in these parts.

次に第2図において、この@動部について詳細な説明を
行う。第2図(a)には、振動台2が何ら力を受けてい
す、静止した状態を示すもので、永久磁石4と鋼球5の
位置関係及び、その時の磁力線の分布を模式的に示して
いる。磁力線はN極からS極の方向へ振動台2、鋼球5
.定盤8を通って流れる閉曲線を描いている。磁力線9
の中心線は、鋼球5中心線と一致している。磁力線9は
この中心線に対しどの方向にも均一に分布しており、振
動台2は定盤8方向に吸引力を受けながら静止している
Next, in FIG. 2, a detailed explanation will be given of this @ moving part. FIG. 2(a) shows a state in which the vibration table 2 is stationary and is not receiving any force, and schematically shows the positional relationship between the permanent magnet 4 and the steel ball 5 and the distribution of the lines of magnetic force at that time. ing. The lines of magnetic force move from the north pole to the south pole between the vibration table 2 and the steel ball 5.
.. A closed curve flowing through the surface plate 8 is drawn. magnetic field lines 9
The center line of coincides with the center line of the steel ball 5. The lines of magnetic force 9 are uniformly distributed in all directions with respect to this center line, and the vibration table 2 remains stationary while receiving an attractive force in the direction of the surface plate 8.

第2図(b)は、何らかの力が働き振動台2が鋼球5に
対し相対的に左側に移動した場合について示している。
FIG. 2(b) shows a case where the vibration table 2 moves to the left side relative to the steel ball 5 due to some force.

磁力線9は鋼球5の左側半面で右側半面より密になり、
鋼球5は左方向へ、振動台2は右方向へ相対的に力Fを
受ける。定盤8、振動台2、鋼球5の表面が滑らかで摩
擦がなく、かつ定盤8と鋼球5間、振動台2と鋼球5間
ですべりがないとすると、振動台2はこの方Fにより右
側に移動し、同時に鋼球5も右方向に駆動しながら、両
者とも元の中立位置に戻ることとなる。以上のように、
この振動台2は、この磁石−鋼球支持により、1つの静
止位置回り、即ち、平面上全方向に均一なばね定数で支
えられていると考えられる。このばね定数は、磁石4の
磁束密度に比例し、磁石4と定盤8の距離の2乗に反比
例する。
The magnetic lines of force 9 are denser on the left half of the steel ball 5 than on the right half,
The steel ball 5 receives a force F relative to the left, and the vibration table 2 receives a force F relative to the right. Assuming that the surfaces of the surface plate 8, vibration table 2, and steel balls 5 are smooth and friction-free, and there is no slippage between the surface plate 8 and the steel balls 5, and between the vibration table 2 and the steel balls 5, the vibration table 2 should be placed in this direction. The steel ball 5 is moved to the right by F, and at the same time, the steel ball 5 is also driven to the right, and both return to their original neutral positions. As mentioned above,
This vibration table 2 is considered to be supported around one rest position, that is, with a uniform spring constant in all directions on a plane, by this magnet-steel ball support. This spring constant is proportional to the magnetic flux density of the magnet 4 and inversely proportional to the square of the distance between the magnet 4 and the surface plate 8.

第1図に戻る。VTRシリンダ1を駆動すると。Return to Figure 1. When VTR cylinder 1 is driven.

そのふつりあいによる遠心力のため、振動台2は力を受
は振動する。ふつりあいを正確に測定するには、振動系
の固有振動数と回転体の回転数を離しておく必要がある
。固有振動数を回転数より高くするハードタイプと低く
するソフトタイプがある。ここでは、ふつりあい量が非
常に小さいためソフトタイプとする。振動台系の固有振
動数はシリンダ1、振動台2の質量Mと磁気ばね定数K
によって定まる。磁石4の磁束密度及び磁石4.定盤8
間の距離により、この系の固有振動数を回転数の半分以
下に設定する。
Due to the centrifugal force caused by this equilibrium, the vibration table 2 receives a force and vibrates. To accurately measure the balance, it is necessary to keep the natural frequency of the vibration system and the rotational speed of the rotating body apart. There are hard types that make the natural frequency higher than the rotational speed, and soft types that make it lower. Here, the soft type is used because the normal amount is very small. The natural frequency of the vibration table system is determined by the mass M of cylinder 1 and vibration table 2 and the magnetic spring constant K.
Determined by Magnetic flux density of magnet 4 and magnet 4. Surface plate 8
The natural frequency of this system is set to less than half the rotational speed depending on the distance between the two.

振動台2の側面、シリンダlの回転中心線に直角方向の
左右に1ケ所づつに、非接触型振動センサ6.7が設け
られている。数+mgr−amのふっりあい量により数
μmの振動が計測される。この振動信号をふつりあい解
析装置に入力することにより、ふつりあい量、ふつりあ
い角度が計測される。
Non-contact type vibration sensors 6.7 are provided on the side surface of the vibration table 2, one on the left and one on the left and right in a direction perpendicular to the rotation center line of the cylinder l. Vibration of several micrometers is measured by the amount of contact of several + mgr-am. By inputting this vibration signal into the balance analysis device, the balance amount and the balance angle are measured.

以上のように1本実施例によれば、簡単な構成により、
VTRシリンダなどの非常に小さな、ふつりあいを正確
に検出することができる。
As described above, according to this embodiment, with a simple configuration,
It is possible to accurately detect very small imbalances such as in VTR cylinders.

第3図乃至第5図は磁気ばね部の夫々他の実施例を示す
3 to 5 show other embodiments of the magnetic spring portion.

第3図は、振動台2を磁性材料で構成し、定盤8部に磁
石4を設けたもので、振動台2をより軽くすることがで
き、第1図の実施例に比べ同じふつりあい量でも大きな
振動信号を得ることができる。
In Fig. 3, the vibrating table 2 is made of a magnetic material, and a magnet 4 is provided on the surface plate 8. The vibrating table 2 can be made lighter and has the same balance as the embodiment shown in Fig. 1. A large vibration signal can be obtained even with a small amount of vibration.

第4図は、振動台2と定盤8の両者に磁石を設けたもの
で、上下2つの磁石間で静止位置が定まるため、鋼球5
と振動台2、あるいは定盤8間ですベリが生じても静止
位置が変らず、安定な出力を得る。この場合、鋼球5の
かわりに非磁性材料による球も使用できる。
In Fig. 4, magnets are installed on both the vibration table 2 and the surface plate 8. Since the stationary position is determined between the two upper and lower magnets, the steel ball 5
Even if a burr occurs between the vibration table 2 or the surface plate 8, the stationary position will not change and stable output will be obtained. In this case, instead of the steel ball 5, a ball made of a non-magnetic material can also be used.

第5図は、前前の定盤8に設けた磁石の換りに、電磁石
10を設けたものである。電磁石10に加える電圧を変
えることにより、磁気ばね定数を変化させることができ
る。これにより、質量の異なる幾種類かのワークに対し
て、適当な固有振動数を自由に設定することができ、汎
用性を持たせることができる。
In FIG. 5, an electromagnet 10 is provided in place of the magnet provided on the front surface plate 8. By changing the voltage applied to the electromagnet 10, the magnetic spring constant can be changed. Thereby, appropriate natural frequencies can be freely set for several types of workpieces having different masses, and versatility can be provided.

第6図は、VTRシリンダのかわりに一般のワーク11
を搭載した実施例である。軸受14により、ワーク11
を支え、ベルトかけ、もしくはジヨイント13を介し外
部よりモータ12駆動される構造となっている。
Figure 6 shows a general workpiece 11 instead of a VTR cylinder.
This is an example equipped with the following. By the bearing 14, the workpiece 11
It has a structure in which it is supported by a belt or driven by a motor 12 from the outside via a joint 13.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、VTRシリンダ等の小型回転体のふつ
りあいを高精度に測定することができる。
According to the present invention, the balance of a small rotating body such as a VTR cylinder can be measured with high precision.

また、従来の板ばね支持型ふつりあい測定装置に比べ簡
単な構造にすることができる。
Furthermore, the structure can be simpler than that of conventional leaf spring supported balance measuring devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は第1図の
磁気ばね部の説明図で(a)図はつりあい状態、(b)
図はふつりあい状態を示す。第3図、第4図、第5図は
磁気ばね部の夫々他の実施例を示す断面図、第6図は本
発明の更に他の実施例を示す斜視図、第7図は従来の装
置の斜視図である。 1・・・VTRシリンダ、2・・・振動台、3・・・シ
リンダ支え、4・・・磁石、5・・・鋼球、6,7・・
・振動センサ、8・・・定盤、9・・・磁力線、10・
・・電磁石、11・・・ワーク、12・・・モータ、1
3・・・ジヨイント、14・・・軸受、15・・・板ば
ね、16・・・動電型ピックアップ、17・・・ベース
Fig. 1 is a perspective view of an embodiment of the present invention, and Fig. 2 is an explanatory diagram of the magnetic spring portion in Fig. 1, with (a) in a balanced state and (b)
The figure shows a normal situation. 3, 4, and 5 are sectional views showing other embodiments of the magnetic spring portion, FIG. 6 is a perspective view showing still another embodiment of the present invention, and FIG. 7 is a conventional device. FIG. 1... VTR cylinder, 2... Vibration table, 3... Cylinder support, 4... Magnet, 5... Steel ball, 6, 7...
・Vibration sensor, 8... Surface plate, 9... Line of magnetic force, 10.
...Electromagnet, 11...Work, 12...Motor, 1
3... Joint, 14... Bearing, 15... Leaf spring, 16... Electrodynamic pickup, 17... Base.

Claims (1)

【特許請求の範囲】[Claims] 1、回転体の不つりあいによつて生じる不つりあい振動
を検出し、検出値により不つりあいの位置及び量を算出
するための軟支持型不つりあい検出装置において、回転
する回転体を載せた振動台を軟らかく支持するために、
振動台に磁石を配置し、基礎に磁性体を設け、または振
動台に磁性体を基礎に磁石を設けるか、あるいは両者に
磁石を設け、振動台と基礎の間に鋼球を介在させた磁気
ばね機構によつて振動台を支持したことを特徴とする磁
気ばね支持型ふつりあい測定装置。
1. In a soft support type unbalance detection device for detecting unbalance vibration caused by unbalance of a rotating body and calculating the position and amount of unbalance from the detected value, a vibration table on which a rotating rotating body is mounted. In order to support the
A magnetic system in which a magnet is placed on the shaking table and a magnetic material is placed on the foundation, or a magnetic material is placed on the shaking table and a magnet is placed on the foundation, or magnets are placed on both, and a steel ball is interposed between the shaking table and the foundation. A magnetic spring supported normality measuring device characterized by supporting a vibration table with a spring mechanism.
JP3075988A 1988-02-15 1988-02-15 Magnetic spring support type balance measuring device Expired - Lifetime JPH0658278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075988A JPH0658278B2 (en) 1988-02-15 1988-02-15 Magnetic spring support type balance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075988A JPH0658278B2 (en) 1988-02-15 1988-02-15 Magnetic spring support type balance measuring device

Publications (2)

Publication Number Publication Date
JPH01206230A true JPH01206230A (en) 1989-08-18
JPH0658278B2 JPH0658278B2 (en) 1994-08-03

Family

ID=12312615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075988A Expired - Lifetime JPH0658278B2 (en) 1988-02-15 1988-02-15 Magnetic spring support type balance measuring device

Country Status (1)

Country Link
JP (1) JPH0658278B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158938U (en) * 1988-04-22 1989-11-02
JP5004374B1 (en) * 2012-01-16 2012-08-22 淳致 萬谷 Sliding, steel ball compound seismic isolation device.
JP5124055B1 (en) * 2012-07-09 2013-01-23 淳致 萬谷 Sliding, steel ball compound seismic isolation device.
WO2013129156A1 (en) * 2012-02-27 2013-09-06 アズビル株式会社 Magnetic spring device
CN112710378A (en) * 2020-12-16 2021-04-27 象山宇翔机械有限公司 Energy-saving and environment-friendly type vibration amplitude detection device for detection of die workshop

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158938U (en) * 1988-04-22 1989-11-02
JP5004374B1 (en) * 2012-01-16 2012-08-22 淳致 萬谷 Sliding, steel ball compound seismic isolation device.
WO2013129156A1 (en) * 2012-02-27 2013-09-06 アズビル株式会社 Magnetic spring device
US9396858B2 (en) 2012-02-27 2016-07-19 Azbil Corporation Magnetic spring device
JP5124055B1 (en) * 2012-07-09 2013-01-23 淳致 萬谷 Sliding, steel ball compound seismic isolation device.
CN112710378A (en) * 2020-12-16 2021-04-27 象山宇翔机械有限公司 Energy-saving and environment-friendly type vibration amplitude detection device for detection of die workshop
CN112710378B (en) * 2020-12-16 2022-12-27 广东天佳誉模具科技有限公司 Energy-saving environment-friendly amplitude detection device for detection of die workshop

Also Published As

Publication number Publication date
JPH0658278B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
Edwards et al. Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down
US9810710B2 (en) Vibration sensor
Garmire et al. Diamagnetically levitated MEMS accelerometers
JPH01206230A (en) Magnetic spring support type apparatus for measuring imbalance
US4750361A (en) Universal balancing machine
KR20000004912A (en) Active electromagnetic damping method for spindle motors
US4821423A (en) Instrument producing electrical signals in response to acceleration forces
Ish-Shalom Sawyer sensor for planar motion systems
US7043376B2 (en) Vibration measurement apparatus and method
JP4155546B2 (en) Spherical ultrasonic motor
US4644792A (en) Method and apparatus for determining the mass center of a body
JP2892383B2 (en) Dynamic balance testing machine using torsional vibration
JPH07139936A (en) Coordinate measuring apparatus
JP2005181093A (en) Dynamic balancing machine
US2724971A (en) Vibration detecting apparatus
US3270566A (en) Inertial sensor
JP3283138B2 (en) Accelerometer
US3720110A (en) Method and apparatus for detecting angular position and amount of dynamic unbalance of rotating body
JPS60156584A (en) Biaxial vibration generator
JP2925166B2 (en) Balance tester using dynamic vibration absorber
Payne et al. The NIST Super Shaker Project
Huo et al. Unbalance identification for mainshaft system of 2-DOF precision centrifuge: a displacement sensor-based approach
JPS6225710Y2 (en)
JPH059630Y2 (en)
JPH0829238A (en) Mass measuring instrument