JPH01205858A - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting

Info

Publication number
JPH01205858A
JPH01205858A JP2776088A JP2776088A JPH01205858A JP H01205858 A JPH01205858 A JP H01205858A JP 2776088 A JP2776088 A JP 2776088A JP 2776088 A JP2776088 A JP 2776088A JP H01205858 A JPH01205858 A JP H01205858A
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
continuous casting
casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2776088A
Other languages
Japanese (ja)
Inventor
Masaaki Takagi
高木 政明
Tetsuo Okamoto
岡本 徹夫
Kazuo Arai
一男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2776088A priority Critical patent/JPH01205858A/en
Publication of JPH01205858A publication Critical patent/JPH01205858A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Abstract

PURPOSE:To prevent clogging of a nozzle and to improve the productivity of casting by forming the whole or a part of the submerged nozzle with electric conductible ceramic and making the nozzle exothermic. CONSTITUTION:The nozzle 1 for continuously casting is forming with an inner nozzle 2 made of the electric conductible ceramic and an outer nozzle 3 made of graphite quality refractory, etc. The nozzle 1 is fixed at bottom part of a tundish 10 and a high frequency induction coil 14 is arranged around the nozzle 1 and a thermocouple 15 is buried in the inner nozzle 2. At the time of executing the continuous casting, induction current is conducted to the coil 14 and the nozzle 1 is heated while controlling the current through the thermocouple 15, to hold the prescribed temp. By this method, temp. lowering of molten steel 11 flowing through in the nozzle 1 is prevented and the clogging of the nozzle 1 caused by alumina deposit is surely prevented. Therefore, the productivity of the casting is improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、鋼の連続鋳造において、タンデイツシュ内の
溶鋼をモールド内に注ぎ込むのに利用される浸漬ノズル
の改良に係り、さらに詳しくは、誘導電流によるノズル
自体の発熱によってノズル内壁の温度を溶鋼温度以上に
保持し、ノズル内壁での溶鋼温度の低下を防ぎ、もって
アルミナ付着によるノズル閉塞の防止を可能とした連続
鋳造用浸漬ノズルに関するものである。 (従来の一技術) 浸漬ノズルは1通常溶融石実質あるいはアルミナ黒鉛質
から成る、第3図(liL)  (b)に示すような形
状のもので、鋼の連続鋳造において、タンディツシュか
らモールドへ注ぎ込まれる溶鋼の通路となり、タンディ
ツシュ内の溶鋼がモールド内の溶鋼中に浸漬されたノズ
ルの先端部からモールド内に流入する構造となっている
ため、溶鋼の酸化防止、モールド内の溶鋼流の安定化、
介在物の除去などを目的に、スラブや大断面ブルームの
連続鋳造に広く用いられている。 第3図(a)において、従来の連続鋳造用浸漬ノズル2
0は、有底円筒状をなし、モールド内の溶鋼中に浸漬さ
れるノズル下部には、溶鋼を吐出する吐出口24が横方
向に設けられている。また、ノズル上部には、該ノズル
20をタンディツシュ底部に嵌合固定するための上広が
り状のテーパ一部25を備えており、同種の耐火性材料
によって一体に成形されている。 第3図(b)は従来の連続鋳造用浸漬ノズル20の他の
形状例を示すもので、前述のものと概ね同様の形状であ
るが、溶鋼との接触による侵食の激しい部分に肉厚部2
2を設けると共に、溶鋼の注入部となるノズル上部にノ
ズル本体と材質の異なるノズルへラド21を備えた構造
となっている。 (発明が解決しようとする課題) しかしながら、アルミギルド鋼の連続鋳造においては、
AfL203系介在物が前記浸漬ノズル内壁に付着して
ノズル閉塞を起すという問題があり、これによって安定
操業が阻害され、生産性が低下するばかりでなく、モー
ルド内の溶鋼面が乱れ、鋳片品質劣化の原因ともなって
いた。 この対策として、ガススリーブノズルやポーラスノズル
あるいはガス吹込みストッパなどを使用し、Arガスを
ノズル内に吹き込むことによってA文203の付着を防
止する方法が採用されているが、この方法には鋳片のピ
ンホールが増加するという欠点がある。また、溶鋼のC
a処理によってAfL203系介在物組成を低融点介在
物に組成コントロールする方法も実施されているが、こ
れにも耐火物の溶損や、他成分の存在によって新たな介
在物が付着するといった問題が残されている。 このように現状の対策は、いずれも満足すべき方法とは
言えず、根本的なノズル閉塞防止対策が必要となってお
り、アルミキルド鋼などAfLを含有する鋼の連造鋳造
の生産性向上、品質向上を図る上での課題となっていた
。 (発明の目的) 本発明は、アルミキルド鋼などAfL含有鋼の連続鋳造
における上記課題に鑑みてなされたものであって、その
目的とするところは、アルミナ付着によるノズル閉塞の
防止が可能な連続鋳造溶浸漬ノズルを提供することにあ
る。
(Industrial Application Field) The present invention relates to improvement of a submerged nozzle used for pouring molten steel in a tundish into a mold in continuous steel casting. The present invention relates to an immersion nozzle for continuous casting that maintains the temperature of the nozzle inner wall above the molten steel temperature, prevents a drop in the molten steel temperature on the nozzle inner wall, and thereby prevents nozzle clogging due to alumina adhesion. (Conventional technology) An immersion nozzle is usually made of molten stone substance or alumina graphite and has a shape as shown in Fig. 3 (liL) (b), and is used to pour water from a tundish into a mold in continuous casting of steel. The molten steel in the tundish flows into the mold from the tip of the nozzle immersed in the molten steel in the mold, preventing oxidation of the molten steel and stabilizing the flow of molten steel in the mold. ,
It is widely used for continuous casting of slabs and large cross-section blooms for the purpose of removing inclusions. In Fig. 3(a), a conventional continuous casting immersion nozzle 2 is shown.
0 has a cylindrical shape with a bottom, and a discharge port 24 for discharging molten steel is provided in the lower part of the nozzle which is immersed in the molten steel in the mold in the lateral direction. Further, the upper part of the nozzle is provided with an upwardly expanding tapered part 25 for fitting and fixing the nozzle 20 to the bottom of the tundish, and is integrally molded from the same kind of fire-resistant material. FIG. 3(b) shows another example of the shape of the conventional continuous casting immersion nozzle 20, which is roughly the same shape as the one described above, but has thick walls in areas that are severely eroded by contact with molten steel. 2
2, and a rad 21 made of a different material from the nozzle main body is provided at the upper part of the nozzle which serves as the injection part for molten steel. (Problem to be solved by the invention) However, in continuous casting of aluminum guild steel,
There is a problem that AfL203-based inclusions adhere to the inner wall of the immersion nozzle and cause nozzle blockage, which not only impedes stable operation and reduces productivity, but also disturbs the molten steel surface in the mold and impairs the quality of the slab. It was also a cause of deterioration. As a countermeasure against this, a method has been adopted in which the adhesion of A-pattern 203 is prevented by using a gas sleeve nozzle, porous nozzle, or gas blowing stopper, etc., and blowing Ar gas into the nozzle. The disadvantage is that the number of pinholes in the piece increases. In addition, C of molten steel
A method has been implemented to control the composition of AfL203-based inclusions to low-melting-point inclusions by a treatment, but this method also has problems such as melting of the refractory and adhesion of new inclusions due to the presence of other components. left behind. In this way, none of the current measures can be said to be satisfactory, and fundamental measures to prevent nozzle blockage are needed to improve the productivity of continuous casting of steel containing AfL such as aluminum killed steel. This was an issue in trying to improve quality. (Object of the Invention) The present invention has been made in view of the above-mentioned problems in continuous casting of AfL-containing steel such as aluminum-killed steel. An object of the present invention is to provide an infiltration nozzle.

【発明の構成】[Structure of the invention]

(課題を解決するための手段〕 本発明者は、連続鋳造溶浸漬ノズルの閉塞防止を目的と
して、ノズル内におけるアルミナの付着状況や付着位置
について調査、検討した結果、アルミナの付着は、モー
ルド内の溶鋼中に浸漬されないノズル部分内壁、つまり
温度勾配が最も大きくなる部分と、ノズル先端の溶鋼吐
出部近傍の溶鋼の流れがゆるやかになる部分に多いこと
が確認され、アルミナの付着は、溶鋼の温度低下に伴う
溶鋼中の厳素溶解度の減少と密接な関連があるものと考
えられた。 上記の予測に基き、ノズル部分の温度勾配をゆるやかに
するために、ノズルの高温予熱および鋳造中におけるバ
ーナー等による外部からのノズル加熱を実験的に検討し
たところ、若干ながらアルミナ付着量が減少する効果が
認められた。しかしながら、ノズルの材質的な問題や装
置上の制約からノズル内壁と溶鋼温度との差はさほど縮
まらず、この方法ではアルミナの付着を完全に防止する
ことはできなかった。 そこで、ノズルの形状や材質、加熱方法などについてさ
らに検討した結果、内壁部を導電性セラミックスで形成
したノズルを用いて、該ノズルの導電性セラミックスの
部分をその回りに配設した誘導コイルによって直接誘導
発熱させながら鋳造を実施することによって、ノズル内
壁面での溶鋼の温度低下が防止でき、アルミナ付着をほ
とんどなくすことができることを見出すに至った。 本発明に係る連続鋳造用浸漬ノズルは上記知見に基づく
ものであって、例えば高周波誘導によってノズルを直接
発熱させ、ノズル内を通過する溶鋼のとくにノズル内壁
面と接する部分の温度低下を防止することができるよう
に、ノズルの全体あるいはその一部を誘導発熱する導電
性セラミックスで形成した構成とすることによって従来
の課題を解決できるようにしたことを特徴としている。 (作用) 本発明に係る連続鋳造用浸漬ノズルは、少なくともその
一部が、例えば硼化物系化合物であるZrB2 、Ti
B2などから成る電気伝導性を有するセラミックスで形
成され、当該ノズルの外周に配置された例えば高周波誘
導コイルに高周波電流を流すことによって、前記浸漬ノ
ズルの導電性セラミックス部分に誘導電流を発生させ、
当該ノズルを直接発熱させることによってとくにノズル
内壁を通過する溶鋼のノズル内壁での温度低下を防ぎ、
溶鋼中の酸素溶解度の低減に基づくアルミナの付着を防
止し、ノズル閉塞の問題を解消するものである。 誘導加熱のうち、とくに高周波誘導加熱は、低周波誘導
加熱に比べて熱効率に優れ、加熱速度が大きいという特
性を有しており、この場合、浸漬ノズルの導電性セラミ
ックス部分に直接誘導電流を流して発熱させるため、ノ
ズル内をかなりの流速で通過する溶鋼のノズル内壁面で
の温度低下を防止する。 なお、実操業にあたっては、浸漬ノズルの前記導電性セ
ラミックス部分に温度センサーを配置し、これによって
、誘導コイルに流す電流を制御し、溶鋼温度の低下を安
定して防止するようになすことも行われる。 一方、伝導性セラミックスは一般に、2500〜300
0℃近い融点を有する高融点物質であり、従来のノズル
材料である溶融石英やアルミナ黒鉛系耐火物に劣らぬ耐
火性を有しており、溶鋼と接触しても何ら問題はないも
のであり、はう化物系の導電性セラミックスとしては、
第1表に示すものをあげることができる。 (実施例) 以下に、実施例によって本発明をさらに具体的に説明す
る。 第1図は、本発明に係わる連続鋳造用浸漬ノズルの一例
を示すもので、第1図において、連続鋳造用浸漬ノズル
1は、内径80 m m 、長さ約700m鋼の有底円
筒形に成形されたZrB2を主成分とする導電性セラミ
ックスから成るインナーノズル2と、該インナーノズル
2の周囲を補強するアルミナ黒鉛質耐大物から成るアウ
ターノズル3とによって構成されており、前記ノズル1
の先端底部には、モールド内の溶鋼中に浸漬されてタン
ディツシュからの溶鋼を概略水平方向に流出する吐田口
4を備えると共に、上部にはタンプッシュ底部に嵌合固
定するための上広がり状のテーパ一部5が設けられてい
る。 第2図は、前記構成を持つ本発明連続鋳造用浸漬ノズル
1を適用した連続鋳造設備の関連部分を示すもので、本
発明に係る連続鋳造用浸漬ノズル1は、タンディツシュ
10の底部にテーバ部5で嵌合固定され、前記タンディ
ツシュ10内の溶鋼11はノズル1中を通過して、モー
ルド12内の溶鋼11中に浸漬されたノズル1先端部の
吐出口4からモールド12内へ概略水平方向に流出せら
れ連続鋳造が進行する。 モールド12内にはパウダー13が散布され、該パウダ
ー13はスラグ化して溶鋼11を覆い。 溶鋼の保温、酸化防止の働きをする。 前記浸漬ノズル1の周囲には、この実施例において高周
波誘導コイル14が配設せられ、前記ノズル1を誘導発
熱させることによってノズル1を通過する溶鋼12のノ
ズル内壁での温度低下を防止する。そしてこの場合、該
ノズル1の導電性セラミックスからなるインナーノズル
2の中には、熱電対15の先端が埋設せられ、コントロ
ーラ16によって誘導コイル14を流れる高周波電流を
コントロールすることによって、前記インナーノズル2
の上部および下部の温度を1550〜1600℃に制御
する構造となっている。 この場合、誘導コイルでおおわれたインナーノズルの中
部は約1850℃を示したが、セラミックの割れ等、全
く支障はおこらなかった。 以上のように構成された連続鋳造設備によって、0.0
3%のA文を含有する肌焼鋼の連続鋳造を実施し、本発
明浸漬ノズル1のノズル閉塞状況を調査した。 その結果、形状寸法が本発明浸漬ノズル1と等しい、第
3図(a)に示す従来の浸漬ノズル20では、概ね5.
チャージの連続鋳造でノズル閉塞が生じ、使用が不可能
になっていたのに対し1本発明の浸漬ノズル1を使用し
て、該ノズルを高周波誘導加熱によってノズル上部、下
部の温度を約1600℃に・力ロ熱しながら連続鋳造し
た場合には、5チヤージの鋳造を終了した時点でもノズ
ル閉塞はもちろん、ノズル内のアルミナ付着もほとんど
認められなかった。 なお、本発明を実施する上で、本発明に係る連続鋳造用
浸漬ノズルの形状は、上記実施例で述べた形状に限定さ
れるものではない0例えば、上記実施例ではノズル内側
を導電性セラミックスよりなるインナーノズル2で形成
したノズル1を用I、zたが、全体を導電性セラミック
スで形成してもよく、あるいはノズル外側を導電性セラ
ミックスで形成することも可能である。ただしこの場合
、ノズルは、溶鋼表面のスラグと導電性セラミック部分
で接触することになるので、その材質を考慮することが
必要となる。したがって、導電性セラミックスが溶鋼あ
るいはスラグとの接触にあまり好ましくないものであれ
ば、内部に導電性セラミックスを設けて溶鋼やスラグと
接触しない工夫をこらした浸漬ノズル1としてもよい。
(Means for Solving the Problems) The present inventor has investigated and considered the adhesion status and adhesion position of alumina in the nozzle for the purpose of preventing clogging of the continuous casting infusion nozzle. It was confirmed that alumina adhesion was more common on the inner wall of the nozzle part that is not immersed in the molten steel, that is, the part where the temperature gradient is the largest, and the part where the molten steel flows slowly near the molten steel discharge part at the nozzle tip. It is thought that this is closely related to the decrease in the strict solubility in molten steel as the temperature decreases.Based on the above prediction, in order to make the temperature gradient at the nozzle gentle, When we experimentally investigated external heating of the nozzle using a burner, we found that it had the effect of slightly reducing the amount of alumina deposited.However, due to problems with the material of the nozzle and limitations on the equipment, the inner wall of the nozzle and the temperature of the molten steel were However, the difference in the nozzle did not decrease significantly, and this method was not able to completely prevent alumina adhesion.As a result, we further investigated the nozzle's shape, material, heating method, etc., and decided to form the inner wall with conductive ceramics. By using a nozzle and performing casting while directly generating heat by induction using an induction coil placed around the conductive ceramic part of the nozzle, it is possible to prevent the temperature of the molten steel on the inner wall of the nozzle from decreasing and prevent alumina from adhering. The immersion nozzle for continuous casting according to the present invention is based on the above knowledge, and is capable of directly generating heat in the nozzle by, for example, high-frequency induction, so that the molten steel passing through the nozzle can be heated, especially in the nozzle. In order to prevent the temperature drop of the part in contact with the inner wall surface, we have made it possible to solve the conventional problem by making the entire nozzle or a part of it made of conductive ceramics that generate heat by induction. (Function) The immersion nozzle for continuous casting according to the present invention is characterized in that at least a part thereof is made of boride-based compounds such as ZrB2 and Ti.
Generating an induced current in the conductive ceramic portion of the immersion nozzle by passing a high frequency current through, for example, a high frequency induction coil formed of an electrically conductive ceramic such as B2 and placed on the outer periphery of the nozzle,
By directly generating heat in the nozzle, it is possible to prevent the temperature of molten steel passing through the nozzle inner wall from decreasing, and
This prevents alumina from adhering due to the reduction in oxygen solubility in molten steel, and eliminates the problem of nozzle clogging. Among induction heating, high-frequency induction heating in particular has superior thermal efficiency and high heating speed compared to low-frequency induction heating. This prevents the temperature of the molten steel passing through the nozzle at a considerable flow rate from dropping on the inner wall surface of the nozzle. In addition, during actual operation, a temperature sensor may be placed in the conductive ceramic part of the immersion nozzle to control the current flowing through the induction coil and stably prevent the temperature of the molten steel from decreasing. be exposed. On the other hand, conductive ceramics generally have a
It is a high melting point substance with a melting point close to 0°C, and has fire resistance comparable to conventional nozzle materials such as fused silica and alumina graphite refractories, and there is no problem when it comes into contact with molten steel. , as a bolide-based conductive ceramic,
Those shown in Table 1 can be mentioned. (Example) Below, the present invention will be explained in more detail with reference to Examples. FIG. 1 shows an example of the immersion nozzle for continuous casting according to the present invention. In FIG. It is composed of an inner nozzle 2 made of a molded conductive ceramic mainly composed of ZrB2, and an outer nozzle 3 made of a large alumina graphite material that reinforces the periphery of the inner nozzle 2.
The bottom of the tip is provided with a spout 4 which is immersed in the molten steel in the mold and allows the molten steel from the tundish to flow out in a generally horizontal direction, and the upper part has an upwardly expanding shape for fitting and fixing to the bottom of the tang push. A tapered portion 5 is provided. FIG. 2 shows related parts of continuous casting equipment to which the immersion nozzle 1 for continuous casting of the present invention having the above-mentioned configuration is applied. The molten steel 11 in the tundish 10 passes through the nozzle 1 and flows into the mold 12 from the discharge port 4 at the tip of the nozzle 1 immersed in the molten steel 11 in the mold 12 in a generally horizontal direction. Continuous casting progresses. Powder 13 is sprinkled inside the mold 12, and the powder 13 turns into slag and covers the molten steel 11. Works to keep molten steel warm and prevent oxidation. In this embodiment, a high-frequency induction coil 14 is disposed around the immersion nozzle 1, and by causing the nozzle 1 to generate heat by induction, the temperature of the molten steel 12 passing through the nozzle 1 is prevented from decreasing on the inner wall of the nozzle. In this case, the tip of a thermocouple 15 is embedded in the inner nozzle 2 made of conductive ceramics of the nozzle 1, and by controlling the high frequency current flowing through the induction coil 14 by the controller 16, the inner nozzle 2
It has a structure that controls the temperature of the upper and lower parts to 1550 to 1600°C. In this case, the middle part of the inner nozzle covered with the induction coil showed a temperature of about 1850°C, but no problems such as cracking of the ceramic occurred. With the continuous casting equipment configured as described above, 0.0
Continuous casting of case-hardened steel containing 3% A content was carried out, and the nozzle clogging situation of the immersion nozzle 1 of the present invention was investigated. As a result, in the conventional submerged nozzle 20 shown in FIG. 3(a), which has the same shape and dimensions as the submerged nozzle 1 of the present invention, approximately 5.
Continuous casting of charges caused nozzle blockage, which made it impossible to use.However, by using the immersion nozzle 1 of the present invention, the temperature of the upper and lower parts of the nozzle can be raised to approximately 1600°C by high-frequency induction heating. - When continuous casting was performed while heating under high pressure, not only nozzle clogging but also almost no alumina adhesion inside the nozzle was observed even after 5 charges of casting were completed. In carrying out the present invention, the shape of the immersion nozzle for continuous casting according to the present invention is not limited to the shape described in the above embodiments. For example, in the above embodiments, the inside of the nozzle is made of conductive ceramics. Although the nozzle 1 is made of an inner nozzle 2 made of the following, the entire nozzle may be made of conductive ceramics, or the outside of the nozzle may be made of conductive ceramics. However, in this case, since the nozzle comes into contact with the slag on the surface of the molten steel through the conductive ceramic portion, it is necessary to consider the material of the nozzle. Therefore, if conductive ceramics are not very desirable for contact with molten steel or slag, the immersion nozzle 1 may be designed to have conductive ceramics inside so as not to come into contact with molten steel or slag.

【発明の効果】【Effect of the invention】

以上説明して来たように1本発明に係る連a鋳造用浸漬
ノズルは、浸漬ノズルの全体あるいはその一部を導電性
セラミックスで形成した構造であるため、その周囲に配
設した誘導コイルに誘導電流を流すことによって、容易
かつ速やかにノズル自体が発熱し、該ノズル内を通過す
る溶鋼のノズル内壁での温度低下を防止して高温に保持
することができ、アルミナの析出によるノズル閉塞の防
止を可能としたものであって、jl含有鋼の連続鋳造に
おいて、その生産性向上に大きく寄与するものである。
As explained above, the immersion nozzle for continuous a casting according to the present invention has a structure in which the whole or a part of the immersion nozzle is made of conductive ceramics. By flowing an induced current, the nozzle itself generates heat easily and quickly, and the temperature of the molten steel passing through the nozzle can be prevented from decreasing on the nozzle inner wall and maintained at a high temperature, thereby preventing nozzle blockage due to alumina precipitation. This makes it possible to prevent this, and greatly contributes to improving productivity in continuous casting of jl-containing steel.

【図面の簡単な説明】 第1図は本発明に係る連続鋳造用浸漬ノズルの一実施例
の構造を説明する断面図、第2図は本発明に係る連続鋳
造用浸漬ノズルを適用する連続鋳造設備の概略説明図、
第3図(a)(b)はともに従来の連続鋳造用浸漬ノズ
ルの形状を説明する断面図である。 1・・・連a鋳造用浸漬ノズル、 2・・・インナーノズル(導電性セラミックス〕、3・
・・アウターノズル、 10・・・タンディツシュ、 11・・・溶鋼、 12・・・モールド、 14・・・高周波誘導コイル。 特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊
[Brief Description of the Drawings] Fig. 1 is a sectional view illustrating the structure of an embodiment of the immersion nozzle for continuous casting according to the present invention, and Fig. 2 is a continuous casting to which the immersion nozzle for continuous casting according to the present invention is applied. Schematic diagram of equipment;
FIGS. 3(a) and 3(b) are both cross-sectional views illustrating the shape of a conventional continuous casting immersion nozzle. 1... Immersion nozzle for continuous a casting, 2... Inner nozzle (conductive ceramics), 3...
...Outer nozzle, 10...Tandish, 11... Molten steel, 12...Mold, 14...High frequency induction coil. Patent applicant: Daido Steel Co., Ltd. Representative patent attorney: Yutaka Oshio

Claims (1)

【特許請求の範囲】[Claims] (1)鋼の連続鋳造に際してタンディッシュ内の溶鋼を
モールド内に注ぎ込む浸漬ノズルにおいて、該ノズルの
全体あるいはその一部を導電性セラミックスで形成した
ことを特徴とする連続鋳造用浸漬ノズル。
(1) An immersed nozzle for continuous casting that pours molten steel in a tundish into a mold during continuous casting of steel, characterized in that the entire or part of the nozzle is made of conductive ceramics.
JP2776088A 1988-02-10 1988-02-10 Submerged nozzle for continuous casting Pending JPH01205858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2776088A JPH01205858A (en) 1988-02-10 1988-02-10 Submerged nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2776088A JPH01205858A (en) 1988-02-10 1988-02-10 Submerged nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JPH01205858A true JPH01205858A (en) 1989-08-18

Family

ID=12229965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2776088A Pending JPH01205858A (en) 1988-02-10 1988-02-10 Submerged nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH01205858A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033829A1 (en) * 1995-04-28 1996-10-31 Didier-Werke Ag Process for the inductive heating of a fireproof moulding and a suitable moulding therefor
WO2005018908A3 (en) * 2003-08-16 2005-06-16 Krauss Maffei Kunststofftech Heatable tool
JP2007185682A (en) * 2006-01-12 2007-07-26 Nippon Steel Corp Method and device for preheating immersing nozzle for continuous casting
JP2007326111A (en) * 2006-06-06 2007-12-20 Nippon Steel Corp Immersion nozzle and continuous casting method
US7575135B2 (en) 2002-01-28 2009-08-18 Jfe Steel Corporation Immersion nozzle for continuous casting of steel and method of continuous casting method of steel
CN102264489A (en) * 2008-12-26 2011-11-30 新日本制铁株式会社 Continuous casting method and nozzle heating device
CN107520437A (en) * 2016-06-21 2017-12-29 宝山钢铁股份有限公司 A kind of temperature compensation means and its method of ladle long nozzle low overheat
CN109759576A (en) * 2019-03-19 2019-05-17 北京科技大学 It is a kind of for heating the device and its dynamic control method of molten steel in submersed nozzle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033829A1 (en) * 1995-04-28 1996-10-31 Didier-Werke Ag Process for the inductive heating of a fireproof moulding and a suitable moulding therefor
US7575135B2 (en) 2002-01-28 2009-08-18 Jfe Steel Corporation Immersion nozzle for continuous casting of steel and method of continuous casting method of steel
WO2005018908A3 (en) * 2003-08-16 2005-06-16 Krauss Maffei Kunststofftech Heatable tool
JP2007185682A (en) * 2006-01-12 2007-07-26 Nippon Steel Corp Method and device for preheating immersing nozzle for continuous casting
JP4653664B2 (en) * 2006-01-12 2011-03-16 新日本製鐵株式会社 Preheating method and apparatus for immersion nozzle for continuous casting
JP2007326111A (en) * 2006-06-06 2007-12-20 Nippon Steel Corp Immersion nozzle and continuous casting method
JP4734180B2 (en) * 2006-06-06 2011-07-27 新日本製鐵株式会社 Continuous casting method
CN102264489A (en) * 2008-12-26 2011-11-30 新日本制铁株式会社 Continuous casting method and nozzle heating device
CN107520437A (en) * 2016-06-21 2017-12-29 宝山钢铁股份有限公司 A kind of temperature compensation means and its method of ladle long nozzle low overheat
CN109759576A (en) * 2019-03-19 2019-05-17 北京科技大学 It is a kind of for heating the device and its dynamic control method of molten steel in submersed nozzle

Similar Documents

Publication Publication Date Title
JPH01205858A (en) Submerged nozzle for continuous casting
US4583721A (en) Molten metal discharging device
JP4734201B2 (en) Continuous casting method
JP2002336942A (en) Immersion nozzle for continuous casting and continuous casting method
US4986517A (en) Apparatus for pouring molten metals
US5134629A (en) Inductor loop coating
JPH071094A (en) Immersion nozzle
EP2830792B1 (en) Continuous casting process of metal
JPS59104253A (en) Spout for charger of twin belt caster
JPH02502707A (en) A method for introducing gas into the spout opening of a vessel containing molten metal, in particular molten steel, and a spout sleeve for carrying out this method.
JP4017784B2 (en) Continuous casting nozzle
JPH03138052A (en) Tundish with heating device
JP6837179B1 (en) Tandish nozzle for continuous casting of steel
JP2536601B2 (en) Continuous melting pouring furnace
JPH0318979B2 (en)
JP2020179412A (en) Induction heater for immersion nozzle and method of pre-heating immersion nozzle
JPH08257708A (en) Method for reusing tundish in hot-state
JP2004050288A (en) Nozzle for continuous casting
KR200271048Y1 (en) Device for insulating submerged nozzle of steelmaking tundish
JPH0760418A (en) Immersion nozzle for continuous casting
JPH0671392A (en) Pouring nozzle for continuously casting wide thin cast slab
JPS617052A (en) Pouring device for adjusting temperature of molten steel in continuous casting installation
JPS63256249A (en) Submerged nozzle for continuous casting
JPH02263545A (en) Device for heating molten metal in tundish
JPS63303665A (en) Submerged nozzle for continuous casting