JPH01205534A - Plasma treatment apparatus - Google Patents

Plasma treatment apparatus

Info

Publication number
JPH01205534A
JPH01205534A JP3154688A JP3154688A JPH01205534A JP H01205534 A JPH01205534 A JP H01205534A JP 3154688 A JP3154688 A JP 3154688A JP 3154688 A JP3154688 A JP 3154688A JP H01205534 A JPH01205534 A JP H01205534A
Authority
JP
Japan
Prior art keywords
plasma
chamber
magnetic field
magnetic
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3154688A
Other languages
Japanese (ja)
Other versions
JP2668915B2 (en
Inventor
Morie Hayakawa
早川 盛衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63031546A priority Critical patent/JP2668915B2/en
Publication of JPH01205534A publication Critical patent/JPH01205534A/en
Application granted granted Critical
Publication of JP2668915B2 publication Critical patent/JP2668915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a film uniformly on a specimen by a method wherein a magnetic-field correction chamber is installed between a plasma chamber and a specimen chamber and a magnetic circuit for magnetic-field correction use is installed around the magnetic-field correction chamber in order to distribute a line of magnetic force uniformly on the specimen. CONSTITUTION:A plasma is generated inside a plasma chamber 1 by the operation of an ordinary ECR plasma CVD method; this plasma is extracted by a divergent magnetic field and is introduced into a specimen 5. During this process, a magnetic-field correction chamber 7 is installed between the plasma chamber 1 and a specimen chamber 4 to be used to house the specimen 5. A magnetic circuit 8 for magnetic-field correction use which makes the divergent magnetic field generated by a magnetic circuit for plasma generation use around the plasma chamber 1 parallel near the specimen 5 is installed around the correction chamber 7. Then, the divergent magnetic field near the specimen 5 is corrected; the divergent magnetic field is made locally parallel also on the specimen 5. A line of magnetic force is distributed uniformly on the specimen 5; the plasma density is made uniform. By this setup, a film can be formed uniformly on the specimen 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プラズマ処理装置に関し、特に半導体集積
回路等における層間絶縁膜や保護膜の成膜に使用される
E CR(Electron CyclotronRe
sonance :電子サイクロトロン共鳴)プラズマ
CVD装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing apparatus, and in particular to an ECR (Electron Cyclotron Re) used for forming interlayer insulating films and protective films in semiconductor integrated circuits, etc.
sonance (electron cyclotron resonance) plasma CVD apparatus.

〔従来の技術〕[Conventional technology]

一般に、半導体集積回路の絶縁膜等を成膜する方法とし
ては、従来よりプラズマCVD法が採用されているが、
最近、このプラズマCVD法の一種として、ECRプラ
ズマCVD法が開発され、既に実用に供されている。
In general, the plasma CVD method has traditionally been adopted as a method for forming insulating films etc. for semiconductor integrated circuits.
Recently, an ECR plasma CVD method has been developed as a type of this plasma CVD method, and is already in practical use.

このECRプラズマCVD法を用いた成膜装置(以下、
ECRプラズマCVD装置と記す)を第5図に示す。図
において、1はプラズマ室であり、このプラズマ室1は
導波管2を介して導入されるマイクロ波(周波数2. 
45 GHz)に対して空洞共振器の構造をなしている
。そしてプラズマ室1の周囲には磁気回路としてのマグ
ネット3が配設され、これにより前記プラズマ室1内に
875ガうスの磁場を形成するとともに、図中下方に発
散する発散磁界を形成するようにしている。従って、プ
ラズマ室1内にマイクロ波及びプラズマ発生用のガスが
導入され、マグネ・ノl−3に通電されると、該プラズ
マ室1内には電子ザイクロトロン共鳴による放電が起こ
り、高密度のプラズマが発生ずるとともに、このプラズ
マは前記発散磁界の磁力線Mに沿って、プラズマ室1の
下方に設けられた反応室4内に引き出される。この反応
室4内には反応ガスが導入されており、前記プラズマと
の反応により形成された反応物質が、この反応室4内に
配置された基板5上に堆積し、膜形成が行われる。
A film forming apparatus using this ECR plasma CVD method (hereinafter referred to as
An ECR plasma CVD apparatus) is shown in FIG. In the figure, 1 is a plasma chamber, and this plasma chamber 1 is equipped with microwaves (frequency 2...
45 GHz), it has a cavity resonator structure. A magnet 3 as a magnetic circuit is disposed around the plasma chamber 1, thereby forming a magnetic field of 875 Gauss within the plasma chamber 1 and a diverging magnetic field that diverges downward in the figure. I have to. Therefore, when microwaves and plasma generation gas are introduced into the plasma chamber 1 and electricity is applied to the Magne-No. As plasma is generated, this plasma is drawn into the reaction chamber 4 provided below the plasma chamber 1 along the lines of magnetic force M of the divergent magnetic field. A reaction gas is introduced into this reaction chamber 4, and a reaction substance formed by reaction with the plasma is deposited on a substrate 5 disposed within this reaction chamber 4 to form a film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなECRプラズマCVD法は、低温で成膜でき
ること及び成膜速度が高速であること等の利点を有する
ものである。しかるに、基板5上での磁力線分布密度に
着目すると、前記第5図から明らかなように、基板中央
部が最も高く、基板周辺部は中央から離れるに従って低
くなる。従って前記磁力線に沿って引き出されるプラズ
マの密度についても同様で、基板中央部が高く、周辺部
が低くなり、これにより基板表面に形成される膜厚が不
均一になってしまうという問題があった。
Such an ECR plasma CVD method has advantages such as being able to form a film at a low temperature and a high film forming rate. However, when paying attention to the magnetic field line distribution density on the substrate 5, as is clear from FIG. 5, the density is highest at the center of the substrate, and becomes lower at the periphery of the substrate as it moves away from the center. Therefore, the density of the plasma drawn along the magnetic field lines is also high, and the density is high at the center of the substrate and low at the periphery, which causes the problem that the thickness of the film formed on the surface of the substrate becomes non-uniform. .

この問題は特に基板が大面積になると顕著である。This problem is particularly noticeable when the substrate has a large area.

この発明は、かかる点に鑑みてなされたもので、基板上
に形成される膜の膜厚分布の均一性を向上することので
きるプラズマ処理装置を得るこ七を目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a plasma processing apparatus that can improve the uniformity of the film thickness distribution of a film formed on a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るプラズマ処理装置は、E CRプラズマ
CVD装置において、プラズマ室と試料を収容する試料
室との間に磁場補正室を設けるとともに、この磁場補正
室の周囲に、前記プラズマ室1内のプラズマ発生用の磁
気回路により形成された発散磁界を前記試料近傍で平行
化するための磁場補正用磁気回路を設けたものである。
The plasma processing apparatus according to the present invention is an ECR plasma CVD apparatus in which a magnetic field correction chamber is provided between a plasma chamber and a sample chamber that accommodates a sample, and a magnetic field correction chamber is provided around this magnetic field correction chamber. A magnetic field correction magnetic circuit is provided to parallelize the divergent magnetic field formed by the plasma generation magnetic circuit near the sample.

〔作用〕[Effect]

この発明においては、通常のECRプラズマCVD法の
操作により、プラズマ室内にプラズマを発生させ、これ
らを発散磁界により引き出して試料室内に導入し、プラ
ズマ流に沿って反応物質を試料室に収容された基板等の
試料上に到達させる。
In this invention, plasma is generated in a plasma chamber by the operation of the normal ECR plasma CVD method, and the plasma is extracted by a divergent magnetic field and introduced into the sample chamber, and the reactant is accommodated in the sample chamber along the plasma flow. reach onto a sample such as a substrate.

この際、前記プラズマ室と試料室との間に、磁場補正室
及び磁場補正用の磁気回路が設けられているから、これ
により試料近傍の発散磁界が補正されて、前記発散磁界
は試料上で局所的に平行化される。従って試料上での磁
力線分布は均一化され、試料に照射されるプラズマ流の
プラズマ密度も均一化されて、該試料上に形成される膜
の膜厚分布は均一なものとなる。
At this time, a magnetic field correction chamber and a magnetic circuit for magnetic field correction are provided between the plasma chamber and the sample chamber, so that the divergent magnetic field near the sample is corrected, and the divergent magnetic field is Locally parallelized. Therefore, the magnetic field line distribution on the sample is made uniform, the plasma density of the plasma stream irradiated onto the sample is also made uniform, and the film thickness distribution of the film formed on the sample becomes uniform.

〔実施例〕〔Example〕

以下、本発明の実施例を図に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるプラズマ処理装置の断
面構成図であり、図において、1は導入されるマイクロ
波に対して空洞共振器となるように構成されたプラズマ
室であり、このプラズマ室1にはプラズマ発生用のガス
を導入するためのガス導入口1aが設けられるとともに
、マイクロ波導入のための導波管2が接続されている。
FIG. 1 is a cross-sectional configuration diagram of a plasma processing apparatus according to an embodiment of the present invention. In the figure, 1 is a plasma chamber configured to act as a cavity resonator for microwaves introduced. The plasma chamber 1 is provided with a gas inlet 1a for introducing gas for plasma generation, and is connected to a waveguide 2 for introducing microwaves.

また、プラズマ室1内には、図示していないが、マイク
ロ波導入窓、マイクロ波引き出し窓等が設けられている
。前記プラズマ室1の周囲にはプラズマ発生用磁気回路
としての電磁コイル3が配設されており、この電磁コイ
ル3による磁界の強度は、マイクロ波による電子サイク
ロトロン共鳴の条件が前記プラズマ室1の内部で成立す
るように決定される。また、前記電磁コイル3によって
下方に向けて発散する発散磁界が形成される。
Furthermore, although not shown in the drawings, the plasma chamber 1 is provided with a microwave introduction window, a microwave extraction window, and the like. An electromagnetic coil 3 as a magnetic circuit for plasma generation is arranged around the plasma chamber 1, and the strength of the magnetic field from the electromagnetic coil 3 is such that the conditions for electron cyclotron resonance due to microwaves are within the plasma chamber 1. It is determined that it holds true. Furthermore, a diverging magnetic field that diverges downward is formed by the electromagnetic coil 3.

前記プラズマ室1の下方には、試料室4が設けられてお
り、この試料室4内には、前記プラズマ室1から引き出
されたプラズマ流が照射される試料としての基板5が設
けられ、該基板5は基板ホルダ6に保持されている。
A sample chamber 4 is provided below the plasma chamber 1. A substrate 5 as a sample is provided within the sample chamber 4 and is irradiated with the plasma flow drawn out from the plasma chamber 1. The substrate 5 is held by a substrate holder 6.

そして、前記プラズマ室1と試料室4との間には、磁場
補正室7が設けられ、この磁場補正室7の周囲には、前
記発散磁界を補正して、基板付近での磁界が局所的に平
行となるように磁場補正マグネット8が設けられている
。磁場補正マグネット8は、第2図及びその底面図であ
る第3図に示すように、リング状の磁芯8aと、その周
縁部に配置された複数の電磁コイル8bと、これらに外
接するように設けられた非磁性体からなる外部カバー8
cとから構成されている。なお、前記磁場補正室7には
、この中に反応ガスを導入するためのガス導入ロアaが
設けられている。
A magnetic field correction chamber 7 is provided between the plasma chamber 1 and the sample chamber 4, and around the magnetic field correction chamber 7, the divergent magnetic field is corrected so that the magnetic field near the substrate is localized. A magnetic field correction magnet 8 is provided so as to be parallel to. As shown in FIG. 2 and FIG. 3, which is a bottom view of the magnetic field correction magnet 8, the magnetic field correction magnet 8 includes a ring-shaped magnetic core 8a, a plurality of electromagnetic coils 8b arranged around the periphery of the ring-shaped magnetic core 8a, and a plurality of electromagnetic coils 8b circumscribed therewith. An external cover 8 made of a non-magnetic material provided on the
It is composed of c. The magnetic field correction chamber 7 is provided with a gas introduction lower a for introducing a reaction gas into the magnetic field correction chamber 7.

次に作用を第1図及び第4図により説明する。Next, the operation will be explained with reference to FIGS. 1 and 4.

まず、プラズマ室1内に例えば02 、 N z等のプ
ラズマ発生用のガスを導入する。そしてプラズマ室1の
周囲に設けられた電磁コイル3に通電して、プラズマ室
1内の磁束密度が875ガウスになるようにする。次に
導波管2を介して周波数2゜45 G)Izのマイクロ
波を前記プラズマ室1に導入する。このような条件によ
り、プラズマ室1内においては、875ガウスの磁場に
より回転する電子の周波数と、マイクロ波の周波数2.
 45 [;llzとが一致し、電子ザイクロトロン共
鳴を起こす。
First, a gas for plasma generation, such as 02 or Nz, is introduced into the plasma chamber 1. Then, the electromagnetic coil 3 provided around the plasma chamber 1 is energized so that the magnetic flux density within the plasma chamber 1 becomes 875 Gauss. Next, microwaves with a frequency of 2°45 G)Iz are introduced into the plasma chamber 1 via the waveguide 2. Under these conditions, in the plasma chamber 1, the frequency of electrons rotated by a magnetic field of 875 Gauss and the frequency of microwaves of 2.
45 [;llz and causes electron cyclotron resonance.

従って電子はマイクロ波から効率よくエネルギを吸収し
、低ガス圧にて高密度のプラズマが発生されることとな
る。そしてこのプラズマ室1内に発生したプラズマは、
前記電磁コイル3によって形成される発散磁界の磁力線
M(第1図参照)に沿って引き出される。
Therefore, electrons efficiently absorb energy from microwaves, and high-density plasma is generated at low gas pressure. The plasma generated in this plasma chamber 1 is
The divergent magnetic field formed by the electromagnetic coil 3 is drawn out along magnetic lines of force M (see FIG. 1).

そして例えばS i Ha等の反応ガスを磁場補正室7
内に導入すると、この磁場補正室7内において、反応ガ
スと前記のようにしてプラズマ室1から引き出されたプ
ラズマとが反応する。この反応により形成された反応物
質は前記発散磁界の方向に加速され、試料室4内の基板
5上に到達してS1酸化膜やSi窒化膜が堆積される。
Then, a reactive gas such as S i Ha is transferred to the magnetic field correction chamber 7.
When introduced into the magnetic field correction chamber 7, the reactive gas and the plasma extracted from the plasma chamber 1 as described above react with each other. The reactant formed by this reaction is accelerated in the direction of the divergent magnetic field, reaches the substrate 5 in the sample chamber 4, and deposits an S1 oxide film and a Si nitride film.

ここで、前記磁場補正室7には、その周囲に配設された
磁場補正マグネット8により、第1図に示すような磁力
線M″の磁界が形成される。このとき、同じ向きの磁力
線同士は反発するから、磁場補正マグネット8の磁力線
M”によって、前記発散磁界の磁力線Mは基板5付近で
局所的に平行化される。従って9、基板5上での磁力線
分布は一様化され、この磁力線に沿って基板5上に照射
されるプラズマ流のプラズマ密度も一様化されて、基板
5上に均一に膜形成が行われる。
Here, in the magnetic field correction chamber 7, a magnetic field of magnetic force lines M'' as shown in FIG. 1 is formed by the magnetic field correction magnets 8 disposed around the magnetic field correction chamber 7. Because of the repulsion, the lines of magnetic force M of the divergent magnetic field are locally parallelized near the substrate 5 by the lines of magnetic force M'' of the magnetic field correction magnet 8. Therefore, the distribution of magnetic lines of force on the substrate 5 is made uniform, and the plasma density of the plasma flow irradiated onto the substrate 5 along these lines of magnetic force is also made uniform, so that a film can be formed uniformly on the substrate 5. be exposed.

このような本実施例では、プラズマ室1と基板5が収容
された試料室4との間に、磁場補正室7及び磁場補正用
のマグネット8を設けたので、プラズマ発生用の電磁コ
イル3によって形成された発散磁界を前記磁場補正用の
マグネット8により補正することができ、基板付近の磁
力線を局所的に平行化して前記基板上に一様化されたプ
ラズマ密度のプラズマ流を照射することが可能となり、
基板」二に、膜厚の均一な薄膜を形成することができる
In this embodiment, since the magnetic field correction chamber 7 and the magnet 8 for magnetic field correction are provided between the plasma chamber 1 and the sample chamber 4 in which the substrate 5 is housed, the electromagnetic coil 3 for plasma generation The formed divergent magnetic field can be corrected by the magnetic field correction magnet 8, and the lines of magnetic force near the substrate can be locally parallelized to irradiate the substrate with a plasma flow having a uniform plasma density. It becomes possible,
A thin film having a uniform thickness can be formed on the substrate.

なお、前記実施例では膜形成のみを行う場合の装置につ
いて説明したが、本発明は膜の食刻を併用したバイアス
ECRプラズマCVD装置に応用できる。即ち、前記実
施例では基板5にバイアス電圧を印加していないが、前
記基板5に高周波電圧を印加すると、これによりプラズ
マ中のイオンが基板5に引き寄せられ、基板表面の食刻
が行われる。
In the above embodiments, an apparatus for forming only a film was described, but the present invention can be applied to a bias ECR plasma CVD apparatus that also performs film etching. That is, in the embodiment described above, no bias voltage is applied to the substrate 5, but when a high frequency voltage is applied to the substrate 5, ions in the plasma are attracted to the substrate 5, and the surface of the substrate is etched.

このようなバイアスECRプラズマCVD装置では、食
刻を行いながら膜形成を行うことができるので、形成さ
れる膜の平坦化を向上させることができ、特に基板表面
に凹凸がある場合は、凸部のエッヂ部は膜の付着よりも
食刻を受ける割合の方が多くなり、相対的に凸部は食刻
、凹部は膜形成が行われることとなる。従って、多層膜
を形成して高集積度のICを製造する場合に有効となる
が、このような装置に本発明を適用することにより、基
板上で−様な指向性を持つプラズマ流が得られることと
なり、特に大面積の基板において膜形成及び食刻の一様
化を図ることができる。
In such a bias ECR plasma CVD apparatus, it is possible to form a film while performing etching, so it is possible to improve the planarization of the formed film. In particular, when the substrate surface has unevenness, it is possible to form a film while performing etching. The edge portions are more likely to be etched than to be coated with a film, and relatively the convex portions are etched and the concave portions are formed with a film. Therefore, it is effective when manufacturing highly integrated ICs by forming multilayer films, but by applying the present invention to such a device, a plasma flow with different directivity can be obtained on the substrate. This makes it possible to achieve uniform film formation and etching, especially on a large-area substrate.

また、前記実施例ではプラズマ室の下方に磁場補正室及
び反応室を設けたが、プラズマ室を最も下方に配置し、
その上方に磁場補正室1反応室を順に設けてもよく、こ
のようにすれば、各室の側壁等に付着した反応物質が基
板上に落下するようなこともなく、より均一で良質の膜
形成を行うことができる。
Further, in the above embodiment, the magnetic field correction chamber and the reaction chamber were provided below the plasma chamber, but the plasma chamber was arranged at the lowest position,
The magnetic field correction chamber 1 reaction chamber may be provided in sequence above it. In this way, the reactants attached to the side walls of each chamber will not fall onto the substrate, resulting in a more uniform and high quality film. Formation can be performed.

〔発明の効果〕〔Effect of the invention〕

以」二のように、この発明によれば、ECRプラズマC
VD装置において、プラズマ室と基板等の試料を収容す
る試料室との間に磁場補正室を設けるとともに、この磁
場補正室の周囲に、前記プラズマ室周囲のプラズマ発生
用の磁気回路により形成された発散磁界を前記基板等の
試料近傍で平行化するための磁場補正用磁気回路を設け
たので、試料上での磁力線分布は均一化され、試料に照
射されるプラズマ流のプラズマ密度も均一化されて、該
試料上に均一に膜形成を行うことができる効果がある。
As shown in Part 2, according to this invention, ECR plasma C
In a VD apparatus, a magnetic field correction chamber is provided between a plasma chamber and a sample chamber that accommodates a sample such as a substrate, and a magnetic field correction chamber is formed around this magnetic field correction chamber by a magnetic circuit for plasma generation around the plasma chamber. Since a magnetic field correction magnetic circuit is provided to parallelize the divergent magnetic field near the sample such as the substrate, the magnetic field line distribution on the sample is made uniform, and the plasma density of the plasma flow irradiated onto the sample is also made uniform. This has the effect of uniformly forming a film on the sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるプラズマ処理装置の断
面構成図、第2図はその磁場補正用のマグネットを示す
一部断面図、第3図は該磁場補正用マグネットの底面図
、第4図は前記実施例によるプラズマ処理装置の動作を
説明するための図、第5図は従来のプラズマ処理装置の
断面構成図である。 1・・・プラズマ室、2・・・導波管、3・・・電磁コ
イル、4・・・試料室、5・・・基板、7・・・磁場補
正室、8・・・磁場補正用マグネット。 特許出願人    株式会社島津製作所区 法
FIG. 1 is a cross-sectional configuration diagram of a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view showing a magnet for magnetic field correction, and FIG. 3 is a bottom view of the magnet for magnetic field correction. FIG. 4 is a diagram for explaining the operation of the plasma processing apparatus according to the embodiment, and FIG. 5 is a cross-sectional configuration diagram of the conventional plasma processing apparatus. 1... Plasma chamber, 2... Waveguide, 3... Electromagnetic coil, 4... Sample chamber, 5... Substrate, 7... Magnetic field correction chamber, 8... For magnetic field correction magnet. Patent applicant: Shimadzu Corporation Kuho

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロ波及びプラズマ発生用のガスが導入され
、その内部にプラズマを発生するためのプラズマ室と、
処理すべき試料が収容された試料室と、前記プラズマ室
の周囲に配設されたプラズマ発生用磁気回路とを備え、
前記プラズマ発生用磁気回路により、前記プラズマ室内
に電子サイクロトロン共鳴条件を満たす磁界を形成する
とともに、前記プラズマ室から試料室内の試料に向けて
発散する磁界を形成するようにしたプラズマ処理装置に
おいて、前記プラズマ室と試料室との間に磁場補正室が
設けられ、この磁場補正室の周囲には、前記発散磁界の
磁力線を前記試料近傍で平行化するための磁場補正用磁
気回路が設けられていることを特徴とするプラズマ処理
装置。
(1) A plasma chamber into which microwaves and plasma generation gas are introduced to generate plasma;
comprising a sample chamber containing a sample to be processed and a plasma generation magnetic circuit disposed around the plasma chamber,
In the plasma processing apparatus, the plasma generation magnetic circuit forms a magnetic field that satisfies electron cyclotron resonance conditions in the plasma chamber, and also forms a magnetic field that diverges from the plasma chamber toward the sample in the sample chamber. A magnetic field correction chamber is provided between the plasma chamber and the sample chamber, and a magnetic field correction magnetic circuit is provided around the magnetic field correction chamber to parallelize the lines of magnetic force of the diverging magnetic field near the sample. A plasma processing apparatus characterized by the following.
JP63031546A 1988-02-12 1988-02-12 Plasma processing equipment Expired - Fee Related JP2668915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031546A JP2668915B2 (en) 1988-02-12 1988-02-12 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031546A JP2668915B2 (en) 1988-02-12 1988-02-12 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH01205534A true JPH01205534A (en) 1989-08-17
JP2668915B2 JP2668915B2 (en) 1997-10-27

Family

ID=12334188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031546A Expired - Fee Related JP2668915B2 (en) 1988-02-12 1988-02-12 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP2668915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223085A (en) * 1990-02-20 1993-06-29 Mitsubishi Denki Kabushiki Kaisha Plasma etching method with enhanced anisotropic property and apparatus thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS6377121A (en) * 1986-09-19 1988-04-07 Mitsubishi Electric Corp Plasma processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS6377121A (en) * 1986-09-19 1988-04-07 Mitsubishi Electric Corp Plasma processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223085A (en) * 1990-02-20 1993-06-29 Mitsubishi Denki Kabushiki Kaisha Plasma etching method with enhanced anisotropic property and apparatus thereof

Also Published As

Publication number Publication date
JP2668915B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
EP0300447B1 (en) Method and apparatus for treating material by using plasma
US5505780A (en) High-density plasma-processing tool with toroidal magnetic field
JP3254069B2 (en) Plasma equipment
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS61213377A (en) Method and apparatus for plasma deposition
US5858162A (en) Plasma processing apparatus
JPH01205534A (en) Plasma treatment apparatus
JPH0722195A (en) High density plasma treating device
JPH0717147Y2 (en) Plasma processing device
JP2634910B2 (en) Microwave plasma processing equipment
JPH0250429A (en) Plasma processing apparatus
JPH0415921A (en) Method and apparatus for activating plasma
JP2750430B2 (en) Plasma control method
JPS6267822A (en) Plasma processor
JPH07118464B2 (en) Plasma deposition device
JPH0680640B2 (en) Plasma equipment
JP2725327B2 (en) Plasma deposition equipment
JPH0530500B2 (en)
JPH02156526A (en) Microwave plasma treating system
JPH01107539A (en) Microwave plasma processor
JPH09153486A (en) Plasma processing method and device
JPH06275564A (en) Microwave plasma etching device
JPS61222533A (en) Plasma treatment apparatus
JP3071450B2 (en) Microwave plasma processing equipment
JPH04107919A (en) Plasma processor provided with magnetic field and absorbing microwave

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees