JPH01205518A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH01205518A
JPH01205518A JP3118488A JP3118488A JPH01205518A JP H01205518 A JPH01205518 A JP H01205518A JP 3118488 A JP3118488 A JP 3118488A JP 3118488 A JP3118488 A JP 3118488A JP H01205518 A JPH01205518 A JP H01205518A
Authority
JP
Japan
Prior art keywords
reaction tube
heated
raw material
gas
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118488A
Other languages
Japanese (ja)
Inventor
Yukio Goto
幸夫 後藤
Yutaka Nagai
豊 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3118488A priority Critical patent/JPH01205518A/en
Publication of JPH01205518A publication Critical patent/JPH01205518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute an epitaxial growth operation having a good crystal interface by a method wherein, after a raw material and a carrier gas have been heated once, they are introduced into a reaction tube and a convection current inside the reaction tube is reduced. CONSTITUTION:While a raw material and a carrier gas are once passed through a heating tube 6, they are heated. A gas temperature during this process is set to a level that an organic metal or a hydrogen compound as the raw material is not pyrolyzed. The heated raw material and carrier gas are introduced into a reaction tube 1; they are pyrolyzed on a wafer 3 which has been heated to 600-800 deg.C; a crystal is grown. By this setup, an epitaxial growth operation having a good crystal interface can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はM O−CV D (Metal Orga
nic −Ohemical ■apour Depo
sition )法における艮好な多層薄膜結晶の成長
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on M O-CV D (Metal Organ
nic-Ochemical ■apour Depo
The present invention relates to a method for growing an elegant multilayer thin film crystal using the 3-layer method.

〔従来の技術〕[Conventional technology]

第4図は従来の縦型MO−OVD装置の模式図で、図に
おいて、(1)は反応管、(2)はサセプタ、(3Hd
:?セブタ(2)上に置かれたウェハ、(4)はサセプ
タ(2)を加熱するための高周波コイル、(5)はガス
導入口である。
Figure 4 is a schematic diagram of a conventional vertical MO-OVD device. In the figure, (1) is a reaction tube, (2) is a susceptor, (3Hd
:? A wafer is placed on a susceptor (2), (4) is a high frequency coil for heating the susceptor (2), and (5) is a gas inlet.

次に動作について説明する。反応材料ガス例えがアルシ
ン(AsH3) 、フォスフイン(PH3) 、 トリ
メチルガリウム((OH3)3Ga) 、 トリメチル
インジウム((OH3)3In)はキャリアガスは例え
ば水素、アルゴンにより希釈されガス導入口(5)より
反応管(1)内に導かれる。反応管(1)内においては
サセプタ(2)は高周波コイル14)の誘導加熱により
高温に加熱され、これにしたがってサセプタ(2)上に
置かれたウエノ・(3)も高温となる。反応管(1)内
に導入された原料ガスは高温ウェハ(3)−ヒで熱分解
反応を起こし結晶が成長する。
Next, the operation will be explained. For example, the reaction material gases are arsine (AsH3), phosphine (PH3), trimethylgallium ((OH3)3Ga), and trimethylindium ((OH3)3In), and the carrier gas is diluted with hydrogen or argon, for example, and is passed through the gas inlet (5). It is guided into the reaction tube (1). In the reaction tube (1), the susceptor (2) is heated to a high temperature by induction heating by the high frequency coil 14), and accordingly, the susceptor (3) placed on the susceptor (2) also becomes high temperature. The raw material gas introduced into the reaction tube (1) causes a thermal decomposition reaction on the high-temperature wafer (3) to grow crystals.

このような成長法に淀いてはウニ/%のみが加熱され反
応管(1)は加熱されない。七のため石英との反応が懸
念されるAlを含んだ材料の成長に適している。
If such a growth method stagnates, only the sea urchin/% is heated and the reaction tube (1) is not heated. 7, it is suitable for the growth of materials containing Al, which are concerned about reactions with quartz.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のMO−CVD法による結晶成長装置はサセプタ6
)みが高温に保持されでいるため、第5図に示すようl
/fiウェハ周辺のガスとカス専入口代近のガスとの間
に大きな温度差かつく。このため反応管内においてウェ
ハに近い程、ガスの密度が減少しこの密度差に起因する
浮力のため対流が発生する。したがって、反応管内へ導
入される原料ガスを変えた場合、その着換がスムーズに
行なわ凡ずエピタキシャル成長層の界面特性が劣化する
The conventional crystal growth apparatus using MO-CVD method is susceptor 6.
) is kept at a high temperature, as shown in Figure 5.
/fi There is a large temperature difference between the gas around the wafer and the gas near the waste inlet. Therefore, the density of the gas decreases as it approaches the wafer in the reaction tube, and convection occurs due to the buoyancy caused by this density difference. Therefore, when the raw material gas introduced into the reaction tube is changed, the change is not carried out smoothly and the interface characteristics of the epitaxially grown layer are inevitably deteriorated.

この発明は上記のような課題を解消するためになされた
もので、反応管内でのガスの対流を減少させW、科ガス
の切換メーをスムーズにし、没好な界面特性を有するエ
ピタキシャル成長層が成長できる成長方法ヲ得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and it reduces the gas convection in the reaction tube, smoothes the switching of the W and S gases, and prevents the growth of an epitaxial layer with unfavorable interface characteristics. The purpose is to obtain a method of growth that is possible.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明にかかるMOCVD結晶成長力法は原料および
キャリアカスな反応管に導入する前に、原料が熱分wf
を起こさない範囲内で加熱して闘いて、その(支)反応
管内に導入するようにしたものである。
In the MOCVD crystal growth method according to this invention, the raw material is heated to
The reactor is heated within a range that does not cause the reaction, and then introduced into the (sub)reaction tube.

〔作用〕[Effect]

とのりも明ておけるMO−CVD結晶成長力法は第21
A!IC示すようvcタセプタ付近のガスとガス導入r
l fl近のガスとの間の盟度差を減少させること倣よ
り、ガスの密度差を減少させて浮力をおさえて対流を減
少させ、また他にガス温度が高くなると分子運動が激[
7くなるため分子同士の衝突による熱伝導が多くなり、
対流による熱伝導の割合が減少し、対流が減少する。
The 21st MO-CVD crystal growth method that can be used in a relaxed manner
A! As shown in the IC, the gas near the vc taceptor and the gas introduction r
In order to reduce the difference in density between the gas near l fl, the difference in gas density is suppressed, suppressing the buoyant force and reducing convection.In addition, when the gas temperature increases, molecular motion increases [
7, so there is more heat conduction due to collisions between molecules,
The rate of heat transfer by convection is reduced and convection is reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)は反応管、(2)は反応管(1)内
に位置するサセプタ、(3)はサセプタ(2)上に設置
されたウェハ、(4)はサセプタ加熱用の高周波コイル
、(5)は原料およびキャリアガス導入口、(6)は加
熱用チューブ、(7)は加熱ヒータである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is a reaction tube, (2) is a susceptor located inside the reaction tube (1), (3) is a wafer placed on the susceptor (2), and (4) is a high-frequency coil for heating the susceptor. , (5) is a raw material and carrier gas inlet, (6) is a heating tube, and (7) is a heater.

次にこの発明の結晶成長力法を第]−図について四1明
する。原料およびキャリアガスばまず加熱チューブ(6
)を通ることにより加熱される。このときのガス温度に
ついては原料である有機金属や水素化合物が熱分Mを起
こさない程度に設定される。
Next, the crystal growth force method of this invention will be explained with reference to Fig. 41. Raw material and carrier gas buzz heating tube (6
). The gas temperature at this time is set to such an extent that the organic metals and hydrogen compounds that are the raw materials do not generate heat M.

例えば、AC()aInPAr+系結晶においては最も
熱分解しやすいと考えられるトリメチルインジウム(T
M I)の熱分解開始温度が約300°Cであるのでこ
の温度以下例えば280’C程度に設定する。第3図は
C0A 、 LAR8ENらが雑誌Journal o
f CryF3tal Growth。
For example, in AC()aInPAr+ crystals, trimethylindium (T
Since the thermal decomposition starting temperature of M I) is about 300°C, the temperature is set below this temperature, for example, about 280'C. Figure 3 is published by C0A, LAR8EN and others in the magazine Journal o.
f CryF3tal Growth.

亙、1.986年247頁から254.頁で発表しだT
 M Iの熱分解効率の温度依存性の曲線図であり、温
度が300°C以下では熱分解が殆んど起こらないこと
がわかる。
Ko, 1.986, pp. 247-254. Published on page T
It is a curve diagram of the temperature dependence of thermal decomposition efficiency of MI, and it can be seen that thermal decomposition hardly occurs at a temperature of 300°C or less.

次いで、加熱された原料およびキャリアガスは反応管f
lj内に導入され、600°Cから800°Cに加熱さ
れたウェハ(3)トで熱分解を起こし、結晶が成長する
Next, the heated raw material and carrier gas are transferred to the reaction tube f
The wafer (3) is introduced into the lj and heated from 600°C to 800°C, causing thermal decomposition and crystal growth.

なお、−H記実施例では縦型反応管の場合について説明
したか、横型反応管やバレル型反応管についても同様の
効果がある。
In addition, although the case of the vertical reaction tube was explained in the embodiment described in -H, the same effect can be obtained also in the case of a horizontal reaction tube or a barrel-type reaction tube.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に」これば、原料およびキャリア
ガスを一旦加熱した後、反応管内に導入し反応管内での
対流を減少させることができるだめ、良好な結晶界面を
有するエビタギシャル成長を行うことができる。
As described above, according to the present invention, the raw material and carrier gas can be heated once and then introduced into the reaction tube to reduce convection within the reaction tube, thereby allowing for the evitital growth to have good crystal interfaces. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による結晶成長方法を示す
模式図、第2図−本と発明におけるウニ・・ト空部のガ
ス温度分布の曲線図、第3図はC,A。 LAR8EN他によるT 1.4 Hの熱分解りIJ率
の温度依存性の曲線図、第4図は従来のMO−OVD装
置を示す模式図、第5図は従来例におけるウェハ上空部
のガス温度分布曲線図である。 図において、(1)は反応管、(2)はツセプタ、(3
)はウェハ、(lI)は高周波コイル、(5)はガス導
入口、(6)は加熱用チューブ、(7)は加熱ヒータで
ある。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a schematic diagram showing a crystal growth method according to an embodiment of the present invention, FIG. 2 is a curve diagram of the gas temperature distribution in the sea urchin cavity according to the present invention and the present invention, and FIG. 3 is a diagram showing C and A. A curve diagram of the temperature dependence of the thermal decomposition IJ rate of T 1.4 H by LAR8EN et al., Figure 4 is a schematic diagram showing a conventional MO-OVD apparatus, and Figure 5 is the gas temperature above the wafer in the conventional example. It is a distribution curve diagram. In the figure, (1) is a reaction tube, (2) is a tsepta, and (3) is a reaction tube.
) is a wafer, (lI) is a high-frequency coil, (5) is a gas inlet, (6) is a heating tube, and (7) is a heater. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)MO−CVD法において、原料およびキャリアガ
スを反応管導入前に原料が熱分解を起こさないかまたは
熱分解を起こしても結晶成長において問題のない程度ま
でに加熱して、その後に反応管内に導入することを特徴
とする結晶成長方法。
(1) In the MO-CVD method, the raw materials and carrier gas are heated before being introduced into the reaction tube to such an extent that the raw materials do not undergo thermal decomposition, or even if thermal decomposition occurs, there is no problem with crystal growth, and then the reaction takes place. A crystal growth method characterized by introducing the crystal into a tube.
JP3118488A 1988-02-12 1988-02-12 Crystal growth method Pending JPH01205518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118488A JPH01205518A (en) 1988-02-12 1988-02-12 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118488A JPH01205518A (en) 1988-02-12 1988-02-12 Crystal growth method

Publications (1)

Publication Number Publication Date
JPH01205518A true JPH01205518A (en) 1989-08-17

Family

ID=12324357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118488A Pending JPH01205518A (en) 1988-02-12 1988-02-12 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH01205518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252248A (en) * 2004-02-05 2005-09-15 Nokodai Tlo Kk Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
JP2010265178A (en) * 2004-02-05 2010-11-25 Nokodai Tlo Kk Vapor growth apparatus for epitaxial layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252248A (en) * 2004-02-05 2005-09-15 Nokodai Tlo Kk Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
JP2010265178A (en) * 2004-02-05 2010-11-25 Nokodai Tlo Kk Vapor growth apparatus for epitaxial layer

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
JPH01205518A (en) Crystal growth method
JPH0754806B2 (en) Method for growing compound semiconductor single crystal film
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS54106081A (en) Growth method in vapor phase
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0697656B2 (en) Vapor phase epitaxial growth method
JPS58223695A (en) Device for vapor-phase epitaxial growth
JPS58140391A (en) Device for vapor deposition
JPS59169123A (en) Epitaxial growth of compound semiconductor
JPS6081092A (en) Vapor growth method for thin film of compound semiconductor
JPS6131393A (en) Vapor phase growth device
JPS58125698A (en) Device for growing crystal
JPH0369879B2 (en)
JPH0559080B2 (en)
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS60113420A (en) Device for manufacturing semiconductor crystal
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPS63228713A (en) Vapor growth method
JPS6163598A (en) Vapor growth process
JPS54139467A (en) Method and apparatus for vapor epitaxial growth
JPS6131394A (en) Vapor phase growth process
JPS61114521A (en) Method of crystal growth of semiconductor
JPH0451520B2 (en)
JPS62197393A (en) Liquid-phase epitaxial growth method