JPH01205077A - Method for depositing thin film by photochemical vapor growth - Google Patents

Method for depositing thin film by photochemical vapor growth

Info

Publication number
JPH01205077A
JPH01205077A JP2813588A JP2813588A JPH01205077A JP H01205077 A JPH01205077 A JP H01205077A JP 2813588 A JP2813588 A JP 2813588A JP 2813588 A JP2813588 A JP 2813588A JP H01205077 A JPH01205077 A JP H01205077A
Authority
JP
Japan
Prior art keywords
gas
thin film
light
reaction vessel
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2813588A
Other languages
Japanese (ja)
Inventor
Atsushi Yamagami
山上 敦士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2813588A priority Critical patent/JPH01205077A/en
Publication of JPH01205077A publication Critical patent/JPH01205077A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To prevent a drop in the surface temp. of a substrate and to improve the quality of a deposited film by heating an anti-clouding gas when the gas is introduced into a reactor having a transparent window to improve the transmission of high energy light. CONSTITUTION:A heated anti-clouding gas is introduced into a reactor 1 having a transparent window 2 from an inlet 5. Gaseous starting materials for forming a thin film are also introduced from an inlet 4. High energy light 3 is then projected through the window 2 to excite the gaseous starting materials and a thin film 11 is deposited on a substrate 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜を堆積する光化学気相成長法(以下、光C
VD法と略称する)に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes a photochemical vapor deposition method (hereinafter referred to as a photochemical vapor deposition method) for depositing a thin film.
(abbreviated as VD method).

[従来の技術] 従来、光CVD法に用いられる光化学気相成長装置(以
下、光CVI)装置と略称する)は、一般に、反応容器
と、該反応容器内に原料ガスを導入する手段と該反応容
器内に光透過窓くもり防止用ガスを導入する手段と、該
ガスに高エネルギー光を照射する手段とを備えており、
光化学反応を利用して該反応容器内に設けられた基体上
に所望の堆積膜を形成するものである。
[Prior Art] Conventionally, a photochemical vapor deposition apparatus (hereinafter referred to as a photoCVI apparatus) used in the photoCVD method generally includes a reaction vessel, a means for introducing a source gas into the reaction vessel, and a means for introducing a source gas into the reaction vessel. It is equipped with a means for introducing a gas for preventing fogging of a light-transmitting window into the reaction container, and a means for irradiating the gas with high-energy light,
A desired deposited film is formed on a substrate provided in the reaction vessel using a photochemical reaction.

すなわち、従来、光CVD法は、代表的な光CVD装置
の原理構成図を第2図として示したように、光透過窓く
もり防止用ガスを吹きつけた光透過窓2を介して反応容
器1内に導入される高エネルギー光3を利用して、当該
容器l内に導入された原料ガスを励起し基体加熱用ヒー
タlOで所望の温度に加熱された基体9上に堆積膜11
を形成するのが一般的である。なお、第2図において、
4は原料ガス導入口、5は光透過窓くもり防止用ガス導
入口、6.7はバルブ、8はガス排気口。
That is, in the conventional photo-CVD method, as shown in FIG. 2, which shows the basic configuration diagram of a typical photo-CVD apparatus, a reaction vessel 1 is passed through a light-transmitting window 2 onto which a gas for preventing fogging of the light-transmitting window is blown. The raw material gas introduced into the container L is excited using the high-energy light 3 introduced into the container L, and the deposited film 11 is deposited on the substrate 9 heated to a desired temperature by the substrate heating heater IO.
It is common to form In addition, in Figure 2,
4 is a raw material gas inlet, 5 is a gas inlet for preventing fogging of the light transmission window, 6.7 is a valve, and 8 is a gas exhaust port.

9は基体を示している。9 indicates the base body.

例えば、ジシランガスを反応容器lに導入し、エキシマ
レーザ−等の高エネルギー光3を照射し、基体9上に水
素化シリコン膜を形成する方法等が知られている。
For example, a method is known in which disilane gas is introduced into a reaction vessel 1, and high-energy light 3 such as an excimer laser is irradiated to form a hydrogenated silicon film on the substrate 9.

しかしながら、上記従来例では基体が加熱されている場
合、窓くもり防止用のガスの温度が基体の温度よりも低
いのが通常である。そのためガスが加熱された基体上の
膜表面に衝突すると、堆積膜表面温度が低下し、基体上
に成長する膜の膜質、すなわち緻密性乃至結晶性等が悪
化するという問題点があった。
However, in the conventional example described above, when the base is heated, the temperature of the gas for preventing window fogging is usually lower than the temperature of the base. Therefore, when the gas collides with the surface of the film on the heated substrate, the surface temperature of the deposited film decreases, causing a problem in that the quality of the film grown on the substrate, ie, the density, crystallinity, etc., deteriorates.

[発明が解決しようとする問題点] 本発明は、以上説151 した従来技術の問題点を解決
し、反応容器に導入する窓くもり防止用ガスを加熱する
ことにより、従来問題となっていた基体表面温度の低下
を減少させ、膜質の悪化を防止する光化学気相成長法に
よる薄膜堆積方法を提供するものである。
[Problems to be Solved by the Invention] The present invention solves the problems of the prior art described above and solves the problems of the conventional substrate by heating the window fog prevention gas introduced into the reaction vessel. The present invention provides a thin film deposition method using photochemical vapor deposition, which reduces the decrease in surface temperature and prevents deterioration of film quality.

[問題点を解決するための手段] 本発明は、光透過窓を有する反応容器内に、当該光透過
窓のくもり防止用ガスを導入し、かつ当該反応容器内に
薄膜形成のための原料ガスを導入し、その後前記光透過
窓を介して高エネルギー光を照射して前記原料ガスを励
起させ、前記反応容器内に設置された基体上に薄11Q
を堆積させる光化学気相r&長法による薄膜堆積方法に
おいて、前記光透過窓のくもり防止用ガスを前記反応容
器内に導入するに際して、占該くもり防止用ガスを加熱
することを特徴とする光化学気相成長法によるドル膜堆
積方法に要旨が存在する。
[Means for Solving the Problems] The present invention introduces a gas for preventing fogging of the light-transmitting window into a reaction vessel having a light-transmitting window, and also introduces a raw material gas for forming a thin film into the reaction vessel. is introduced, and then high-energy light is irradiated through the light transmission window to excite the raw material gas, and a thin 11Q
In the thin film deposition method using the photochemical vapor phase r&long method for depositing a photochemical vapor, the anti-fogging gas is heated when the gas for preventing fogging of the light transmission window is introduced into the reaction vessel. There is a gist in the dollar film deposition method using the phase growth method.

[実施例] 実施例1 以下に実施例を挙げて本発明を具体的に説IIする。[Example] Example 1 The present invention will be specifically explained below by giving examples.

第1図に示される装ごを用いて光CVD法による薄膜を
堆積した。光透過窓くもり防止用ガスを加熱ヒータ12
で加熱して、光透過窓2に吹きつけ、高エネルギー光3
を光透過窓2を介して反応容器1に導入し、基体加熱ヒ
ータ10により所9!の温度に加熱された基体9上に塩
m膜11を形成した。
A thin film was deposited by photo-CVD using the apparatus shown in FIG. Heater 12 heats the gas for preventing fogging of the light transmitting window.
high-energy light 3.
is introduced into the reaction vessel 1 through the light-transmitting window 2, and heated at 9! by the substrate heater 10. A salt m film 11 was formed on the substrate 9 which was heated to a temperature of .

第3図は、第1図の装置を用いて、原料ガスにジシラン
(50secm)、窓くもり防止用ガスにアルゴン(3
00secm)を用い、基体9の温度を200℃、圧力
t”rorr、光照度10m W / c rn’ (
波長185nm)とし、光透過窓くもり防止用ガスを加
熱しない場合と、50〜300℃に加熱した場合とにお
ける堆積したシリコン膜の密度を表わしたグラフである
。第3図より明らかなように、窓くもり防止用ガスの加
熱温度が高くなるに従い、膜の密度は増大し、緻密性は
向上していた。
Figure 3 shows disilane (50 sec) as the raw material gas and argon (3 sec) as the window fog prevention gas using the apparatus shown in Figure 1.
00 sec), the temperature of the substrate 9 was 200°C, the pressure was t"rorr, and the light intensity was 10m W/crn' (
18 is a graph showing the density of the deposited silicon film when the light transmitting window fog prevention gas is not heated and when it is heated to 50 to 300°C. As is clear from FIG. 3, as the heating temperature of the window fog prevention gas increased, the density of the film increased and the compactness improved.

実施例2 第1図の9置を使用し、基体温度を600℃とし、他の
条件は実施例1と同じにして、光透過窓くもり防】I:
、用ガスを加熱しない編合と、50〜400℃に加熱し
た場合とにおける薄膜を堆積した。第4図は堆積したシ
リコン膜の結晶粒径を表わしたグラフである。第4図か
ら明らかなように、窓くもり防止用ガス加熱温度が高く
なるに従い、結晶粒径は大きくなり、結晶性は向上して
いた。また、股の緻密性も良好であった。
Example 2 Using the 9th position shown in Fig. 1, setting the substrate temperature to 600°C, and keeping the other conditions the same as in Example 1, anti-fogging of the light transmission window] I:
, thin films were deposited in the case where the gas was not heated and in the case where the gas was heated to 50 to 400°C. FIG. 4 is a graph showing the crystal grain size of the deposited silicon film. As is clear from FIG. 4, as the window fog prevention gas heating temperature increased, the crystal grain size increased and the crystallinity improved. Moreover, the denseness of the crotch was also good.

なお、末完IJIIにおいては窓くもり防止用ガスの加
熱に加え、反応容器の壁面を加熱すればより効果的であ
る。
In addition, in Seikan IJII, it is more effective to heat the wall surface of the reaction vessel in addition to heating the gas for preventing window fogging.

[発明の効果] 以上説明したように末完IJIによれば堆積膜の膜品質
、すなわち緻密性乃至結晶性を向上させることができる
[Effects of the Invention] As explained above, the final IJI can improve the film quality of the deposited film, that is, the denseness or crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は末完りJの実施例に用いる装置であり、第2図
は従来の光CVD法に用いる装置である。 第3図は実施例1により得られた薄膜のj&密性を示す
グラフであり、第4図は実施例2により得られた薄膜の
結晶性を示すグラフである。 l・・・反応容器、2・・・光透過窓、3・・・高エネ
ルギー光、4・・・原料ガス導入口、5・・・光透過窓
くもり防止用ガス導入口、6.7・・・バルブ、8・・
・ガス排気口、9・・・基体、10・・・基体加熱用ヒ
ータ、11・・・堆積膜、12・・・加熱ヒータ。 結晶粒径I入〕
FIG. 1 shows an apparatus used in the example of the end-of-life process, and FIG. 2 shows an apparatus used in the conventional optical CVD method. FIG. 3 is a graph showing the j&density of the thin film obtained in Example 1, and FIG. 4 is a graph showing the crystallinity of the thin film obtained in Example 2. l... Reaction container, 2... Light transmission window, 3... High energy light, 4... Raw material gas inlet, 5... Gas inlet for preventing fogging of light transmission window, 6.7. ...Valve, 8...
- Gas exhaust port, 9... Substrate, 10... Heater for heating the substrate, 11... Deposited film, 12... Heater. Crystal grain size I included]

Claims (1)

【特許請求の範囲】[Claims] 光透過窓を有する反応容器内に、当該光透過窓のくもり
防止用ガスを導入し、かつ当該反応容器内に薄膜形成の
ための原料ガスを導入し、その後前記光透過窓を介して
高エネルギー光を照射して前記原料ガスを励起させ、前
記反応容器内に設置された基体上に薄膜を堆積させる光
化学気相成長法による薄膜堆積方法において、前記光透
過窓のくもり防止用ガスを前記反応容器内に導入するに
際して、当該くもり防止用ガスを加熱することを特徴と
する光化学気相成長法による薄膜堆積方法。
A gas for preventing fogging of the light-transmitting window is introduced into a reaction vessel having a light-transmitting window, a raw material gas for forming a thin film is introduced into the reaction vessel, and then a high-energy gas is introduced through the light-transmitting window. In a thin film deposition method using photochemical vapor deposition, in which the raw material gas is excited by irradiation with light and a thin film is deposited on a substrate placed in the reaction vessel, the anti-fogging gas in the light transmission window is excited by the reaction vessel. A method for depositing a thin film by photochemical vapor deposition, characterized in that the antifogging gas is heated before being introduced into a container.
JP2813588A 1988-02-09 1988-02-09 Method for depositing thin film by photochemical vapor growth Pending JPH01205077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2813588A JPH01205077A (en) 1988-02-09 1988-02-09 Method for depositing thin film by photochemical vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2813588A JPH01205077A (en) 1988-02-09 1988-02-09 Method for depositing thin film by photochemical vapor growth

Publications (1)

Publication Number Publication Date
JPH01205077A true JPH01205077A (en) 1989-08-17

Family

ID=12240326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2813588A Pending JPH01205077A (en) 1988-02-09 1988-02-09 Method for depositing thin film by photochemical vapor growth

Country Status (1)

Country Link
JP (1) JPH01205077A (en)

Similar Documents

Publication Publication Date Title
JPH01205077A (en) Method for depositing thin film by photochemical vapor growth
JPH01244609A (en) Production of semiconductor thin film
JPS5940525A (en) Growth of film
JPS6149392B2 (en)
JPS59208065A (en) Depositing method of metal by laser
JPS61183921A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JPH0478717B2 (en)
JPS6328865A (en) Hard carbon film manufacturing device
JPS6235512A (en) Manufacture of single crystal thin film of semiconductor
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPS6338430B2 (en)
JPH03120370A (en) Photo-cvd device
JPH0959086A (en) Formation of thin film
JPH02221120A (en) Production of superconducting thin film
JPS61146791A (en) Formation of diamond film or diamond-like carbon film
JPH01172576A (en) Method for heating substrate
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPS61198733A (en) Method of forming thin-film
JPS61117824A (en) Vapor phase reaction container
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH0239521A (en) Photo assisted cvd system
JPH0959762A (en) Formation of zinc oxide thin film
JPS6246515A (en) Thin film forming method
JPS61245522A (en) Method for growth of aluminum film