JPH01201673A - Production of microcapsule toner - Google Patents

Production of microcapsule toner

Info

Publication number
JPH01201673A
JPH01201673A JP63025648A JP2564888A JPH01201673A JP H01201673 A JPH01201673 A JP H01201673A JP 63025648 A JP63025648 A JP 63025648A JP 2564888 A JP2564888 A JP 2564888A JP H01201673 A JPH01201673 A JP H01201673A
Authority
JP
Japan
Prior art keywords
particles
core
toner
inorganic fine
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63025648A
Other languages
Japanese (ja)
Other versions
JP2566152B2 (en
Inventor
Yasuhide Goseki
康秀 後関
Shinji Doi
信治 土井
Satoshi Matsunaga
聡 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63025648A priority Critical patent/JP2566152B2/en
Publication of JPH01201673A publication Critical patent/JPH01201673A/en
Application granted granted Critical
Publication of JP2566152B2 publication Critical patent/JP2566152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To maintain sufficient toner strength and to provide a toner having good durability by previously mixing fine inorg. particles uniformly with a soft core material to fix the same to the surface of the core particles and mixing powder to form a shell material uniformly therewith, then applying impact force to the mixture. CONSTITUTION:This production process has a stage (a) for dispersing and mixing the fine inorg. particles C uniformly with the core particles A contg. a binder material and coloring agent to stick and fix the fine inorg. particles C near to the surface of the core particles A and a stage (b) for dispersing and mixing the powdery shell material B uniformly in and with the core particles A' fixed with the fine inorg. particles C near the surface of the core particles A obtd. in the stage (a) to stick said material near to the surface of the core particles A', then applying the impact force to the particles to fix the powdery shell material B to the surface. The stage (a) and the stage (b) are successively provided. The preservable property of the toner and the durability in the repetitive use thereof are thereby improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子写真法、静電印刷法、磁気記録法などに
用いられるトナーに関し、マイクロカプセル型トナーの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a toner used in electrophotography, electrostatic printing, magnetic recording, etc., and relates to a method for producing a microcapsule type toner.

[従来の技術] 従来、電子写真法としては、米国特許第2,297゜6
91号明細書、特公昭42−23910号公報(米国特
許第3.888.383号明細書)、及び特公昭43−
24748号公報(米国特許第4,071,381号明
細書)等に記載されているが如く多数の方法が知られて
いるが、一般的には光導電性物質を利用し、種々の方法
により感光体上に電気的潜像を形成し、次いで該潜像を
トナーを用いて現像し、必要に応じて紙などの被転写材
にトナー画像を転写した後に種々な方法で定着を行ない
複写物を得る方法が取られる。
[Prior Art] Conventionally, as an electrophotographic method, U.S. Patent No. 2,297゜6
No. 91 specification, Japanese Patent Publication No. 42-23910 (U.S. Patent No. 3.888.383), and Japanese Patent Publication No. 43-1983
Many methods are known, such as those described in U.S. Pat. An electrical latent image is formed on the photoreceptor, then the latent image is developed using toner, and if necessary, the toner image is transferred to a transfer material such as paper and then fixed by various methods to create a copy. A method is taken to obtain

近年の電子写真応用技術の多目的化に伴ない、複写画像
を形成する現像剤に関してもその目的に応じた技術開発
が数多くなされ続けている。トナーは画像を形成する粉
体であるが、画像形成が正確になされる為にはトナー粒
子に数多くのjallを持たせなければならない0例え
ば帯電性、搬送性、定着性、保存性等々である。これら
をすべて満足させる物質は常識的には存在せず、通常ト
ナーは各種材料の混合物として作成される。一般的なト
ナーの製造方法としては、被転写材に定着させるための
結着用樹脂、トナーとしての色味を出させる各種着色剤
、粒子に電荷を付与させるための荷電制御剤、また特開
昭54−42141号公報、特開昭55−18858号
公報に示されるようないわゆる一成分現像法においては
、トナー自身に搬送性等を付与するための各種磁性材料
を用い、他に必要に応じて離型剤、流動性付与剤を乾式
混合し、しかる後ロールミル、エクストルダーなどの汎
用混練装置にて温度をかけながら均一に混練し、冷却し
た後にスピードミル、ジェットミル等の各種粉砕装置に
より微砕化し、DS分級機、MS分級機など各種風力分
級機により分級を行なうことにより、トナーとして必要
な粒径にそろえる。これに必要に応じて流動化剤や滑剤
等々を乾式混合しトナーとする。またいわゆる2成分現
像方法に用いる場合は各種磁性キャリアと混ぜあわせた
後トナーとして画像形成に供するわけである。
BACKGROUND OF THE INVENTION As electrophotographic applied technology has become more versatile in recent years, many technological developments have continued to be made in accordance with the purpose of developing agents for forming copied images. Toner is a powder that forms images, but in order to form images accurately, toner particles must have a large number of jars, such as chargeability, transportability, fixability, storage stability, etc. . Generally speaking, there is no substance that satisfies all of these requirements, and toners are usually prepared as a mixture of various materials. Typical toner manufacturing methods include a binding resin for fixing it on the transfer material, various colorants to give the toner its color, a charge control agent to impart charge to the particles, and In the so-called one-component development method as shown in Japanese Patent Application Laid-open No. 54-42141 and Japanese Patent Application Laid-open No. 55-18858, various magnetic materials are used to impart transportability to the toner itself, and other materials are used as necessary. The mold release agent and fluidity imparting agent are dry-mixed, then kneaded uniformly while applying heat using a general-purpose kneading device such as a roll mill or extruder, and after cooling, finely mixed using various pulverizing devices such as a speed mill or jet mill. By crushing and classifying using various wind classifiers such as DS classifier and MS classifier, the particle size required for toner can be obtained. If necessary, a fluidizing agent, a lubricant, etc. are dry-mixed into the toner. When used in a so-called two-component development method, the toner is mixed with various magnetic carriers and then used for image formation.

しかしながら、このように各機能を持った材料の混合物
として製造されるトナーにおいては、混合物であるため
の問題点が存在する。トナー粒子として見た場合、その
粒子表面には各成分が混在して露出している。すなわち
複写物を作成するいくつかのプロセスにおいて、トナー
としては必須である成分が、あるプロセスにおいてはそ
の成分が粒子表面に多く露出していることが不都合な場
合がある。たとえば磁性体粒子が表面に多く存在すると
トナーの表面抵抗を下げて現像性に問題を生じたり、転
写部材への転写不良の原因となる。
However, toner manufactured as a mixture of materials having various functions as described above has problems because it is a mixture. When viewed as toner particles, each component is exposed in a mixed manner on the particle surface. That is, in some processes for producing copies, it may be inconvenient that a large amount of a component essential to the toner is exposed on the particle surface in a certain process. For example, if a large number of magnetic particles are present on the surface, the surface resistance of the toner will be lowered, causing problems in developability or causing poor transfer to the transfer member.

また定着性に好都合な低分子量成分は、現像スリーブへ
の汚染等を発生させる。特に圧力定着方法に好適な軟質
物質を結着樹脂として用いた場合には、これらの軟質物
質のために感光体表面へのトナーの融着現象を発生した
り、またトナーの保存性やくり返し使用の耐久性が強い
とは言えない。
Furthermore, low molecular weight components that are favorable for fixing properties cause staining of the developing sleeve. In particular, when soft substances suitable for pressure fixing methods are used as a binder resin, these soft substances may cause the toner to adhere to the surface of the photoreceptor, and may affect the toner's shelf life or repeated use. It cannot be said that the durability is strong.

このような問題を解決するための手段として、米国特許
4,0IJO99号明細書、米国特許3,788゜99
4号明細書等に見られる様な、マイクロカプセル型トナ
ーという粒子の形態が考えられている。
As a means to solve such problems, US Pat. No. 4,0IJO99, US Pat.
A particle form called a microcapsule type toner, as seen in the specification of No. 4, etc., has been considered.

これは機能分gl型トナーとも呼称されるものである。This is also called a functional GL type toner.

すなわち定着性や搬送性を有するコアと称される芯材粒
子を、帯電機能を有するより固い材料による外壁で包み
込んだ形態を有するトナーであり、外壁にコア中に含ま
れる磁性体粒子や軟質物質の持つ前述の問題点を取り除
く保護の役割も持たせている。
In other words, it is a toner that has a structure in which a core material particle called a core that has fixing and transport properties is wrapped in an outer wall made of a harder material that has a charging function, and the outer wall contains magnetic particles and soft substances contained in the core. It also has a protective role that eliminates the problems mentioned above.

[発明が解決しようとする問題点] この様なマイクロカプセルトナーに関する提案は数多く
なされている。理論上はいかなる材料の構成も考え得る
し、マイクロカプセルトナーの製造方法としても、スプ
レードライ法、界面重合法、コアセルベーション法、相
分子a法* 1n−situ重合法など様々な方法が知
られている。しかしながら、好ましい機能を持った材料
を用いて前記の様々な方法を利用して、好ましい性能を
持つマイクロカプセルトナーが容易に得られるわけでは
ない、多くの場合外壁形成が不完全、すなわち欠損膜が
生じる問題、物理的2機械的な力で膜がはがれてしまう
問題、製造時にトナー粒子が合一してしまうといったよ
うな問題や製造コストが高くなると言った問題があり、
実用に供されたマイクロカプセルトナーは少ない。
[Problems to be Solved by the Invention] Many proposals regarding such microcapsule toners have been made. Theoretically, any material composition is conceivable, and various methods are known for manufacturing microcapsule toner, including spray drying, interfacial polymerization, coacervation, phase molecule a method*, and 1n-situ polymerization method. It is being However, it is not easy to obtain microcapsule toners with favorable performance by using materials with favorable functions and using the various methods described above; in many cases, the outer wall formation is incomplete, that is, defective films There are problems that occur, such as the film peeling off due to physical and mechanical forces, problems such as toner particles coalescing during manufacturing, and problems such as increased manufacturing costs.
There are few microcapsule toners that have been put to practical use.

近年、乾式によるマイクロカプセルの製造方法の提案が
なされている。これは芯材となる粒子に対し、殻材とな
る粒子を機械的な力でたたき込み、芯材の周囲に外壁を
形成させようと言う方法である。
In recent years, proposals have been made for a dry method for producing microcapsules. This is a method in which the shell material particles are mechanically hammered into the core material particles to form an outer wall around the core material.

マイクロカプセルトナーの多くは、いわゆる圧力定着性
のトナーをその目的としたものである。
Most microcapsule toners are intended to be so-called pressure fixable toners.

圧力定着方法は従来から有るヒートチャンバーや熱ロー
ル定着方法とは異なり、機械的な圧力によりトナー粒子
を被転写材上に付着させる方法で省エネルギーや火災な
どの安全性の面で有利である。さらにマイクロカプセル
トナーとした場合、定着用材料に従来の裸のままの圧力
定着トナーに比べ軟質のものが使用できる為従来よりも
定着圧力を低くできるので定着装置も小さくできるとい
う利点がある。マイクロカプセルトナーに用いる芯材は
通常、熱ロール定着トナーや非カプセルの圧力定着トナ
ーに比べかなり軟質の材料を用いる。このような軟質材
料の芯材に対し殻材となる粒子を機械的な力で打ち込ん
だ場合には芯材が軟質であるがために膜材料粒子が芯材
に埋め込まれてしまい、好適なマイクロカプセルトナー
を得ることは難かしい、また芯材が軟質であるがために
製造装置に融着現象が発生し易い、また例え機械的な力
をコントロールして殻材粒子により芯材の周囲を被覆で
きたとしても、この様なトナー粒子はトナーとしての強
度に乏しい、すなわち複写用のトナーとして用いた場合
現像装置内での攪拌等の機械的、物理的な力により殻材
の埋め込みが進行したり芯材成分のはみ出しが起こり芯
材成分がトナー表面に露出してまうことにより流動性が
低下したり、ブロッキング物を発生したりしてしまう。
The pressure fixing method differs from the conventional heat chamber and hot roll fixing methods in that the toner particles are attached to the transfer material using mechanical pressure, and is advantageous in terms of energy saving and fire safety. Furthermore, when a microcapsule toner is used, a softer material can be used for the fixing material compared to the conventional bare pressure fixing toner, so the fixing pressure can be lower than before, which has the advantage that the fixing device can also be made smaller. The core material used in microcapsule toners is typically a much softer material than in hot roll fixing toners or non-capsule pressure fixing toners. If shell material particles are driven into the core material of such a soft material by mechanical force, the membrane material particles will be embedded in the core material because the core material is soft, and a suitable micro It is difficult to obtain capsule toner, and because the core material is soft, fusion phenomenon easily occurs in the manufacturing equipment.Also, even if mechanical force is controlled, the core material is coated with shell particles. Even if it were possible, such toner particles lack the strength as a toner. That is, when used as a toner for copying, embedding of the shell material progresses due to mechanical and physical forces such as agitation within the developing device. Otherwise, the core material component protrudes and is exposed on the toner surface, resulting in a decrease in fluidity and generation of blocking substances.

同時に現像特性も悪化する。また一般的にトナーは流動
性付与剤、滑剤等を外添混合して用いるが、これらの外
添剤がトナー中に埋め込まれてしまい、トナー特性が次
第に変化してしまう。またマイクロカプセルトナーと°
しての強度が不足しているために、トナークリーニング
装置部分において感光ドラムへ融着させてしまうことに
なる。
At the same time, development characteristics also deteriorate. Further, generally, toner is used with external additives such as a fluidity imparting agent and a lubricant mixed therein, but these external additives are embedded in the toner and the toner characteristics gradually change. Also with microcapsule toner
Since the toner is insufficient in strength, it ends up being fused to the photosensitive drum in the toner cleaning device.

[発明の目的] 本発明の目的は、上述の如きマイクロカプセルトナーに
ありがちな諸欠点を解決したマイクロカプセルトナーの
製造方法を提供する事であり、さらに詳細に述べれば以
下の通りである。
[Object of the Invention] An object of the present invention is to provide a method for producing a microcapsule toner that solves the above-mentioned drawbacks that are common to microcapsule toners, and will be described in more detail as follows.

■乾式によるカプセル化方法により得られるマイクロカ
プセルトナーにおいて、十分なトナー強度を保持できる
耐久性の良好なマイクロカプセルトナーの製造方法の提
供。
■Providing a method for producing a microcapsule toner with good durability that can maintain sufficient toner strength in a microcapsule toner obtained by a dry encapsulation method.

■現像部やクリーニング部などにおいて、不必要な粒子
変形や、膜の欠損による芯材の露出を防止したマイクロ
カプセルトナーの製造方法の提供。
■Providing a method for producing microcapsule toner that prevents unnecessary particle deformation and exposure of the core material due to film defects in the developing section, cleaning section, etc.

■トナー製造時における粒子同志の合一を防止したマイ
クロカプセルトナーの製造方法の提供。
■Providing a method for producing microcapsule toner that prevents coalescence of particles during toner production.

■現像シリンダーや感光ドラム、キャリア等に融着や汚
染の発生しないマイクロカプセルトナーの製造方法の提
供。
■Providing a method for producing microcapsule toner that does not cause fusion or contamination of developing cylinders, photosensitive drums, carriers, etc.

■マイクロカプセルトナー製造装置に対するトナーの融
着を防止したマイクロカプセルトナーの製造方法の提供
■Providing a method for manufacturing microcapsule toner that prevents toner from adhering to a microcapsule toner manufacturing device.

■製造コストの安価なマイクロカプセルトナーの製造方
法の提供。
■Providing a method for manufacturing microcapsule toner with low manufacturing cost.

[問題点を解決するための手段及び作用]前記目的を達
成するための本発明のマイクロカプセルトナーの製造方
法とは 少なくとも結着材料と着色剤を含有する芯粒子(A)に
対し、無機質微粒子(C)を均一に分散混合して芯粒子
(A)の表面近傍に無機質微粒子(C)を付着させ、固
定する工程(a)と、 工程(a)で得られた、芯粒子(A)の表面近傍に無機
質微粒子(C)を固定させた芯粒子(A′)に対し、粉
末状の殻材(B)を均一に分散混合して芯粒子(A′)
の表面近傍に付着せしめた後に、該粒子に衝撃力を与え
て、粉末状の殻材(B)を表面に固定させることにより
芯粒子(A′)を被覆する工程(b)を有し、 工程(a)と工程(b)を順次設けることを特徴とする
マイクロカプセルトナーの製造方法であり、 工程(a)において無機質微粒子(C)を芯粒子(A)
の表面近傍に固定させる際に、無機質微粒子(C)を芯
粒子(A)に均一に分散混合し、芯粒子(A)の表面近
傍に無機質微粒子(C)を付着させた後に、該粒子に衝
撃力を与えて、無機質微粒子(C)を芯粒子(A)の表
面近傍に固定させた後に工程(b)を設けても良く、 本発明においては 工程(a)において、芯粒子(A)に対し無機質微粒子
(C)を均一に分散混合して表面近傍に付着せしめる処
理 及び、工程(b)において芯粒子(A′)に対し、粉末
状の殻材(B)を均一に分散混合して表面近傍に付着せ
しめる処理とが 乾式混合によってなされることが好ましい。
[Means and effects for solving the problems] The method for producing a microcapsule toner of the present invention to achieve the above-mentioned object is that the core particles (A) containing at least a binder material and a colorant are inorganic fine particles. Step (a) of uniformly dispersing and mixing (C) to adhere and fix the inorganic fine particles (C) near the surface of the core particles (A); and the core particles (A) obtained in step (a). A powdered shell material (B) is uniformly dispersed and mixed into a core particle (A') in which inorganic fine particles (C) are fixed near the surface of the core particle (A').
a step (b) of coating the core particles (A′) by applying impact force to the particles to fix the powdered shell material (B) on the surface; A method for producing a microcapsule toner, characterized in that step (a) and step (b) are sequentially provided, and in step (a), inorganic fine particles (C) are combined with core particles (A).
When fixing the inorganic fine particles (C) near the surface of the core particles (A), the inorganic fine particles (C) are uniformly dispersed and mixed into the core particles (A), and after the inorganic fine particles (C) are attached near the surface of the core particles (A), the inorganic fine particles (C) are fixed to the core particles (A). Step (b) may be provided after the inorganic fine particles (C) are fixed near the surface of the core particles (A) by applying an impact force, and in the present invention, in step (a), the core particles (A) In step (b), the powdered shell material (B) is uniformly dispersed and mixed with the core particles (A'). It is preferable that the treatment for adhering near the surface is carried out by dry mixing.

本発明者らの研究によれば、圧力定着方法に好適な結着
材料、特に低い線圧で圧力定着可能な結着材料を用いた
粒子を芯材とし、粉末状の殻材を混合した後に、この粒
子に衝撃力を加え芯材の周囲に殻材を付着させる方法を
とった場合には衝撃力の大きさを設定することが非常に
難かしい0強い衝撃力を加えたものは、殻材で芯材の周
囲が被われた状態にはならず芯材が表面に露出してしま
うために流動性が全く向上せずトナーとしては不適当で
ある。これは殻材粒子の多くが芯材粒子にとり込まれて
しまっている為である。さらには装置本体への融着が発
生し、製造方法としては不適当である0本発明者らは、
衝撃力を様々にコントロールしてできた生成物のうち、
最も流動性に富むものを電子JiI微鏡により観察した
ところ衝りカ付与前とは異なった表面状態の粒子が観察
されたが、°この際にも攪拌装置本体への融着はひどか
った。
According to the research of the present inventors, particles using a binder material suitable for the pressure fixing method, especially a binder material that can be pressure fixed at low linear pressure, are used as the core material, and after mixing powdery shell material, If you apply impact force to these particles and attach the shell material around the core material, it is very difficult to set the magnitude of the impact force. Since the periphery of the core material is not covered with the material and the core material is exposed on the surface, the fluidity is not improved at all and it is unsuitable as a toner. This is because most of the shell material particles are incorporated into the core material particles. Furthermore, fusion to the main body of the device occurs, making it unsuitable as a manufacturing method.
Among the products made by controlling the impact force in various ways,
When the particles with the highest fluidity were observed using an electronic JiI microscope, particles with a different surface condition than before impact were observed, but even in this case, the fusion to the stirring device body was severe.

ここで得られたトナーを複写機の現像装置に入れ115
 ミリメーター7秒の現像スリーブ周速で空回転を行な
ったところ、全てのトナーは15分未満でスリーブ汚染
がひどくなり、現像スリーブ上にコーティングしなくな
った。
Put the toner obtained here into the developing device of the copying machine 115
When idle rotation was performed at a circumferential speed of the developing sleeve of 7 millimeter seconds, all of the toners became severely contaminated with the sleeve in less than 15 minutes and were no longer coated on the developing sleeve.

ここで本発明者らが鋭意検討を行なった結果、あらかじ
め軟質の芯材に対し流動性付与剤などの無機質微粒子を
均一混合して芯粒子の表面に固定させ、しかる後に殻材
となる粉末を均一混合した後に衝撃力を付与する方法を
取ったところ、均一に芯材表面を殻材で被うことのでき
る条件を見い出すことができた。この方法によりカプセ
ル化を行なった際には装置本体へのトナーの融着も飛躍
的に減少した。これは流動性付与剤等の無機微粉末の添
加効果により、この無機質微粗末がコア表面に固定され
るまで、及び固定された後でも流動性が向上し、保たれ
るためである。
As a result of intensive studies, the inventors of the present invention found that inorganic fine particles such as a fluidity imparting agent are uniformly mixed into the soft core material and fixed on the surface of the core particle, and then the powder that will become the shell material is mixed. By applying impact force after uniformly mixing, we were able to find conditions that allowed the surface of the core material to be uniformly covered with the shell material. When encapsulation was performed using this method, the fusion of toner to the main body of the device was also dramatically reduced. This is because, due to the effect of adding the inorganic fine powder such as a fluidity imparting agent, the fluidity is improved and maintained until and even after the inorganic fine powder is fixed on the core surface.

同時に、無機質微粉末が軟質芯表面に固定されることに
より芯粒子の見掛けの強度が上がり、粉末状の殻材を衝
撃力付与により芯粒子表面に固定させる場合にも過度の
打ち込みがなくなり、殻材で良好に芯材表面を被うこと
が可能になるためと考えられる。
At the same time, by fixing the inorganic fine powder to the surface of the soft core, the apparent strength of the core particles increases, and when the powdered shell material is fixed to the surface of the core particles by applying an impact force, there is no need to overdrive the shell material. This is thought to be because it becomes possible to cover the surface of the core material well with the material.

さらに本発明者らが検討を重ねた結果、芯材として用い
る軟質材料の種類により、無機質微粉末を芯材表面に固
定させる工程についても、殻材を固定させる際と同様な
衝撃力の付与がより効果的な場合があることを見出した
。すなわち芯材がより軟質の場合は通常のトナー外添差
みの力で無機質微粉末を芯材に固定可能であるが、より
固めの芯材を用いる場合にはトナー外添時以上の力、す
なわちここで衝撃力と称する力が必要となる。もちろん
軟質芯と称される範囲には通常入りかねる一般のトナー
用樹脂材料を用いた芯材を使う場合も、本発明のカプセ
ルトナーの製造方法を用いることは可能である。
Furthermore, as a result of repeated studies by the present inventors, it was found that depending on the type of soft material used as the core material, it is possible to apply the same impact force during the process of fixing the inorganic fine powder to the surface of the core material as when fixing the shell material. We found that there are cases where it is more effective. In other words, when the core material is softer, it is possible to fix the inorganic fine powder to the core material using the force applied by adding the toner externally, but when using a harder core material, the inorganic fine powder can be fixed to the core material using a force greater than when adding the toner externally. In other words, a force called impact force is required here. Of course, the capsule toner manufacturing method of the present invention can also be used when using a core material made of a general toner resin material that does not normally fall within the range of what is called a soft core.

本発明のマイクロカプセルトナーを製造する装置として
は一般には高速回転する攪拌羽根付きの混合機が用いら
れるが、混合機渣と分散機能を有するものであればこれ
に限定されるものではない0例えば通常機械式の粉砕機
として利用している装置をその衝撃力を低下させること
により好適に利用できる。
The apparatus for producing the microcapsule toner of the present invention is generally a mixer equipped with stirring blades that rotates at high speed, but is not limited to this as long as it has a mixer residue and dispersion function. A device normally used as a mechanical crusher can be suitably used by reducing its impact force.

一般に必要とされる衝撃力は、製造条件のパラメーター
を1つに限定した場合、軟質芯に用いられる材料の針入
度とほぼ比例関係があることは認められるが、使用装置
、装置の設定条件、処理温度などの変動要因が数々ある
ので試行錯誤的な検討により適正条件を求める必要があ
る。
It is recognized that the generally required impact force is approximately proportional to the penetration degree of the material used for the soft core when the manufacturing conditions are limited to one parameter, but the impact force is generally proportional to the penetration of the material used for the soft core, but the Since there are many variable factors such as processing temperature, it is necessary to find the appropriate conditions through trial and error studies.

例えば、より軟らかい材料を芯材として用いる場合には
、工程(a)における無機質微粉末の芯材表面近傍への
固定は、第1図に示される汎用の高速攪拌羽根付の混合
機程度の衝撃力で十分である。またいわゆるワックス類
のような低融点の軟質芯を芯材として用いる場合は処理
温度をコントロールすることが必要である。
For example, when a softer material is used as the core material, the fixation of the inorganic fine powder near the surface of the core material in step (a) can be performed using an impact similar to that of a general-purpose mixer with high-speed stirring blades shown in Figure 1. Power is enough. Further, when a soft core with a low melting point such as so-called wax is used as the core material, it is necessary to control the processing temperature.

このような芯材を用いた場合、処理温度は0〜50℃、
回転羽根先端の周速としては5〜50+s/sec 、
処理時間は1〜60分が好ましい。
When using such a core material, the processing temperature is 0 to 50°C,
The circumferential speed of the rotating blade tip is 5 to 50+s/sec,
The treatment time is preferably 1 to 60 minutes.

またこのような処理を行なう際には攪拌などによる温度
上昇を伴うのが普通であるので、ジャケットにより槽内
の冷却を行なうことが必要である。
Furthermore, since such a treatment usually involves a rise in temperature due to stirring, etc., it is necessary to cool the inside of the tank with a jacket.

工程(a)においてより硬めの材料を芯材として用いる
場合、あるいは工程(b)における芯材に無機質微粒子
を固定させて芯粒子の見掛けの強度を上げた粒子を芯材
として用いる場合にはより衝撃力の強いもの、例えば機
械式粉砕機の俺力を緩和させて使用する方が好ましい、
しかしこの場合でも工程(a)における無機質微粒子を
均一に混合分散させて芯材に付着させる処理や、工程(
b)における粉末状の殻材を無機質微粒子を固定させた
粒子に対し均一に混合分散させて表面に付着させる処理
には第1図に示されるような均一混合を主たる目的とし
た装置で前処理した後、より強い衝撃力を与えるように
したほうが均一なカプセル膜が得られ易い。
When a harder material is used as the core material in step (a), or when particles in which inorganic fine particles are fixed to the core material in step (b) to increase the apparent strength of the core particles are used as the core material. It is preferable to use something with a strong impact force, such as a mechanical crusher, by reducing the impact force.
However, even in this case, the process of uniformly mixing and dispersing the inorganic fine particles in step (a) and attaching them to the core material, and the process (
In b), the process of uniformly mixing and dispersing the powdered shell material with the fixed inorganic fine particles and adhering it to the surface requires pretreatment using a device whose main purpose is uniform mixing as shown in Figure 1. After that, it is easier to obtain a uniform capsule film by applying a stronger impact force.

本方法を実施するための固定化装置−例としてリサイク
ル機能を有し多数の回転ピンを有するピンミル(第4−
1図)や、回転するブレードやハンマー(回転片)とラ
イナー(固定片)との間で衝撃を与え、かつリサイクル
機構を有する粉砕機(第2−1図及び第3−1図)が有
効である。
Immobilization equipment for carrying out the method - for example a pin mill with recycling function and a large number of rotating pins (fourth -
(Fig. 1) or a crusher (Fig. 2-1 and 3-1) that applies an impact between a rotating blade or hammer (rotating piece) and a liner (fixed piece) and has a recycling mechanism are effective. It is.

該装置における回転片の先端の周速は30〜130m/
seaが好ましい、温度は着色粒子(A)と粒子(B)
の物性により異なるがθ°〜80℃、好ましくは20°
〜70℃がよく、又衝撃部の滞留時間は0.2sec〜
12+ecが好ましい、ピンミルの場合は粉体の濃度を
濃くする必要がある。第2−1図又は第3−1図のタイ
プの装置では遠心力により処理される粉体がライナー近
傍に集められるので粉体の濃度のラチチュードはひろい
、ピンミル間もしくはブレードまたはハンマーとライナ
ーとの間の最短間隙は0.5〜5層膳程度が好ましく、
更に好ましくは1mm〜3嘗脂に調整した場合によい結
果が得られる。
The circumferential speed of the tip of the rotating piece in this device is 30 to 130 m/
sea is preferable, the temperature is the same as colored particles (A) and particles (B)
Although it varies depending on the physical properties of θ° to 80°C, preferably 20°
~70℃ is good, and the residence time at the impact part is ~0.2 sec.
12+ec is preferred; in the case of a pin mill, it is necessary to increase the concentration of the powder. In the type of equipment shown in Figure 2-1 or Figure 3-1, the powder to be processed is collected near the liner by centrifugal force, so the latitude of the powder concentration is wide, and the latitude between the pin mills or between the blade or hammer and the liner is wide. The shortest gap between the layers is preferably about 0.5 to 5 layers,
More preferably, good results can be obtained when the thickness is adjusted to 1 mm to 3 mm.

この装置による固定化方法をより詳細に説明すると前出
の方法により前処理された粒子は導入口24から投入さ
れ入口室20を通り、回転する分散羽根14にそって回
転するブレード15とライナー18の間の衝lt部19
を通り、出口室21を通り、リターン路22及びブロワ
−25を通り再び同回路を循環する。固定化処理が終了
後、製品取り出し口23から取り出される。
To explain in more detail the immobilization method using this device, the particles pretreated by the above-mentioned method are introduced from the inlet 24, pass through the inlet chamber 20, and pass through the blade 15 and liner 18 that rotate along the rotating dispersion blade 14. The collision part 19 between
, passes through the outlet chamber 21, passes through the return passage 22 and the blower 25, and circulates through the same circuit again. After the immobilization process is completed, the product is taken out from the product takeout port 23.

ここにおいて、粒子は衝撃部19でブレード15とライ
ナー18の間で衝撃を受は固定化処理がなされるもので
ある。ここにおいて必要により、ジャケット26に冷却
水を流して、雰囲気温度を調整するのは好ましい。
Here, the particles are subjected to impact between the blade 15 and the liner 18 in the impact section 19, and are then immobilized. Here, if necessary, it is preferable to flow cooling water into the jacket 26 to adjust the ambient temperature.

本発明に用いる芯財料としては、好ましい定着性を示す
軟質固体状物質は、すべて使用できる。
As the core material used in the present invention, any soft solid material exhibiting favorable fixing properties can be used.

このような物質としては、ワックス類(密ろう。Such substances include waxes (bees wax).

カルナウバろう、マイクロクリスタリンワックスなど)
、高級脂肪酸(ステアリン酸、パルミチン酸、ラウリン
酸など)、高級脂肪酸金属塩(ステアリン酸アルミニウ
ム、ステアリン酸鉛、ステアリン酸バリウム、ステアリ
ン酸マグネシウム。
carnauba wax, microcrystalline wax, etc.)
, higher fatty acids (stearic acid, palmitic acid, lauric acid, etc.), higher fatty acid metal salts (aluminum stearate, lead stearate, barium stearate, magnesium stearate.

ステアリン酸亜鉛、パルミチン酸亜鉛など)。zinc stearate, zinc palmitate, etc.).

高級脂肪酸誘導体(メチルヒドロキシステアレート、グ
リセロールモノヒドロキシステアレートなど)、ポリオ
レフィン(低分子量ポリエチレン。
Higher fatty acid derivatives (methyl hydroxystearate, glycerol monohydroxystearate, etc.), polyolefins (low molecular weight polyethylene.

低分子量ポリプロピレン、酸化ポリエチレン、ポリイソ
ブチレン、ポリ4弗化エチレンなど)、オレフィン共重
合体(エチレン−アクリル酸共重合体、エチレン−アク
リル酸エステル共重合体、エチレン−メタクリル酸共重
合体、エチレン−メタクリル酸エステル共重合体、エチ
レン−塩化ビニル共重合体、エチレン−酢酸ビニル共重
合体、アイオノマー樹脂など)、スチレン系樹脂(低分
子量ポリスチレン、スチレン−ブタジェン共重合体(モ
ノマー重量比5〜30:135〜70)、スチレン−ア
クリル系化合物共重合体など)、エポキシ樹脂、ポリエ
ステル樹脂(酸価lO以下)、ゴム類(インブチレンゴ
ム、ニトリルゴム、塩化ゴムなど)、ポリビニルピロリ
ドン、ポリアミド、クマロン−インデン樹脂、メチルビ
ニルエーテル−無水マレイン酸共重合体、マレイン酸変
性フェノール樹脂、フェノール変性テルペン樹脂、シリ
コン樹脂などがあり、これらの中から単独または組合せ
て用いることができる。
low molecular weight polypropylene, polyethylene oxide, polyisobutylene, polytetrafluoroethylene, etc.), olefin copolymers (ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- methacrylic acid ester copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, ionomer resin, etc.), styrenic resin (low molecular weight polystyrene, styrene-butadiene copolymer (monomer weight ratio 5 to 30: 135-70), styrene-acrylic compound copolymer, etc.), epoxy resin, polyester resin (acid value 1O or less), rubbers (inbutylene rubber, nitrile rubber, chloride rubber, etc.), polyvinylpyrrolidone, polyamide, coumaron- Examples include indene resin, methyl vinyl ether-maleic anhydride copolymer, maleic acid-modified phenol resin, phenol-modified terpene resin, and silicone resin, and these can be used alone or in combination.

本発明のカプセルトナーの芯材中には一般に、着色剤着
色剤として各種の染、顔料が含まれる。
The core material of the capsule toner of the present invention generally contains various dyes and pigments as colorants.

このような染、顔料としては、例えば、カーボンブラッ
ク、ニグロシン染料、ランプ黒、スーダンブラックSN
、ファースト・エロー〇、ベンジジン・二ロー、ピグメ
ント・二ロー、インドファースト・オレンジ、イルガジ
ン・レッド、バラニトロアニリン・レッド、トルイジン
・レッド、カーミンFB、パーマネント・ボルドーFR
R、ピグメント・オレンジR、リソール・レッド2G、
レーキ・レッドC、ローダミンFB、 ローダミンBレ
ーキ、メチル・バイオレッドBレーキ、フタロシアニン
ブルー、ピグメントブルー、プリリャント・グリーンB
、フタロシアニングリーン、オイルイエローCG、ザポ
ン・ファースト二ロ一〇〇G 、カヤセットY 9B3
 、 カヤセットYG、スミプラスト・二ロー〇G、ザ
ポンファーストオレンジRR,オイル・スカーレット、
スミプラストオレンジG、オラゾニル・ブラウンB、ザ
ボンファーストスカーレットCG、アイゼンスピロン・
レッド・BEH、オイルピンクOPなどが適用できる。
Examples of such dyes and pigments include carbon black, nigrosine dye, lamp black, and sudan black SN.
, First Yellow〇, Benzidine Niro, Pigment Niro, India First Orange, Irgazine Red, Valanitroaniline Red, Toluidine Red, Carmine FB, Permanent Bordeaux FR
R, Pigment Orange R, Resole Red 2G,
Lake Red C, Rhodamine FB, Rhodamine B Lake, Methyl Violet B Lake, Phthalocyanine Blue, Pigment Blue, Prilliant Green B
, Phthalocyanine Green, Oil Yellow CG, Zapon First Niro 100G, Kaya Set Y 9B3
, Kayaset YG, Sumiplast Niro G, Zapon Fast Orange RR, Oil Scarlet,
Sumiplast Orange G, Olazonil Brown B, Pomelo First Scarlet CG, Eisenspiron
Red BEH, oil pink OP, etc. can be applied.

トナーを磁性トナーとして用いるために、芯材中に磁性
粉を含有せしめても良い、このような磁性粉としては、
磁場の中に置かれて磁化される物質が用いられ、鉄、コ
バルト、ニッケルの如き強磁性金属の粉末、もしくはマ
グネタイト、ヘマタイト、フェライトなどの合金や化合
物がある。この磁性粉の含有量はトナー重量に対して1
5〜70重量%が良い。
In order to use the toner as a magnetic toner, magnetic powder may be contained in the core material.
Materials that are magnetized when placed in a magnetic field are used, including powders of ferromagnetic metals such as iron, cobalt, and nickel, or alloys and compounds such as magnetite, hematite, and ferrite. The content of this magnetic powder is 1% per toner weight.
5 to 70% by weight is good.

本発明に用いる無機質微粒子としては、例えば、アルミ
ナ、二酸化チタン、チタン酸バリウム、チタン酸マグネ
シウム、チタン酸カルシウム、チタン酸ストロンチウム
、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソ
ウ土、各種無機酸化物顔料、酸化クロム、酸化セリウム
、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸
化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カ
ルシウム、シリカ微粉体、炭化ケイ素、窒化ケイ素、炭
化ホウ素、炭化タングステン、炭化チタン、などの粉末
乃至粒子が挙げられる。無機質微粒子としては、通常非
磁性のものが用いられるが、磁性粒子も用いられないわ
けではない、これらの無機微粉体は、表面に疎水基を有
するものが好ましく、例えば、シランカップリング剤、
チタンカップリング剤、シリコーンオイル、側鎖にアミ
ンを有するシリコーンオイル等で処理されたものなどが
良い、また無機質微粒子としては、芯材粒子よりも微小
な寸法を有するものが用いられ、より詳しくは、N2吸
着によるBET法による比表面積が、5〜400m2/
gの範囲のものが好ましく用いられる。
Examples of the inorganic fine particles used in the present invention include alumina, titanium dioxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, wollastonite, diatomaceous earth, and various Inorganic oxide pigments, chromium oxide, cerium oxide, red iron oxide, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silica fine powder, silicon carbide, silicon nitride, boron carbide, tungsten carbide, titanium carbide Examples include powders and particles such as . Non-magnetic particles are usually used as the inorganic fine particles, but magnetic particles are also used.These inorganic fine particles preferably have hydrophobic groups on their surfaces, such as silane coupling agents,
Preferably, those treated with a titanium coupling agent, silicone oil, silicone oil having an amine in the side chain, etc. are used.As for the inorganic fine particles, those having minute dimensions than the core material particles are used. , the specific surface area by BET method using N2 adsorption is 5 to 400 m2/
Those within the range of g are preferably used.

殻材としては、公知の樹脂を微粉末化したものが使用可
能である0例えば、次の様なモノマー類から成る樹脂が
ある。スチレン、P−クロルスチレン、P−ジメチルア
ミノ−スチレンなどのスチレン及びその置換体ニアクリ
ル酸メチル、アクリル酸エチル、アクリル酸ブチル、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、メタクリル酸N、N−ジメチルアミンエチルエ
スチルなどのアクリル酸あるいはメタクリル酸のエステ
ル:無水マレイン酸あるいは無水マレイン酸のハーフエ
ステル、ハーフアミドあるいハシエステルイミド、ビニ
ルピリジン、N−ビニルイミダゾールなどの含窒素ビニ
ル;ビニルホルマール。
As the shell material, fine powders of known resins can be used.For example, there are resins made of the following monomers. Styrene, P-chlorostyrene, P-dimethylamino-styrene, and other styrenes and their substituted products Methyl nitacrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, N, N- methacrylate Acrylic acid or methacrylic acid esters such as dimethylamine ethyl ester; maleic anhydride or half esters of maleic anhydride; half amides or hashiester imides; nitrogen-containing vinyls such as vinylpyridine and N-vinylimidazole; vinyl formals.

ビニルブチラールなどのビニルアセタール;塩化ビニル
、アクリロニトリル、酢酸ビニルなどのビニルモノマー
:塩化ビニリデン、フッ化ビニリデンなどのビニリデン
モノマー;エチレン、プロピレンなどのオレフィンモノ
マーである。また、ポリエステル、ポリカーボネート、
ポリスルホネート、ポリアミド、ポリウレタン、ポリウ
レア、エポキシ樹脂、ロジン、変成ロジン、テルペン樹
脂、フェノール樹脂、脂肪族又は脂環族炭化水素樹脂、
芳香族系石油樹脂、メラミン樹脂、ポリフェニレンオキ
サイドのようなポリエーテル樹脂あるいはチオエーテル
樹脂、などの単独重合体。
Vinyl acetals such as vinyl butyral; vinyl monomers such as vinyl chloride, acrylonitrile, and vinyl acetate; vinylidene monomers such as vinylidene chloride and vinylidene fluoride; and olefin monomers such as ethylene and propylene. Also, polyester, polycarbonate,
polysulfonate, polyamide, polyurethane, polyurea, epoxy resin, rosin, modified rosin, terpene resin, phenolic resin, aliphatic or alicyclic hydrocarbon resin,
Homopolymers such as aromatic petroleum resins, melamine resins, polyether resins such as polyphenylene oxide, or thioether resins.

あるいは共重合体、もしくは混合物が使用できる。Alternatively, copolymers or mixtures can be used.

本発明のマイクロカプセルトナーの芯材としては、上記
成分を例えば、溶融混練し、スプレードライヤー等にて
造粒し、あるいは冷却後冷凍粉砕等の方法にて微粉砕し
、更に必要に応じて分級することにより、体積平均粒径
が5〜2昨履の粒子として調整される。
For the core material of the microcapsule toner of the present invention, the above components are melt-kneaded, granulated using a spray dryer, or finely pulverized by a method such as freeze pulverization after cooling, and further classified if necessary. By doing so, the volume average particle size is adjusted to be particles with a volume average particle diameter of 5 to 2 mm.

このようにして調整された芯粒子を本発明に従い、工程
(a)、工程(b)を順次設けて、マイクロカプセルト
ナーが得られる。
According to the present invention, the core particles thus prepared are sequentially subjected to steps (a) and (b) to obtain a microcapsule toner.

また、その芯材表面近傍には、無機質微粒子が存在する
形態となる。ここで無機質微粒子が存在する「芯材の表
面近傍」とは芯材粒子の表面(殻材との界面)ならびに
芯材粒子直径の115程度の深さまでの表層部分のこと
を指し、工程(a)を設けることにより無機質微粒子が
該部分に層を形成し、見掛は上の芯材の強度を上げ、実
質的には外力から芯材を保護する。ここにおいて層とは
無機質微粒子単独の層ではなく芯材と混合した層であり
表面近くは、はぼ無機質微粒子により被われている。
Further, inorganic fine particles are present near the surface of the core material. Here, the term "near the surface of the core material" where inorganic fine particles exist refers to the surface of the core material particle (interface with the shell material) and the surface layer up to a depth of approximately 115 mm in diameter of the core material particle. ), the inorganic fine particles form a layer in the area, which apparently increases the strength of the core material above and substantially protects the core material from external forces. Here, the layer is not a layer of inorganic fine particles alone, but a layer mixed with a core material, and the near surface is covered with the inorganic fine particles.

本発明のマイクロカプセルトナーは場合によってはコロ
イダルシリカのような流動性向上剤、あるいは、滑剤、
研、摩剤、電荷調整剤などを混合した後に現像剤として
用いられる。また2成分現像剤として用いる場合には鉄
粉キャリア等と混合した後に現像剤として使用する。
The microcapsule toner of the present invention may optionally contain a fluidity improver such as colloidal silica, or a lubricant.
It is used as a developer after mixing polishing, abrasive, charge control agents, etc. When used as a two-component developer, it is mixed with an iron powder carrier and the like before being used as a developer.

[実施例] 以下具体例を示し、本発明をさらに詳しく述べるが、本
実施例により本発明が何ら拘束されるものではない。
[Example] The present invention will be described in more detail with reference to specific examples below, but the present invention is not restricted in any way by these Examples.

上記材料を十分に混合した後、三本ロールにて50〜7
0℃の温度にて混練を行なった後、温度を上げたロール
ミルにて溶融させた後に冷却固化した。この混線物をカ
ッターミルにて粗粉砕した後にジェットミルにて微粉砕
を行なった。この微粉砕物を風力分級機にて分級し、芯
粒子を調整した・この芯粒子の粒度分布をコールタ−エ
レクトロニック社製のコールタ−カウンター粒度分布測
定装置にて測定したところ(1)個数平均径(以下DN
 と略す) 9.45終鵬、 (2) 6.3鉢1以下
の微粉(以下6.35↓と略す) 19.7個数%、(
3)体積平均径(以下Dv と略す) 12.67gm
 、 (4) 20.2em以上の粗大粒子(以下20
.2↑と略す)1.8重量%であった。
After thoroughly mixing the above materials, use a three-roll roll to
After kneading at a temperature of 0° C., the mixture was melted in a roll mill at an elevated temperature, and then cooled and solidified. This mixed material was coarsely pulverized using a cutter mill, and then finely pulverized using a jet mill. This finely pulverized material was classified using an air classifier to adjust the core particles.The particle size distribution of the core particles was measured using a Coulter Counter particle size distribution measuring device manufactured by Coulter Electronic Co., Ltd. (1) Number average diameter (hereinafter DN
(hereinafter abbreviated as 6.35↓) 9.45 final peng, (2) 6.3 pot 1 or less fine powder (hereinafter abbreviated as 6.35↓) 19.7 number%, (
3) Volume average diameter (hereinafter abbreviated as Dv) 12.67gm
, (4) Coarse particles of 20.2em or more (hereinafter referred to as 20
.. (abbreviated as 2↑) was 1.8% by weight.

この芯材1kgに対し、疎水性コロイダルシリカ30g
を第1図に示す装置により均一混合し芯材粒子の表面に
付着させた。この時の攪拌羽根先端の周速はおよそ40
m/sec 、槽内温度は30〜40℃、所要時間は1
0分であった。この後にこれらの粒子を第3−1図に示
される装置にて衝撃力を加える処理を行なった。この時
のブレードの周速は40m/sec、第3−3図の53
番に示されるブレードとライナーのクリアランスは3m
腸に設定し、処理温度は40℃はぼ一定にて、10分間
の循環処理を行ない疎水性コロイダルシリカを芯粒子表
面近傍に固定させた。
30g of hydrophobic colloidal silica for 1kg of this core material
were uniformly mixed using the apparatus shown in FIG. 1 and adhered to the surface of the core material particles. The circumferential speed of the stirring blade tip at this time is approximately 40
m/sec, temperature inside the tank is 30-40℃, time required is 1
It was 0 minutes. Thereafter, these particles were subjected to a treatment in which an impact force was applied using the apparatus shown in FIG. 3-1. The circumferential speed of the blade at this time is 40 m/sec, 53 in Figure 3-3.
The clearance between the blade and the liner shown in the number is 3m.
The hydrophobic colloidal silica was fixed in the vicinity of the surface of the core particle by performing a circulation treatment for 10 minutes at a constant treatment temperature of 40°C.

装置への融着はほとんど発生しなかった。この粉体は非
常に流動性に富んだ粉体であった。
Almost no adhesion to the device occurred. This powder was a highly fluid powder.

次にこの芯物質1kgに対し、スチレン−ジメチルアミ
ノエチルメタクリレート共重合体の微粉末を150g、
第1図に示される装置にて先程と同条件で均一混合分散
し、芯粒子表面に付着させた。この粒子を再び第3−1
図の装置にて先程のブレードとライナー間のクリアラン
スを1.5mmに設定してブレード周速55ra/se
c 、槽内温度80℃にて7分間循環処理を行ない、マ
イクロカプセル粒子を得た。この時殻材の微粉末がフリ
ーの状態でやや残存していたため、これを風力分級機に
て分級除去した。この粒子の粒度分布はDs 9.81
x層、6.35↓18.0個数%、D v 12.98
LLll 、 20.2↑ 2.0重量%であった。こ
のマイクロカプセル粒子にアミン変性シリコンオイルで
処理したコロイダルシリカを0.4重量%外添混合して
マイクロカプセルトナーとした。
Next, 150 g of fine powder of styrene-dimethylaminoethyl methacrylate copolymer was added to 1 kg of this core material.
The mixture was uniformly mixed and dispersed using the apparatus shown in FIG. 1 under the same conditions as before, and was adhered to the surface of the core particle. Add this particle again to No. 3-1.
Using the device shown in the figure, the clearance between the blade and liner was set to 1.5 mm, and the blade circumferential speed was 55 ra/se.
c. Circulation treatment was performed for 7 minutes at an internal temperature of 80° C. to obtain microcapsule particles. At this time, some fine powder of shell material remained in a free state, so this was classified and removed using an air classifier. The particle size distribution of this particle is Ds 9.81
x layer, 6.35↓18.0 number%, D v 12.98
LLll, 20.2↑2.0% by weight. A microcapsule toner was prepared by externally adding 0.4% by weight of colloidal silica treated with amine-modified silicone oil to the microcapsule particles.

比較例1 実施例!で用いた芯物質を疎水性コロイダルシリカによ
る処理工程(特許請求の範囲に示される工程(a))を
行なわないで、この芯粒子1に、に対し、実施例1と同
じ殻材微粉末1508を第1図に示す装置にて周速ta
/sec 、槽内温度30〜40℃、にて10分間処理
を行なったところ装置の壁面や羽根に融着物が多くこび
りついていた。
Comparative Example 1 Example! The core material used in Example 1 was treated with the same shell material fine powder 1508 as in Example 1 without being subjected to the treatment step with hydrophobic colloidal silica (step (a) shown in the claims). The circumferential speed ta is measured using the device shown in Fig. 1.
When the treatment was carried out for 10 minutes at a temperature of 30 to 40° C./sec, a large amount of fused material was stuck to the walls and blades of the device.

比較例2 比較例1で、ジャケットに冷水を流し槽内温度を25℃
以下に保ちながら周速を15m/seaにおとし、10
分間処理を行ない均一な分散混合を試みたが殻材の芯材
への付着が十分ではなかった。
Comparative Example 2 In Comparative Example 1, cold water was poured into the jacket and the temperature inside the tank was raised to 25°C.
While keeping the peripheral speed below 15 m/sea,
Attempts were made to achieve uniform dispersion and mixing by processing for several minutes, but the adhesion of the shell material to the core material was not sufficient.

比較例3 比較例1で槽内温度25℃、周速を40m/sec 、
処理時間を3分間にして同様に分散混合を試みたところ
一応の付着粒子が得られたためこの粒子を次に第3−1
図に示される装置にて衝撃力を加える処理を行なった。
Comparative Example 3 In Comparative Example 1, the tank temperature was 25°C, the circumferential speed was 40 m/sec,
When I tried dispersion mixing in the same way with a treatment time of 3 minutes, some adhered particles were obtained, so these particles were then added to No. 3-1.
An impact force was applied using the device shown in the figure.

実施例1と同様の条件で行なったところ、装置内に融着
が発生しモーターが過負荷停止した。取出した粒子は走
査型電顕で見ると殻材が埋め込まれてはいるが均一な表
面ではなかった。
When the test was carried out under the same conditions as in Example 1, fusion occurred in the device and the motor stopped due to overload. When the extracted particles were examined using a scanning electron microscope, it was found that although shell material was embedded, the surface was not uniform.

比較例4 比較例3において周速および処理時間およびクリアラン
スを動かして条件設定を変化させ実験を行なった結果、
周速50m/sec 、クリアランス2.5++v+ 
、処理時間7分の条件が最良であった。
Comparative Example 4 As a result of conducting an experiment in Comparative Example 3 by changing the circumferential speed, processing time, and clearance to change the condition settings,
Circumferential speed 50m/sec, clearance 2.5++v+
, conditions with a treatment time of 7 minutes were the best.

実施例1と比較例4のサンプルを走査型電顕にて表面観
察し、比較すると明らかに実施例1のサンプルのほうが
均一であった。実施例1のサンプルをミクロトームによ
り切断薄片化し、透過型電顕にて観察したところトナー
の芯材と殻材との界面ならびにこれより若干芯材の内側
にシリカ微粉体が集合しているのが確認された。
The surfaces of the samples of Example 1 and Comparative Example 4 were observed using a scanning electron microscope, and the comparison revealed that the sample of Example 1 was more uniform. When the sample of Example 1 was cut into thin sections using a microtome and observed using a transmission electron microscope, it was found that fine silica powder was gathered at the interface between the toner core material and shell material and slightly inside the core material. confirmed.

比較例4のサンプルにもアミノ変性シリコンオイルで処
理したコロイダルシリカ0.4重量%で外添混合を行な
いトナーとした。
The sample of Comparative Example 4 was also externally mixed with 0.4% by weight of colloidal silica treated with amino-modified silicone oil to prepare a toner.

実施例2 上記混合物を100℃にてステンレスポールを詰めたア
トライターにて十分混練し、温度を140℃に上げ、こ
れを二流体ノズルを使用したスプレードライヤーにて造
粒し、微粒化を行なった。これを風力分級機にて分級し
、分級後の粒度分布がDs 9.35μm、8.35↓
 20.3個数%、D y 12.58gm、20.2
↑ L、6重量%の芯粒子を得た。
Example 2 The above mixture was sufficiently kneaded at 100°C using an attritor packed with stainless steel poles, the temperature was raised to 140°C, and the mixture was granulated using a spray dryer using a two-fluid nozzle to atomize the mixture. Ta. This was classified using a wind classifier, and the particle size distribution after classification was Ds 9.35μm, 8.35↓
20.3 number%, D y 12.58gm, 20.2
↑L, 6% by weight core particles were obtained.

この芯材1kgに対し、疎水性コロイダルシリカ40g
を第1図に示す装置を用いて処理を行なった。攪拌羽根
の周速を40w/see 、槽内温度30℃、にて7分
間処理を行なった。この粒子は疎水性コロイダルシリカ
が芯材表面にほぼ固定されていた。この粒子1kgに対
し、スチレン−ジメチルアミノエチルメタクリレート共
重合体の微粉末150gを同じ装置にて均一に混合分散
し、芯粒子表面に付着させた。この粒子を第3−1図の
装置にて、ブレードとライナーのクリアランス1.5m
層に設定し、ブレード周速50膣/sec 、槽内温度
40℃にて7分間循環処理を行ないマイクロカプセル粒
子を得た。これを風力分級機にて分級した後DN9 、
48μm、6.35↓ 18.7個数%、D v 12
.87gm、20.2↑ 1.8重量%の粒子を得、こ
の粒子にアミン変性シリコンオイル処理したコロイダル
シリカを0.4重量%外添混合してマイクロカプセルト
ナーとした。
40g of hydrophobic colloidal silica for 1kg of this core material
The treatment was carried out using the apparatus shown in FIG. The treatment was carried out for 7 minutes at a stirring blade circumferential speed of 40 W/see and a tank internal temperature of 30°C. In these particles, hydrophobic colloidal silica was almost fixed on the surface of the core material. With respect to 1 kg of these particles, 150 g of fine powder of styrene-dimethylaminoethyl methacrylate copolymer was uniformly mixed and dispersed in the same device and adhered to the surface of the core particles. The particles were collected using the equipment shown in Figure 3-1 with a clearance of 1.5m between the blade and the liner.
The microcapsule particles were obtained by setting up a layer and carrying out circulation treatment for 7 minutes at a blade circumferential speed of 50 v/sec and a bath temperature of 40°C. After classifying this with a wind classifier, DN9,
48 μm, 6.35↓ 18.7 number%, D v 12
.. Particles of 87 gm, 20.2↑1.8% by weight were obtained, and 0.4% by weight of colloidal silica treated with amine-modified silicone oil was externally added to the particles to prepare a microcapsule toner.

比較例5 実施例2で用いた芯物質を疎水性コロイダルシリカによ
る処理工程を行なわずに、芯物質1kgに対し殻材の微
粉末150gを加え第1図に示される装置により混合分
散を行なった。比較例3に示される槽内温度25℃、周
速40m/sec 、処理時間を3分間として行なった
ところ槽壁や羽根に融着が発生しはじめていた。また粒
子を観察したところ粒子同志が合一しはじめているもの
があった。これは粒度分布にも表われていた。
Comparative Example 5 The core material used in Example 2 was not subjected to the treatment step with hydrophobic colloidal silica, but 150 g of fine powder of shell material was added to 1 kg of the core material, and mixed and dispersed using the apparatus shown in Figure 1. . Comparative Example 3 was carried out at a tank internal temperature of 25° C., a circumferential speed of 40 m/sec, and a treatment time of 3 minutes, but fusion began to occur on the tank walls and blades. Furthermore, when observing the particles, some particles were beginning to coalesce. This was also reflected in the particle size distribution.

比較例6 比較例5において処理時間を1分に減らし、−応の分散
混合物を得た。これを第3−3図に示す装置にて衝撃力
による処理を行なった。比較例4における条件にて処理
したところ装置内に融着し・粉づまりが起きた。また粒
子はかなりひどく合一したものが多かった。
Comparative Example 6 In Comparative Example 5, the treatment time was reduced to 1 minute to obtain a mixed dispersion mixture. This was subjected to impact force treatment using the apparatus shown in Fig. 3-3. When treated under the conditions of Comparative Example 4, fusion and powder clogging occurred in the device. In addition, many of the particles were quite severely coalesced.

比較例7 比較例6において比較例4で行なった時よりもブロワ−
の引きを強くして循環スピードをやや速くしながら条件
を変えていきクリアランス2.5m+s 、周速40層
/sec 、処理時間5分のものを比較例のサンプルと
した。しかしながら、この際にも粒子の合一や装置への
融着はなくならなかった。また周速をあまり下げた場合
は埋め込まれない粉末が多く、良い結果は得られなかっ
た。比較例7のサンプルも同様にコロイダルシリカを添
加しトナーとした。
Comparative Example 7 In Comparative Example 6, the blower was lower than in Comparative Example 4.
The conditions were changed by tightening the pull and increasing the circulation speed a little, and a sample with a clearance of 2.5 m+s, a circumferential speed of 40 layers/sec, and a processing time of 5 minutes was used as a comparative example. However, even in this case, coalescence of particles and fusion to the device did not disappear. Furthermore, when the circumferential speed was lowered too much, there was a large amount of powder that was not embedded, and good results were not obtained. The sample of Comparative Example 7 was also made into a toner by adding colloidal silica.

トナーとしての評価 (I)実施例1および比較例4のサンプルをキャノン社
製MP−120の改造機(主として感光体をCdSから
opcに変えた)にて、23℃、85%RHの環境下で
初期の画出しを行なった。100枚連続して画出しを行
なったところ実施例1のサンプルは平均の画像濃度が1
.45 (マクベス反射濃度計による)であったのに対
して、比較例4のサンプルは1.03であった。また比
較例4のサンプルは地力ブリがひどかった。
Evaluation as toner (I) Samples of Example 1 and Comparative Example 4 were tested in a modified Canon MP-120 machine (mainly the photoreceptor was changed from CdS to OPC) in an environment of 23°C and 85% RH. I made the initial images. When 100 images were continuously printed, the sample of Example 1 had an average image density of 1.
.. 45 (according to Macbeth reflection densitometer), whereas the sample of Comparative Example 4 had a value of 1.03. In addition, the sample of Comparative Example 4 had severe soil burr.

(II)これら2つのサンプルの耐久性を見るための促
進テストを行なった。方法としては現像器中にトナーを
それぞれ2008ずつ入れ、現像スリーブの周速を30
0mm/secに上げて実際に現像はしない空回転テス
トで行なった。比較例4のサンプルはスター)10分後
から現像スリーブ上に白スジを発生し、30分後にはス
リーブへのコーティングが薄くなってきた。現像器中を
見るとブロッキングしたトナーがたくさんあった。これ
に対して実施例1のトナーは3時間経過した後でも画像
濃度は0.工程度しか低下していなかった。
(II) An accelerated test was conducted to see the durability of these two samples. The method is to put 2,008 liters of toner into each developing device, and set the circumferential speed of the developing sleeve to 30
The speed was increased to 0 mm/sec and an idle rotation test was conducted without actually developing. In the sample of Comparative Example 4, white streaks appeared on the developing sleeve after 10 minutes, and the coating on the sleeve became thinner after 30 minutes. When I looked inside the developer, there was a lot of blocked toner. On the other hand, the image density of the toner of Example 1 was 0.00 even after 3 hours. Only the process level had decreased.

(m)初期画用のサンプルにより両者のベタ部のこすり
定着性を比較したところ、全く変わらなかった。この時
のNP120の定着器の線圧は25kg/cm2であっ
た。
(m) When we compared the rubbing fixability of the solid area between the two using initial image samples, there was no difference at all. At this time, the linear pressure of the fixing device of NP120 was 25 kg/cm2.

(IV)次に実施例2のサンプルと比較例7のサンプル
を同様にキャノン社製pc−ao改造機(実験用に一部
を改造しである)にて同様に初期の両川評価を行なった
が比較例7のサンプルはひどい画像であり画像濃度も0
.3程度がやっとであった。これに対し実施例2のサン
プルは画像濃度の平均は1.41であった。
(IV) Next, the sample of Example 2 and the sample of Comparative Example 7 were similarly subjected to initial Ryokawa evaluation using a modified Canon PC-AO machine (partially modified for experiment purposes). However, the sample of Comparative Example 7 had a terrible image and the image density was 0.
.. It was barely around 3. On the other hand, the sample of Example 2 had an average image density of 1.41.

(V)この実施例2のサンプルと比較例7のサンンプル
をPC−30の現像器を用いてスリーブ周速115■/
secにて(n)と同様の空回転テストを行なったが、
比較例7では15分以内に全くコートしなくなりスリー
ブは芯材で汚染されていた。
(V) The sample of Example 2 and the sample of Comparative Example 7 were processed at a sleeve circumferential speed of 115 cm/cm using a PC-30 developer.
An idle rotation test similar to (n) was conducted at sec.
In Comparative Example 7, there was no coating at all within 15 minutes, and the sleeve was contaminated with the core material.

これに対し実施例2のサンプルは、3時間経過後もコー
ティングはほとんど悪化せず画像濃度もほとんど低下し
ていなかった。
On the other hand, in the sample of Example 2, the coating hardly deteriorated and the image density hardly decreased even after 3 hours.

このように本発明によって製造されたマイクロカプセル
トナーは十分その性能を発揮しうるちのである。
As described above, the microcapsule toner produced according to the present invention can fully exhibit its performance.

すなわち工程(a)の効果により次のような重複する大
きな効果がある。
That is, the effect of step (a) has the following overlapping and large effects.

(イ)製造時に装置本体へ融着しない。(b) Do not fuse to the device body during manufacturing.

(a)殻材粉末の分散が均一になる。(a) Dispersion of shell material powder becomes uniform.

(ハ)芯材が合一しない。(c) The core material does not coalesce.

(ニ)軟質芯を用いても見かけの芯材の強度や硬度がア
ップするので融着性、流動性が向上し、殻材の衝撃力に
よる打ち込みのラチチュードが広がり、芯材中に埋没す
るのを妨げる。
(d) Even if a soft core is used, the apparent strength and hardness of the core material will be increased, improving fusion properties and fluidity, increasing the latitude of driving due to the impact force of the shell material, and preventing embedding in the core material. prevent.

さらに工程(b)により外壁を設けたマイクロカプセル
トナーは (*)耐久性、すなわちカプセルの破壊がSa質機微粒
子働きにより防げ、耐久性が向上する。
Furthermore, the microcapsule toner provided with an outer wall in step (b) has (*) durability, that is, destruction of the capsule can be prevented by the action of the Sa-based fine particles, and durability is improved.

(へ)定着性は低下しない。(f) Fixability does not deteriorate.

(ト)凝集した粒子がない。(g) There are no aggregated particles.

(チ)製造が簡単である。(H) It is easy to manufacture.

などの利点があり性走の良い安価なマイクロカプセルト
ナーを提供することができる。
It is possible to provide an inexpensive microcapsule toner that has the following advantages and good propagation properties.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面中、第1図は工程(a)においてより軟質の芯
粒子(A)に対し無機質微粒子(C)を固定化するため
の装置の一例を概略的に示した図であり、第2−1図は
工程(a)または工程(b)において、芯粒子(A)に
無機質微粒子(C)を、または、芯粒子(A′)に粉末
状の殻材(B)を固定化するための装置の一例を概略的
に示した図であり、第2−2図は第2−1図の装置の部
分拡大図である。第3−1図も同様な固定化するための
装置の別の一例を概略的に示した図であり、第3−2図
及び第3−3図は第3−1図の装置の部分図であり、第
4−1図は同様に固定化するためのピンミル系の装置の
一例を概略的に示した図であり、第4−2図は第4−1
図の装はの部分図を示す。 l・・・ジャケット      2・・・攪拌翼3・・
・モータ         4・・・フタ5・・・ベー
ス        6・・・制W 板7・・・シリンダ
       8・・・フタのロック9・・・シリンダ 10・・・方向コントロールユニット
Among the accompanying drawings, FIG. 1 is a diagram schematically showing an example of an apparatus for immobilizing inorganic fine particles (C) on softer core particles (A) in step (a), and FIG. Figure 1 shows the process for immobilizing inorganic fine particles (C) on core particles (A) or powdered shell material (B) on core particles (A') in step (a) or step (b). 2-2 is a diagram schematically showing an example of the device, and FIG. 2-2 is a partially enlarged view of the device in FIG. 2-1. FIG. 3-1 is also a diagram schematically showing another example of a similar immobilization device, and FIGS. 3-2 and 3-3 are partial views of the device in FIG. 3-1. 4-1 is a diagram schematically showing an example of a pin mill type device for immobilization, and FIG. 4-2 is a diagram schematically showing an example of a pin mill type device for immobilization.
The illustration shows a partial view of the figure. l... Jacket 2... Stirring blade 3...
- Motor 4... Lid 5... Base 6... Control W Plate 7... Cylinder 8... Lid lock 9... Cylinder 10... Direction control unit

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも結着材料と着色剤を含有する芯粒子(
A)に対し、無機質微粒子(C)を均一に分散混合して
芯粒子(A)の表面近傍に無機質微粒子(C)を付着さ
せ、固定する工程(a)と、 工程(a)で得られた、芯粒子(A)の表面近傍に無機
質微粒子(C)を固定された芯粒子(A′)に対し、粉
末状の殻材(B)を均一に分散混合して芯粒子(A′)
の表面近傍に付着せしめた後に、該粒子に衝撃力を与え
て、粉末状の殻材(B)を表面に固定させることにより
芯粒子(A′)を被覆する工程(b)を有し、 工程(a)と工程(b)を順次設けることを特徴とする
マイクロカプセルトナーの製造方法。
(1) Core particles containing at least a binding material and a colorant (
Step (a) of uniformly dispersing and mixing inorganic fine particles (C) in A) to attach and fix the inorganic fine particles (C) near the surface of the core particle (A); In addition, a powdered shell material (B) is uniformly dispersed and mixed into a core particle (A') in which inorganic fine particles (C) are fixed near the surface of the core particle (A') to form a core particle (A').
a step (b) of coating the core particles (A′) by applying impact force to the particles to fix the powdered shell material (B) on the surface; A method for producing a microcapsule toner, comprising sequentially performing step (a) and step (b).
(2)工程(a)において無機質微粒子(C)を芯粒子
(A)の表面近傍に固定させる際に、無機質微粒子(C
)を芯粒子(A)に均一に分散混合し、芯粒子(A)の
表面近傍に無機質微粒子(C)を付着させた後に、該粒
子に衝撃力を与えて、無機質微粒子(C)を芯粒子(A
)の表面近傍に固定させることを特徴とする特許請求の
範囲第1項に記載のマイクロカプセルトナーの製造方法
(2) When fixing the inorganic fine particles (C) near the surface of the core particle (A) in step (a), the inorganic fine particles (C
) are uniformly dispersed and mixed into the core particles (A), and after adhering the inorganic fine particles (C) near the surface of the core particles (A), an impact force is applied to the particles to form the inorganic fine particles (C) into the core particles. Particles (A
2. The method for producing a microcapsule toner according to claim 1, wherein the microcapsule toner is fixed near the surface of the microcapsule toner.
(3)工程(a)において、芯粒子(A)に対し無機質
微粒子(C)を均一に分散混合して表面近傍に付着せし
める処理 および、工程(b)において芯粒子(A′)に対し、粉
末状の殻材(B)を均一に分散混合して表面近傍に付着
せしめる処理とが 乾式混合によってなされることを特徴とする特許請求の
範囲第1項または第2項に記載のマイクロカプセルトナ
ーの製造方法。
(3) In step (a), inorganic fine particles (C) are uniformly dispersed and mixed with the core particles (A) and adhered to the vicinity of the surface, and in step (b), the core particles (A') are The microcapsule toner according to claim 1 or 2, wherein the process of uniformly dispersing and mixing the powdered shell material (B) and adhering it to the vicinity of the surface is performed by dry mixing. manufacturing method.
(4)無機質微粒子(C)が非磁性粒子であることを特
徴とする特許請求の範囲第1項、第2項または第3項に
記載のマイクロカプセルトナーの製造方法。
(4) The method for producing a microcapsule toner according to claim 1, 2, or 3, wherein the inorganic fine particles (C) are nonmagnetic particles.
JP63025648A 1988-02-08 1988-02-08 Manufacturing method of microcapsule toner Expired - Fee Related JP2566152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025648A JP2566152B2 (en) 1988-02-08 1988-02-08 Manufacturing method of microcapsule toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025648A JP2566152B2 (en) 1988-02-08 1988-02-08 Manufacturing method of microcapsule toner

Publications (2)

Publication Number Publication Date
JPH01201673A true JPH01201673A (en) 1989-08-14
JP2566152B2 JP2566152B2 (en) 1996-12-25

Family

ID=12171646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025648A Expired - Fee Related JP2566152B2 (en) 1988-02-08 1988-02-08 Manufacturing method of microcapsule toner

Country Status (1)

Country Link
JP (1) JP2566152B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860746A2 (en) * 1997-02-20 1998-08-26 Sharp Kabushiki Kaisha Electrophotographic toner and method of manufacturing same
JP2013500844A (en) * 2009-07-31 2013-01-10 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Core / shell materials, manufacturing methods, and applications for thermal stimulation of target substances

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603647A (en) * 1983-06-22 1985-01-10 Fuji Xerox Co Ltd Microcapsule toner
JPS6188277A (en) * 1984-10-08 1986-05-06 Canon Inc Developing method
JPS62253176A (en) * 1986-04-26 1987-11-04 Canon Inc Capsule toner for developing electrostatic image, its production and electrophotographic developing method using said toner
JPS6311955A (en) * 1986-07-03 1988-01-19 Seiko Epson Corp One-component toner
JPS6325663A (en) * 1986-07-18 1988-02-03 Toyo Ink Mfg Co Ltd Preparation of microencapsulated toner
JPS6463035A (en) * 1987-09-02 1989-03-09 Soken Kagaku Kk Powdery body having compound structure and production thereof
JPS6462666A (en) * 1987-09-02 1989-03-09 Soken Kagaku Kk Toner and production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603647A (en) * 1983-06-22 1985-01-10 Fuji Xerox Co Ltd Microcapsule toner
JPS6188277A (en) * 1984-10-08 1986-05-06 Canon Inc Developing method
JPS62253176A (en) * 1986-04-26 1987-11-04 Canon Inc Capsule toner for developing electrostatic image, its production and electrophotographic developing method using said toner
JPS6311955A (en) * 1986-07-03 1988-01-19 Seiko Epson Corp One-component toner
JPS6325663A (en) * 1986-07-18 1988-02-03 Toyo Ink Mfg Co Ltd Preparation of microencapsulated toner
JPS6463035A (en) * 1987-09-02 1989-03-09 Soken Kagaku Kk Powdery body having compound structure and production thereof
JPS6462666A (en) * 1987-09-02 1989-03-09 Soken Kagaku Kk Toner and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860746A2 (en) * 1997-02-20 1998-08-26 Sharp Kabushiki Kaisha Electrophotographic toner and method of manufacturing same
EP0860746A3 (en) * 1997-02-20 1999-11-03 Sharp Kabushiki Kaisha Electrophotographic toner and method of manufacturing same
JP2013500844A (en) * 2009-07-31 2013-01-10 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Core / shell materials, manufacturing methods, and applications for thermal stimulation of target substances

Also Published As

Publication number Publication date
JP2566152B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US4740443A (en) Encapsulated electrostatic toner with locally attached non-magnetic inorganic particles
JPH0677161B2 (en) Method for producing toner for developing electrostatic image
KR900009112B1 (en) Toner for electrophotography
JP3360527B2 (en) Thermal fixing toner composition, method for producing the same, and image forming method
EP0545406B1 (en) Process for producing toner
JPH01201673A (en) Production of microcapsule toner
JPS62253176A (en) Capsule toner for developing electrostatic image, its production and electrophotographic developing method using said toner
US4661430A (en) Developing method and insulating nonmagnetic toner therefor
JPH0356969A (en) Manufacture of microencapsulated toner
JPH07120069B2 (en) Method for manufacturing heat fixing toner
JPH023072A (en) Microencapsulated toner and its production
JP2840259B2 (en) Method for producing toner for developing electrostatic images
JP2694544B2 (en) Magnetic capsule toner
JPH026053B2 (en)
JPH0778645B2 (en) Microcapsule toner and manufacturing method thereof
JPH0356970A (en) Manufacture of microencapsulated toner
JPH07113787B2 (en) Method for producing developer for developing electrostatic image
JP2631019B2 (en) Microcapsule toner and method for producing the same
JPH0816793B2 (en) Method for producing microcapsule toner and microcapsule toner particles
JP2604626B2 (en) Method for producing photoconductive toner
JPS6410827B2 (en)
JP3096848B2 (en) Image forming method
JPH0782244B2 (en) Microcapsule toner and manufacturing method thereof
JPH07110592A (en) Toner for developing electrostatic charge image
JPH01224774A (en) Microencapsulated toner and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees