JPH01201231A - Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave - Google Patents

Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave

Info

Publication number
JPH01201231A
JPH01201231A JP63025084A JP2508488A JPH01201231A JP H01201231 A JPH01201231 A JP H01201231A JP 63025084 A JP63025084 A JP 63025084A JP 2508488 A JP2508488 A JP 2508488A JP H01201231 A JPH01201231 A JP H01201231A
Authority
JP
Japan
Prior art keywords
light
blood pressure
pressure
light emitting
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025084A
Other languages
Japanese (ja)
Inventor
Toshio Yamaguchi
利雄 山口
Toshihiko Ono
俊彦 大野
Takayoshi Shiromizu
白水 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gakken Holdings Co Ltd
Original Assignee
Gakken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gakken Co Ltd filed Critical Gakken Co Ltd
Priority to JP63025084A priority Critical patent/JPH01201231A/en
Publication of JPH01201231A publication Critical patent/JPH01201231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the accurate blood pressure measurement by adjusting the light emitting luminance of a light emitting means in accordance with the individual difference of respective factors such as the thickness of a finger and an internal organ before the blood pressure measurement and light-receiving approximately a constant light quantity regardless of the tested person with a photoelectric detecting means. CONSTITUTION:When a pressure to make the light receiving quantity of a photoelectric detecting means 4 into approximately a constant value is impressed based on the detecting signal of the photoelectric detecting means 4, a comparing means 25 to compare the detecting signal of the photoelectric detecting means 4 with a prescribed set value is provided, and based on the output signal of the comparing means 25, a driving current control means 26 to control the driving current of a light emitting means 3 in order to make the detecting signal of the photoelectric detecting means 4 into a prescribed set value is provided. Consequently, by adjusting the luminance of the light emitting means 3 in accordance with the individual difference between respective factors of the thickness of a finger and the inner organ, the photoelectric detecting means 4 can light-receive always approximately a constant light quantity regardless of the tested person. Thus, the blood pressure is attained accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は充電容積脈波法による非侵襲的連続血圧測定
装置に係り、特に発光手段の光縫調整に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a non-invasive continuous blood pressure measuring device using charge plethysmography, and more particularly to light sewing adjustment of a light emitting means.

(従来の技術) カフ圧を加えた手指部位等の血圧の被検部に発光素子に
よる光を照射する一方、光電検出器により該照射光の透
過光又は反射光を検出し、この受光量が一定の制御目標
値となるように前記カフ圧を調整しつつ、該カフ圧を血
圧として測定するようにした充電容積脈波法による非侵
襲的連続血圧測定装置は知られている。
(Prior art) Light from a light-emitting element is irradiated onto a blood pressure test area such as a finger area to which cuff pressure is applied, and a photoelectric detector detects the transmitted light or reflected light of the irradiated light, and the amount of this received light is measured. BACKGROUND ART A non-invasive continuous blood pressure measuring device using a charge plethysmography method is known, which measures the cuff pressure as blood pressure while adjusting the cuff pressure to a constant control target value.

かかる従来の装置において、前記発光素子は一定の駆動
電流により駆動され、従ってその発光輝度は常時一定と
なるように構成されている。
In such a conventional device, the light emitting element is driven by a constant drive current, so that its luminance is always constant.

(発明が解決しようとする問題点) しかしながら、血圧を測定しようとする被検者には、指
の太さ、内部組織、血液の濃淡等の要因において個人差
があり、従って従来の技術のように発光素子の輝度を常
時一定にしたのでは光電検出器の受光量に前記各要因に
基づくバラつきが生じ、このため光電検出器や、各種増
幅器等の特性に広い使用許容範囲が要求されたり、又測
定精度が個人差による影響を受け、特に受光量が少ない
場合にはノイズの影響も顕著になる等の種々の問題を生
じていた。
(Problems to be Solved by the Invention) However, there are individual differences in subjects whose blood pressure is to be measured in factors such as finger thickness, internal tissues, blood density, etc. If the luminance of the light-emitting element is kept constant at all times, the amount of light received by the photoelectric detector will vary due to the various factors mentioned above, and therefore, a wide range of usage tolerance is required for the characteristics of the photoelectric detector and various amplifiers, etc. In addition, measurement accuracy is affected by individual differences, and the influence of noise becomes significant especially when the amount of received light is small, causing various problems.

そこでこの発明は、前記指の太さ等の各要因の個人差の
影響を受けることなく、常に一定の精度で、かつノイズ
の影響も受けることもなく精度よく血圧の測定を行うこ
とができる光電容積脈波法による非侵襲的連続血圧測定
装置を提供することを目的とする。
Therefore, the present invention has been devised to provide a photoelectric sensor that can measure blood pressure with constant accuracy without being affected by individual differences in factors such as the thickness of the fingers, and without being affected by noise. The object of the present invention is to provide a non-invasive continuous blood pressure measuring device using plethysmography.

(問題点を解決するための手段及び作用)前記問題点を
解決するためこの発明は、被検部2に圧刃先加える圧力
供給手段5と、前記被検部2に光を照射する発光手段3
と、この発光手段3から照射された光を検出することで
前記被検部2の血管の血圧脈動的変化に伴う容積変動を
検出する光電検出手段4とを備えてなる光電容積脈波法
による非侵襲的連続血圧測定装置において、前記光電検
出手段4の検出信号に基づき、該光電検出手段4の受光
量が略一定値となる圧力印加時に、当該光電検出手段4
の検出信号を所定の設定地と比較する比較手段25を設
け、 この比較手段25の出力信号に基づき、前記光電検出手
段4の検出信号が前記所定の設定値となるべく前記発光
手段3の駆動電流を制御する駆動電流制御手段26を設
けてなる。
(Means and operations for solving the problem) In order to solve the above-mentioned problem, the present invention includes a pressure supply means 5 that applies a pressure blade tip to the test subject 2, and a light emitting means 3 that irradiates the test part 2 with light.
and a photoelectric detection means 4 for detecting volume fluctuations associated with pulsating changes in blood pressure in the blood vessels of the subject part 2 by detecting the light emitted from the light emitting means 3. In the non-invasive continuous blood pressure measurement device, when pressure is applied such that the amount of light received by the photoelectric detection means 4 becomes a substantially constant value based on the detection signal of the photoelectric detection means 4, the photoelectric detection means 4
A comparison means 25 is provided for comparing the detection signal of the photoelectric detection means 4 with a predetermined setting value, and based on the output signal of the comparison means 25, the driving current of the light emitting means 3 is adjusted so that the detection signal of the photoelectric detection means 4 becomes the predetermined setting value. A drive current control means 26 is provided to control the current.

このような構成によれば、指の太さや、内部組織等の各
要因の個人差に応じて発光手段の輝度を調整することで
光電検出手段は、被検者に拘わらず常時略一定の光量を
受光し得、従って信号レベルは常時略一定となり光電検
出手段や増幅器等に広い使用許容範囲が要求されること
がなく、もって略一定の精度で、且つノイズ等の影響も
少なく、精度よく血圧測定を行い得る。
According to such a configuration, the photoelectric detection means can always maintain a substantially constant amount of light regardless of the subject by adjusting the brightness of the light emitting means according to individual differences in various factors such as finger thickness and internal tissue. Therefore, the signal level is always approximately constant, and there is no need for photoelectric detection means, amplifiers, etc. to have a wide operating tolerance range, and blood pressure can be measured accurately with approximately constant accuracy and with little influence from noise. Measurements can be taken.

(実施例) 以下にこの発明の実施例を雛付図面に従って説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明の実施例に係る血圧測定装置の構成を
示すブロック系統図である。
FIG. 1 is a block diagram showing the configuration of a blood pressure measuring device according to an embodiment of the present invention.

図において、lは被検部たる指2を挿入し、この指に圧
力を加えるカフ、3はこの指2に光を照射する発光手段
たる発光ダイオード、4はこの発光ダイオード3より照
射され指2を透過した光を受光する光電検出器たるフォ
トトランジスタ、5はカフェに圧力を供給するための圧
力供給手段、6はフォトダイオード3の輝度を調整する
ための光量調整回路である。
In the figure, 1 is a cuff into which a finger 2, which is the subject to be examined, is inserted and applies pressure to the finger, 3 is a light emitting diode, which is a light emitting means that irradiates light to this finger 2, and 4 is a cuff that applies pressure to this finger 2, and 4 is a cuff that applies pressure to this finger 2. 5 is a pressure supply means for supplying pressure to the cafe; 6 is a light amount adjustment circuit for adjusting the brightness of the photodiode 3;

前記圧力供給手段5は、二酸化炭素又は空気等の圧縮ボ
ンベ若しくはコンプレッサ等からなる圧力供給源7と、
この圧力供給源7からの圧力を適当な圧力としてカフl
に供給するための供給圧力制御手段8とからなり、更に
この供給圧力制御手段8は、圧源7とカフェの間の配管
ll上に夫々減圧弁9及び可変しぼり10を介して設け
られる3ボートのTr!、la弁12と、この電磁弁1
2を駆動制御するための制御回路13とからなる。
The pressure supply means 5 includes a pressure supply source 7 consisting of a compression cylinder or compressor of carbon dioxide or air, etc.;
Using the pressure from this pressure supply source 7 as an appropriate pressure, the cuff l
The supply pressure control means 8 further comprises three boats installed on the piping 11 between the pressure source 7 and the cafe via a pressure reducing valve 9 and a variable throttle 10, respectively. Tr! , la valve 12, and this solenoid valve 1
2, and a control circuit 13 for driving and controlling the 2.

前記3ボート?lt磁弁12は、制御回路13により出
力されたパルス信号により、当該パルス電圧が有るとき
は第1. fJ42のボート12a、12bを開き圧力
供給源7とカフェを連通せしめるとともに、第3のポー
)12cを閉成して大気とカフ間を閉成せしめる一方、
パルス電圧が無いときは第1のボート12aを閉成して
第2、第3のポー)12b、12cを開成してカッと大
気間とを連通せしめる。そこでこの実施例では、制御信
号として一定周波数(約50Hz)のパルス信号を使用
し、このパルスのデユーデイ比を変更することでカフ圧
を制御している。
The three boats mentioned above? The lt magnetic valve 12 is controlled by the pulse signal output by the control circuit 13 to operate the first . While opening the boats 12a and 12b of fJ42 to communicate the pressure supply source 7 and the cuff, and closing the third port 12c to close the atmosphere and the cuff,
When there is no pulse voltage, the first port 12a is closed and the second and third ports 12b and 12c are opened to establish communication with the atmosphere. Therefore, in this embodiment, a pulse signal of a constant frequency (approximately 50 Hz) is used as a control signal, and the cuff pressure is controlled by changing the duty ratio of this pulse.

第2図はかかるデユーデイ比に対するカフ圧を示したも
ので、横軸にデユーデイ比を、縦軸にカフ圧を示してい
る。このグラフからも明らかなようにこの3ボートの電
磁弁12を用いれば、デユーデイ比によってカフ圧をほ
とんどリニアに、しかも減圧弁9の出力圧力Pin  
(デユーデイ比100%)から大気圧(デユーデイ比O
)までの広い範囲に亘ってカフ圧を調節することができ
る。
FIG. 2 shows the cuff pressure with respect to the duty ratio, with the duty ratio on the horizontal axis and the cuff pressure on the vertical axis. As is clear from this graph, if the three-boat solenoid valve 12 is used, the cuff pressure can be adjusted almost linearly depending on the duty ratio, and the output pressure of the pressure reducing valve 9, Pin
(Due-day ratio 100%) to atmospheric pressure (Due-day ratio O
) The cuff pressure can be adjusted over a wide range.

一方、前記制御回路13は上述したデユーデイ制御のた
めのパルス信号を得るためのもので、フォトトランジス
タ4の検出電流信号を電圧信号に変換するための電流−
電圧変換回路15、この電流−電圧変換回路15の出力
電圧Vsと、後述する制御目標値の設定器16からの平
均血圧に相当する設定電圧■0とを比較し、その偏差に
対応した電圧信号Vを出力する差動増幅器17、この差
動増幅器17の出力電圧Vと三角波発振回路18の三角
波電圧VTとを比較するコンパレータ19、及びこのコ
ンパレータ19と?I!m弁マニュアル操作部20を選
択して電磁弁12に接続するためのスイッチ部21を備
えてなる。
On the other hand, the control circuit 13 is for obtaining a pulse signal for the above-described duty control, and is for converting a current signal detected by the phototransistor 4 into a voltage signal.
The voltage conversion circuit 15 compares the output voltage Vs of the current-voltage conversion circuit 15 with a set voltage 0 corresponding to the average blood pressure from the control target value setter 16, which will be described later, and generates a voltage signal corresponding to the deviation. A differential amplifier 17 that outputs V, a comparator 19 that compares the output voltage V of this differential amplifier 17 with a triangular wave voltage VT of the triangular wave oscillation circuit 18, and this comparator 19? I! It is equipped with a switch section 21 for selecting the m-valve manual operation section 20 and connecting it to the solenoid valve 12.

前記コンパレータ19は第3図(a)に示されるように
、差動増幅器17の出力電圧Vと三角波発振回路18の
三角波電圧VTを比較し、差動増幅器17の出力電圧■
が三角波電圧VTよりも高い場合に、第3図(b)の如
く高レベルの電圧信号を出力するもので、差動増幅器1
7の信号によりパルス幅変調を行い得るパルス幅変調回
路を構成している。ここに三角波電圧の周波数は電磁弁
12の応答特性によって決定され、この実施例では略5
0Hz程度に設定されている。
As shown in FIG. 3(a), the comparator 19 compares the output voltage V of the differential amplifier 17 with the triangular wave voltage VT of the triangular wave oscillation circuit 18, and calculates the output voltage of the differential amplifier 17 by
is higher than the triangular wave voltage VT, a high-level voltage signal is output as shown in FIG. 3(b), and the differential amplifier 1
This constitutes a pulse width modulation circuit capable of performing pulse width modulation using the signal No. 7. Here, the frequency of the triangular wave voltage is determined by the response characteristics of the solenoid valve 12, and in this embodiment, the frequency is approximately 5.
It is set to about 0Hz.

従ってかかる制御回路によれば、フォトトランジスタ4
の受光量が目標値に対して少なくなった場合には、差動
増幅器17の出力電圧Vが高くなり、コンパレータ19
と三角波発振回路18の作用によりデユーデイ比を増大
せしめてカフ圧を高め、逆に受光量が目標値に対して高
くなった場合には、差動増幅器17の出力電圧Vが低く
なり、デユーデイ比を減少せしめてカフ圧を低下させる
ことで受光量を常時制御目標値に保持すべくカフ圧を制
御することができ、従ってカフ圧を常時血圧に対応させ
ることができ、このカフ圧を圧力センサ23により測定
することで血圧を連続的にJ11定することができる。
Therefore, according to this control circuit, the phototransistor 4
When the amount of received light becomes smaller than the target value, the output voltage V of the differential amplifier 17 increases, and the
By the action of the triangular wave oscillation circuit 18, the duty ratio is increased and the cuff pressure is increased. Conversely, when the amount of received light becomes higher than the target value, the output voltage V of the differential amplifier 17 is lowered, and the duty ratio is increased. By decreasing the cuff pressure by decreasing the cuff pressure, the cuff pressure can be controlled to maintain the amount of light received at the constant control target value. Therefore, the cuff pressure can be made to correspond to the blood pressure at all times, and this cuff pressure can be adjusted to the pressure sensor. By measuring with 23, blood pressure can be determined continuously.

尚、前記電磁弁マニュアル操作部20は、例えば後述す
るフォトダイオード3の輝度調整時に、カフ圧を十分高
めるべく3ボート電磁弁12を駆動させるもので、例え
ば直流電圧を操作により可変的に出力するような電圧源
で構成される。
The solenoid valve manual operation section 20 drives the three-boat solenoid valve 12 in order to sufficiently increase the cuff pressure, for example, when adjusting the brightness of the photodiode 3, which will be described later. It consists of a voltage source like this.

前記光量調整回路6は、前記′i!流−流圧電圧変換回
路により出力された電圧信号Vsと受光!−設定器24
に設定された設定電圧とを比較し、その偏差信号を出力
する比較器25と、この比較器25からの偏差信号を零
とすべくフォトダイオード3の駆動電流を制御する電流
制御回路26とからなり、かかる光量調整回路6によれ
ば、後述するフォトダイオード3の輝度調整時(脈波振
動が無くなる程度にカフ圧を十分に高めた状態時)に、
指2の太さ、内部組織等の被検者による個人差の影響を
受けることなく、フォトトランジスタ4の受光量を一定
にすることができ、従って以後の血圧測定時に被検者に
拘わらず、略凹−レベルの信号を扱うことができ、従っ
て又、略一定の精度による測定を行うことができる。
The light amount adjustment circuit 6 controls the 'i! Voltage signal Vs outputted by the current-current pressure voltage conversion circuit and light reception! -Setting device 24
A comparator 25 that compares the set voltage with a set voltage and outputs a deviation signal thereof, and a current control circuit 26 that controls the drive current of the photodiode 3 to make the deviation signal from the comparator 25 zero. According to the light amount adjustment circuit 6, when adjusting the brightness of the photodiode 3 (described later) (when the cuff pressure is sufficiently increased to the extent that pulse wave vibration is eliminated),
The amount of light received by the phototransistor 4 can be kept constant without being affected by individual differences in the thickness of the finger 2, internal tissue, etc. between subjects, and therefore, regardless of the subject during subsequent blood pressure measurements, Approximately concave-level signals can be handled and therefore measurements can also be made with approximately constant accuracy.

更に、このように脈波振動が無くなる程度に十分にカフ
圧を高めた状態において、予め定めた透過光量(受光量
)になるようにフォトダイオードの輝度を調整し、前述
の如く被検者による個人差の影響を除去した状態におい
ては、それ以後に徐々にカフ圧を減圧した場合、光電脈
波の振幅には個人差があるものの、受光量の減少区間の
傾きは第4図(b)に示すように略均−となり、又光電
脈波の最大振幅点(制御目標値)についても被検者によ
らず略均−となることが経験的に確かめられている。(
尚、第4図(a)は従来の制御目標値の決定方法につい
て示すものである。)従ってかかる現象によれば、当該
受光量調整回路6を設け、輝度調整時に受光量を被検者
に拘わらず一定としておけば、制御目標値は経験的に求
めた一定の値に設定することができ、従ってこの実施例
では前述した制御目標値設定器16を設けるのみで、従
来のような制御目標値の決定回路(ここでの説明は省略
する)は不要となるとともに、安定した制御目標値が迅
速に得られることとなる。
Furthermore, with the cuff pressure raised sufficiently to eliminate pulse wave vibration, the brightness of the photodiode is adjusted to a predetermined amount of transmitted light (received light), and as described above, When the influence of individual differences is removed, if the cuff pressure is gradually reduced after that, although there are individual differences in the amplitude of the photoplethysmogram, the slope of the decreasing section of the amount of received light is as shown in Figure 4 (b). It has been empirically confirmed that the maximum amplitude point (control target value) of the photoplethysmogram is approximately average regardless of the subject. (
Incidentally, FIG. 4(a) shows a conventional method for determining a control target value. ) Therefore, according to this phenomenon, if the received light amount adjustment circuit 6 is provided and the received light amount is kept constant regardless of the subject when adjusting the brightness, the control target value can be set to a constant value determined empirically. Therefore, in this embodiment, only the control target value setter 16 described above is provided, and a conventional control target value determining circuit (description is omitted here) is not necessary, and a stable control target can be obtained. Values will be obtained quickly.

尚、前記電流制御回路26による電流の制御は光量調整
時のみに行われるもので、この光量7A整後における血
圧測定時には電磁弁マニュアル操作部20からの信号に
より、前記光iIE調整時に定められた電流にロックさ
れる。
Note that the current control by the current control circuit 26 is performed only when adjusting the light intensity, and when measuring blood pressure after adjusting the light intensity to 7A, a signal from the solenoid valve manual operation unit 20 is used to control the current determined at the time of adjusting the light iIE. Locked to current.

以下にこの実施例の動作について説明する。先ず、血圧
測定に際しカフェに指2を挿入した後、スイッチ21を
電磁弁マニュアル操作部20側に切り換え、3ボート電
磁弁に所定の電圧を印加してカフ圧を十分高い圧力に保
持する。このときのカフ圧は、フォトトランジスタ4に
よる検出信号が略一定値(直流的)となる程度の圧力と
する。
The operation of this embodiment will be explained below. First, after inserting the finger 2 into the cuff for blood pressure measurement, the switch 21 is switched to the solenoid valve manual operation section 20 side, and a predetermined voltage is applied to the three-boat solenoid valve to maintain the cuff pressure at a sufficiently high pressure. The cuff pressure at this time is set to such a level that the detection signal from the phototransistor 4 becomes a substantially constant value (DC-like).

このとき光量調整回路6は電磁弁マニュアル操作部20
の信号Sを受けてフォトダイオード3の輝度調整を行い
、フォトトランジスタ4の受光量を被検者に拘わらず一
定とする。こうして輝度調整が行われた後、スイッチ2
1をコンパレータ19側に切り換えると供給圧力制御回
路13が動作し、フォトトランジスタ4の受光量が制御
目標値と等しくなるべくカフ圧を制御する。そこでこの
ときのカフ圧を圧力センサ23で測定することにより血
圧を得ることができる。
At this time, the light amount adjustment circuit 6 is operated by the solenoid valve manual operation section 20.
In response to the signal S, the brightness of the photodiode 3 is adjusted, and the amount of light received by the phototransistor 4 is made constant regardless of the subject. After adjusting the brightness in this way, switch 2
1 to the comparator 19 side, the supply pressure control circuit 13 operates and controls the cuff pressure so that the amount of light received by the phototransistor 4 is equal to the control target value. Therefore, by measuring the cuff pressure at this time with the pressure sensor 23, the blood pressure can be obtained.

尚、前記スイッチ21の切り換えは手動で行うようにし
てもよいが、フォトダイオード3の輝度調整時に当該駆
動電流が定常になったことを検出する検出器を設け、こ
の検出器の出力信号により自動的に切り換えるようにし
てもよい、又、手動で行うにしてもかかる検出器を設け
ておけば輝度調整の終了を確実に知ることができ便利で
ある。
Although the switch 21 may be switched manually, a detector is provided to detect when the drive current becomes steady when adjusting the brightness of the photodiode 3, and the switch 21 is switched automatically using the output signal of this detector. Alternatively, even if the brightness adjustment is performed manually, it is convenient to provide such a detector so that the end of the brightness adjustment can be reliably known.

又、供給圧力制御回路13の一部の回路16〜19等は
、輝度調整時にはスイッチ21に連動してその電源等を
一部オフさせるようにしておいてもよい。
Further, some of the circuits 16 to 19 of the supply pressure control circuit 13 may be turned off in conjunction with the switch 21 when adjusting the brightness.

(発明の効果) 以上の説明より明らかなように、この発明によれば、血
圧測定前において指の太さや、内部組織等の各要因の個
人差に応じて発光手段の発光輝度を調整し、光電検出手
段が被検者に拘わらす略−定の光量を受光し得るように
したので、後の血圧測定時においても略凹−レベルの信
号を取扱うことができ、従って増幅器等に広いレンジが
要求されることもなく、もって略一定の精度で、且つノ
イズ等の影響も少なく、精度のよい血圧測定を行うこと
ができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, before blood pressure measurement, the luminance of the light emitting means is adjusted according to individual differences in various factors such as finger thickness and internal tissue. Since the photoelectric detection means can receive a substantially constant amount of light regardless of the subject, it is possible to handle signals at a substantially negative level even when measuring blood pressure later, and therefore the amplifier etc. can have a wide range. There is no requirement for this, and blood pressure measurement can be performed with substantially constant accuracy and little influence from noise, etc., and with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る血圧測定装置を示すブ
ロック系統図、第2図は電磁弁のデユーティ制御を示し
た特性図、第3図はコンパレータの入出力信号を示す図
、第4図はカフ正に対する受光量の関係を時間を横軸に
とって示した図である。 図面において、lはカフ、2は指、3はフォトダイオー
ド(発光手段)、4はフォトトランジスタ(光電検出手
段)、5は圧力供給手段、6は光量調整回路、7は圧力
供給源、8は供給圧力制御手段、12は3ボート電磁弁
である。 特 許 出 願 人  株式会社 学習研究社代理人 
 弁理士   下  1) 容−即問   弁理士  
 大  橋  邦  産量   弁理士   小  山
    有第3図 VT 第2図 ラーi−デイよC(うら) 第、4図 時周
FIG. 1 is a block system diagram showing a blood pressure measuring device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing duty control of a solenoid valve, FIG. 3 is a diagram showing input/output signals of a comparator, and FIG. The figure is a diagram showing the relationship between the amount of light received and the cuff positive, with time on the horizontal axis. In the drawings, l is a cuff, 2 is a finger, 3 is a photodiode (light emitting means), 4 is a phototransistor (photoelectric detection means), 5 is a pressure supply means, 6 is a light amount adjustment circuit, 7 is a pressure supply source, and 8 is a The supply pressure control means 12 is a three-boat solenoid valve. Patent applicant Gakken Co., Ltd. Agent
Patent Attorney Part 2 1) Yong-Immediate Question Patent Attorney
Kuni Ohashi Production volume Patent attorney Yu Koyama Figure 3 VT Figure 2 Ra I-Day C (back) Figure 4 Time cycle

Claims (1)

【特許請求の範囲】 被検部に圧力を加える圧力供給手段と、前記被検部に光
を照射する発光手段と、この発光手段から照射された光
を検出することで前記被検部の血管の血圧脈動的変化に
伴う容積変動を検出する光電検出手段とを備えてなる光
電容積脈波法による非侵襲的連続血圧測定装置において
、 前記光電検出手段の検出信号に基づき、該光電検出手段
の受光量が略一定値となる圧力印加時に、当該光電検出
手段の検出信号を所定の設定値と比較する比較手段を設
け、 この比較手段の出力信号に基づき、前記光電検出手段の
検出信号が前記所定の設定値となるべく前記発光手段の
駆動電流を制御する駆動電流制御手段を設けたことを特
徴とする光電容積脈波法による非侵襲的連続血圧測定装
置。
[Scope of Claims] Pressure supply means for applying pressure to the subject area, light emitting means for irradiating light to the subject area, and blood vessels in the subject area by detecting the light irradiated from the light emitting means. A non-invasive continuous blood pressure measurement device using photoplethysmography, comprising photoelectric detection means for detecting volume fluctuations associated with pulsating changes in blood pressure, wherein the photoelectric detection means detects the Comparing means is provided for comparing the detection signal of the photoelectric detection means with a predetermined set value when pressure is applied so that the amount of received light becomes a substantially constant value, and based on the output signal of the comparison means, the detection signal of the photoelectric detection means is 1. A non-invasive continuous blood pressure measuring device using photoplethysmography, characterized in that a drive current control means is provided for controlling the drive current of the light emitting means to a predetermined set value.
JP63025084A 1988-02-05 1988-02-05 Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave Pending JPH01201231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025084A JPH01201231A (en) 1988-02-05 1988-02-05 Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025084A JPH01201231A (en) 1988-02-05 1988-02-05 Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave

Publications (1)

Publication Number Publication Date
JPH01201231A true JPH01201231A (en) 1989-08-14

Family

ID=12156063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025084A Pending JPH01201231A (en) 1988-02-05 1988-02-05 Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave

Country Status (1)

Country Link
JP (1) JPH01201231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183112A1 (en) * 2016-04-19 2017-10-26 株式会社ソシオネクスト Blood pressure meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183112A1 (en) * 2016-04-19 2017-10-26 株式会社ソシオネクスト Blood pressure meter
JPWO2017183112A1 (en) * 2016-04-19 2019-02-28 株式会社ソシオネクスト Sphygmomanometer

Similar Documents

Publication Publication Date Title
US5291884A (en) Apparatus for measuring a blood parameter
US7510530B2 (en) Pulse wave measuring apparatus
US5803910A (en) Condensed oximeter system and method with noise reduction software
US4237905A (en) Automatic tympanometric testing means
CA2398591C (en) Non-invasive measurement of skin bilirubin level
KR20060134102A (en) Led forward voltage estimation in pulse oximeter
US20030199775A1 (en) Augmentation-index measuring apparatus
US5072736A (en) Non-invasive automatic blood pressure measuring apparatus
WO1993000856A1 (en) A non-invasive method and apparatus for measuring concentration of analytes in living tissue
KR20030061290A (en) Augmentation-index determining apparatus and arteriosclerosis inspecting apparatus
JPS59181129A (en) Hemomanometer
JPH01201231A (en) Non-invasive continuous blood pressure measuring instrument by photoelectric volume pulse wave
JPH01201232A (en) Method for measuring non-invasive continuous blood pressure by photoelectric volume pulse wave method
JP2008167868A (en) Biological information measuring machine
FR2514508A1 (en) METHOD AND APPARATUS FOR AUTOMATIC CALIBRATION OF MEASURING AND INDICATING DEVICES FOR DETERMINING PARTIAL OXYGEN PRESSURE
GB2070240A (en) Circuit arrangement for measuring the heart rate
JP2001235544A (en) Smart optical microphone/sensor
KR100438839B1 (en) Apparatus and measuring method of PPG
JPH0464335A (en) Biological measuring apparatus using light
EP4129165A1 (en) Camera-based vital sign detection
JPH01119612U (en)
JPH0616752B2 (en) Blood pressure measurement device
JPH05126719A (en) Light modulation measuring device
JPH1156815A (en) Skin color measuring device
JP2021099286A (en) Light measuring device