JPH01199607A - Treatment of photosensitive coating solution - Google Patents

Treatment of photosensitive coating solution

Info

Publication number
JPH01199607A
JPH01199607A JP2135588A JP2135588A JPH01199607A JP H01199607 A JPH01199607 A JP H01199607A JP 2135588 A JP2135588 A JP 2135588A JP 2135588 A JP2135588 A JP 2135588A JP H01199607 A JPH01199607 A JP H01199607A
Authority
JP
Japan
Prior art keywords
liquid
tube
photosensitive coating
coating liquid
dissolved air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2135588A
Other languages
Japanese (ja)
Inventor
Yuzo Inukai
犬飼 裕蔵
Mitsusachi Nakayama
光幸 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2135588A priority Critical patent/JPH01199607A/en
Publication of JPH01199607A publication Critical patent/JPH01199607A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/74Applying photosensitive compositions to the base; Drying processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2066Pulsated flow
    • B01D2321/2075Ultrasonic treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To simplify a deaerating and defoaming device and to reduce cleaning loss by passing a photosensitive coating soln. contg. fine bubbles through the inside of a porous polymeric membrane tube, and depressurizing the outside of the tube to remove the fine bubbles and dissolved air in the coating soln. CONSTITUTION:Before the prepared photosensitive coating soln. 11a is applied, an ultrasonic wave is projected on the soln. from an ultrasonic treating device 8 to deposit the dissolved air in the soln. as fine bubbles. The soln. contg. fine bubbles is passed through the inside of the porous polymeric membrane tube 20, and the outside of the tube 20 is depressurized to simultaneously remove the fine bubbles and dissolved air in the soln. As a result, the deaerating and defoaming device 18 can be simplified as compared with the conventional technique, and cleaning loss can also be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は感光性塗布液を塗布装置で塗布する際塗布品質
を改良するための該塗布液の処理方法に関し、さらに詳
しくは、感光性塗布液が塗布される前に該塗布液中に含
有される溶存空気および気泡を除去するための該感光性
塗布液の処理方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for treating a photosensitive coating liquid in order to improve coating quality when the coating liquid is coated with a coating device. The present invention relates to a method for treating a photosensitive coating liquid for removing dissolved air and bubbles contained in the coating liquid before the liquid is applied.

〔従来の技術〕[Conventional technology]

一般にある種の液体は、塗布に際しては該液体中に溶存
する空気および含有される気泡を除去することが必要で
ある0例えば感光材料用の感光性塗布液は溶存空気およ
び気泡が含まれたまま塗布装置により基材に塗布される
と、塗布装置によっては該感光性塗布液中の溶存空気の
析出や、通常の場合には該感光性塗布液に含まれる気泡
によって縦すじ、ピンホール等塗布面に気泡による故障
をおこし、基材に均一な感光膜を形成することができな
いため、基材に塗布される前に該感光性塗布液中に溶存
する空気および含有さる気泡を除去することが必要であ
る。
Generally, when coating certain liquids, it is necessary to remove air dissolved in the liquid and air bubbles contained therein. For example, a photosensitive coating liquid for photosensitive materials may still contain dissolved air and air bubbles. When the coating is applied to a substrate using a coating device, depending on the coating device, dissolved air in the photosensitive coating solution may precipitate, or in normal cases, air bubbles contained in the photosensitive coating solution may cause vertical streaks, pinholes, etc. Air bubbles may cause problems on the surface, making it impossible to form a uniform photosensitive film on the substrate. Therefore, it is necessary to remove the air dissolved in the photosensitive coating solution and any air bubbles contained therein before it is applied to the substrate. is necessary.

従来これに対処する方法として先ず液体中に溶存する空
気の除去(脱気と呼ぶ)を行うための方法としては多数
知られているが、その代表的な例は該液体を減圧下に置
(方法であり、その例としては、特公昭51−3525
9号、特開昭56−147605号、特開昭56−76
213号、特開昭49−97003号、特開昭50−1
59469号等の公報に開示されている装置が知られて
いる。
Conventionally, many methods have been known to deal with this problem, first of all removing the air dissolved in the liquid (referred to as deaeration), but a typical example is to place the liquid under reduced pressure ( An example of this method is the Japanese Patent Publication No. 51-3525.
No. 9, JP-A-56-147605, JP-A-56-76
No. 213, JP-A-49-97003, JP-A-50-1
Devices disclosed in publications such as No. 59469 are known.

また多孔質性高分子膜を用いる方法もあり、その例とし
ては、特開昭51−28261号、特開昭54−123
785号、特開昭55−121806号、特開昭57−
165007号、特開昭58−81404号1等の公報
に開示されている方法あるいは装置が知られている。
There is also a method using a porous polymer membrane, examples of which include JP-A-51-28261 and JP-A-54-123.
No. 785, JP-A-55-121806, JP-A-57-
Methods and devices disclosed in publications such as No. 165007 and Japanese Unexamined Patent Publication No. 58-81404 1 are known.

他方液体中に含有される気泡を除去する(脱泡と呼ぶ)
方法は多数知られている。このような脱泡処理を行うた
めの装置としては感光性塗布液を用いる場合は、従来、
特公昭47−6835号。
On the other hand, removing air bubbles contained in the liquid (called defoaming)
Many methods are known. Conventionally, when using a photosensitive coating liquid as a device for performing such defoaming treatment,
Special Publication No. 47-6835.

特公昭57−6365号、特開昭53−139274号
、特開昭59−69108号、特開昭59−92003
号、特開昭59−156405号。
JP 57-6365, JP 53-139274, JP 59-69108, JP 59-92003
No. 156405/1983.

特開昭61−50608号等の公報に開示されている超
音波脱泡(超音波処理と呼ぶ)装置が知られている。
2. Description of the Related Art Ultrasonic defoaming (referred to as ultrasonic processing) apparatuses are known, which are disclosed in publications such as Japanese Patent Application Laid-Open No. 61-50608.

〔発明が解決しようとする問題点〕 しかしながら前者の該液体を減圧下に置く脱気方法は該
液体中に溶存する空気を除去することは出来ても、微細
気泡が該液体中に発生するという現象が起きている。従
って、上記のようにして生成した微細気泡や、該液体中
に含有された気泡は例えば感光性塗布液を用いる場合に
は塗布装置により基材に塗着されると、均一な感光膜を
形成することが出来ないという問題が起こる。
[Problems to be solved by the invention] However, although the former method of degassing the liquid under reduced pressure can remove air dissolved in the liquid, microbubbles are generated in the liquid. A phenomenon is occurring. Therefore, when the microbubbles generated as described above or the bubbles contained in the liquid are applied to a substrate by a coating device when a photosensitive coating liquid is used, a uniform photosensitive film is formed. The problem arises that it cannot be done.

更に後者の脱泡方法のうち、気泡を溶解消滅させる脱泡
方法は該感光性塗布液中に含有される気泡は除去出来て
も該液中に溶存する空気を除去することは出来ない。脱
泡処理された該感光性塗布液はその中に溶存する空気が
飽和あるいは過飽和になっているので例えば該感光性塗
布液の液温が上昇したり剪断力が加わると溶存した空気
が気泡として析出し、基材に塗布した時に均一な感光膜
を形成することが出来ないという問題が起こる。
Furthermore, among the latter defoaming methods, the defoaming method that dissolves and eliminates air bubbles can remove the air bubbles contained in the photosensitive coating liquid, but cannot remove the air dissolved in the liquid. Since the air dissolved in the defoamed photosensitive coating liquid is saturated or supersaturated, for example, when the temperature of the photosensitive coating liquid rises or shearing force is applied, the dissolved air becomes bubbles. A problem arises in that it is not possible to form a uniform photoresist film when deposited and coated on a substrate.

又微細気泡に超音波を照射し、キャビティージョンを起
し気泡を相互に群集させ、次なる脱泡槽に導き浮上分離
させる脱泡方法は超音波脱泡装置及び浮上分離装置その
ものが複雑になり、更に高価な感光性塗布液を処理する
場合は、脱泡装置の洗浄ロスが大となり経済的に不利で
あるという問題が起こる。
In addition, the defoaming method involves irradiating ultrasonic waves to microbubbles to create a cavity, causing the bubbles to cluster together, leading to the next defoaming tank, and flotation separation.The ultrasonic defoaming equipment and flotation separation equipment themselves are complicated. However, when processing a more expensive photosensitive coating liquid, a problem arises in that the cleaning loss of the defoaming device becomes large, which is economically disadvantageous.

本発明は以上の如き事情に基づいてなされたものであっ
て、その目的は、従来技術の問題点を解消し、脱気脱泡
装置を簡単にし洗浄ロスも少くする、又塗布液中に含ま
れる溶存空気及び気泡により発生する塗布故障を防止し
基材に均一な感光膜を形成するための該感光性塗布液の
処理方法を提供することにある。
The present invention has been made based on the above-mentioned circumstances, and its purpose is to solve the problems of the prior art, simplify the degassing and defoaming equipment, and reduce cleaning loss. It is an object of the present invention to provide a method for processing a photosensitive coating liquid to prevent coating failures caused by dissolved air and bubbles and to form a uniform photosensitive film on a substrate.

〔課題を解決するための手段および作用〕本発明の要旨
は微細気泡を含む感光性塗布液を多孔質性高分子膜チュ
ーブ(以下チューブとも言う)の内側に通し該チューブ
の外側を減圧することにより、該塗布液中の微細気泡及
び溶存空気が除去可能であることを見い出し、感光性塗
布液を塗布する前に、該感光性塗布液に超音波を照射し
該塗布液中の溶存空気を微細気泡として析出させてチュ
ーブの外側に除去さ廿易くさせる工程と、該塗布液を該
チューブ内を通し微細気泡及び溶存空気を同時に除去す
る工程という2つの処理工程を組みあわしたことにある
[Means and effects for solving the problem] The gist of the present invention is to pass a photosensitive coating liquid containing microbubbles through the inside of a porous polymer membrane tube (hereinafter also referred to as tube) and reduce the pressure on the outside of the tube. It was discovered that microbubbles and dissolved air in the coating solution could be removed by irradiating the photosensitive coating solution with ultrasonic waves before applying the photosensitive coating solution to remove the dissolved air in the coating solution. This method combines two processing steps: one in which the microbubbles are precipitated outside the tube so that they can be easily removed, and the other is the step in which the coating solution is passed through the tube to remove the microbubbles and dissolved air at the same time.

即ち本発明の上記目的は、調製した感光性塗布液を塗布
する前に該塗布液に超音波を照射し、該塗布液中に含ま
れる溶存空気を微細気泡として液中に析出させ、ひき続
いて微細気泡を液中に析出させた該塗布液を多孔質性高
分子膜チューブの内側に逼し、該チューブの外側を減圧
し、該塗布液中の微細気泡及び溶存空気を同時に除去す
ることを特徴とする感光性塗布液の処理方法によって達
成される。
That is, the above-mentioned object of the present invention is to irradiate the prepared photosensitive coating liquid with ultrasonic waves before coating the coating liquid, to precipitate the dissolved air contained in the coating liquid in the form of fine bubbles, and then to The coating solution in which microbubbles have been precipitated in the solution is poured into the inside of a porous polymer membrane tube, and the outside of the tube is depressurized to simultaneously remove the microbubbles and dissolved air in the coating solution. This is achieved by a method for processing a photosensitive coating liquid characterized by the following.

以下にこの処理方法について詳しく述べる。This processing method will be described in detail below.

本発明において調製された感光性塗布液は先ず超音波処
理を施したのち、脱気脱泡処理を施すことが必須である
。脱気脱泡処理工程の後に超音波処理工程を連−続的に
組み合せても脱泡の効果は認められない。
It is essential that the photosensitive coating liquid prepared in the present invention is first subjected to ultrasonic treatment and then subjected to degassing and defoaming treatment. Even if the ultrasonic treatment step is continuously combined after the degassing and defoaming treatment step, no defoaming effect is observed.

本発明の超音波処理工程においては、通常の超音波処理
機を用いることが出来るが、処理方法としては感光性塗
布液の場合、連続的に超音波処理を行ってもよいし、−
度に処理する形式をとってもよい、しかし、感光性塗布
液を塗布装置により連続して走行する基材に塗布する場
合には、連続的に超音波処理工程に導く方が好ましい。
In the ultrasonic treatment step of the present invention, an ordinary ultrasonic processor can be used, but in the case of a photosensitive coating liquid, continuous ultrasonic treatment may be used, or -
However, when the photosensitive coating liquid is applied to a continuously moving substrate by a coating device, it is preferable to conduct the ultrasonic treatment step continuously.

このような超音波処理機としてはその構造がシンプルな
ものが望ましく、その−例として、特開昭53−139
274号、特開昭59−92003号等の公報に開示さ
れている超音波脱泡装置が知られている。
It is desirable that such an ultrasonic treatment machine has a simple structure.
BACKGROUND ART Ultrasonic defoaming devices disclosed in publications such as No. 274 and Japanese Unexamined Patent Publication No. 59-92003 are known.

本発明において使用される超音波の周波数は、10にH
z以上500 KHz以下であり、超音波のエネルギー
としては、0.05〜100W/cd、好しくは0. 
1〜IOW/dの範囲である。
The frequency of the ultrasonic waves used in the present invention is 10 to 10 H.
z or more and 500 KHz or less, and the ultrasonic energy is 0.05 to 100 W/cd, preferably 0.
It ranges from 1 to IOW/d.

超音波を照射し溶存空気を微細気泡として析出させる能
力と超音波の強さには密接な関係があり、条件を誤ると
逆に気泡を溶存空気として消滅させる結果になる。従っ
て適切な気泡析出は超音波のエネルギーの成る適正な条
件範囲で得られる。
There is a close relationship between the ability to irradiate ultrasonic waves to precipitate dissolved air as fine bubbles and the strength of the ultrasonic waves, and if the conditions are incorrect, the bubbles will disappear as dissolved air. Therefore, proper bubble deposition can be obtained under a suitable range of ultrasonic energy conditions.

超音波照射による気泡析出は、超音波が液体中に放射さ
れると、液体はある速度で振動するが超音波の周波数等
がある大きさ以上になると液体が振動に追従出来なくな
り局部的な真空が出来る現象即ちキャビティージョンが
起こりその真空部に向って周囲の液体に溶は込んでいた
気体を析出させたり液体が蒸気化したりして微細な気泡
をつくるという現象によるものである。従ってこの気泡
析出の程度は超音波の強さに比例し、さらに超音波の強
度を上げると激しく発泡するので、その程度は適正に決
定される。
Bubble precipitation due to ultrasonic irradiation occurs when ultrasonic waves are emitted into a liquid, causing the liquid to vibrate at a certain speed, but when the frequency of the ultrasonic waves exceeds a certain level, the liquid cannot follow the vibrations and a local vacuum is created. This is due to the phenomenon that cavitation occurs, and the gas dissolved in the surrounding liquid is precipitated toward the vacuum area, and the liquid is vaporized to form fine bubbles. Therefore, the degree of bubble precipitation is proportional to the intensity of the ultrasonic wave, and as the intensity of the ultrasonic wave is further increased, foaming occurs more violently, so the degree of bubble precipitation is appropriately determined.

このようにして析出した気泡は周囲の圧力とも関係があ
る。液体に加わる圧力が高ければ気泡は消滅の方向に向
い、低ければ成長の方向に向う。
The bubbles thus deposited are also related to the surrounding pressure. If the pressure applied to the liquid is high, the bubbles tend to disappear; if the pressure is low, the bubbles tend to grow.

従って該液体中に含有する気泡を消滅させたい時は超音
波を照射しながら該液体に圧力を加えればよく、成長さ
せ浮上等を利用して除去したい時は該液体に加える圧力
を低くすればよいことになる。
Therefore, if you want to eliminate the bubbles contained in the liquid, you can apply pressure to the liquid while irradiating ultrasonic waves, and if you want to make them grow and remove them by using levitation, you can lower the pressure applied to the liquid. It will be a good thing.

以上、液体に加える超音波の強さ、圧力は次に続く脱気
脱泡工程における脱泡効果あるいは脱気効果との組み合
せにより適正に決定される。
As described above, the strength and pressure of the ultrasonic waves applied to the liquid are appropriately determined by the defoaming effect or the combination with the degassing effect in the subsequent degassing and defoaming step.

本発明の脱気脱泡工程は減圧方法はいかなる方法でもよ
いが、感光性塗布液の場合、通常3007ory−I 
Torr程度の圧力下で行うのが好ましい。
In the degassing and defoaming step of the present invention, any method may be used to reduce the pressure, but in the case of a photosensitive coating liquid, usually 3007ory-I
It is preferable to carry out under a pressure of about Torr.

なお、感光性塗布液を塗布装置により基材に連続して塗
布する場合には連続的に脱気脱泡工程に導く方が好まし
く、しかも有機溶媒を用いる場合は、その蒸発がほとん
ど起こらない脱気脱泡方法が望ましい。さらに脱気脱泡
処理を行う装置としては、その構造がシンプルなものが
設備費、長時間稼働での安定性、保守性、おらびランニ
ングコスト等において好ましい。
Note that when a photosensitive coating liquid is continuously applied to a substrate using a coating device, it is preferable to lead it to a continuous degassing and defoaming process.Moreover, when using an organic solvent, a degassing process in which almost no evaporation occurs is preferable. Degassing methods are preferred. Furthermore, as an apparatus for performing degassing and defoaming treatment, it is preferable to have a simple structure in terms of equipment cost, stability in long-term operation, maintainability, running cost, etc.

このような方法及び装置としては、多孔質性高分子膜を
用いる脱気脱泡装置がある。
As such a method and apparatus, there is a degassing and defoaming apparatus using a porous polymer membrane.

一般に従来多孔質性高分子膜よりなるチューブを用いた
脱気量fAは第4図にそのフローを示すように多孔質性
高分子膜のスパイラルチューブlが内蔵された減圧室2
と、この真空度を検出して制御回路3を介して上記減圧
室2の圧力を低下させる真空ポンプ4を作動あるいは停
止させる圧力センサー5によって構成されている。
In general, the amount of deaeration fA using a tube made of a porous polymer membrane is generally determined by the decompression chamber 2 containing a spiral tube l made of a porous polymer membrane, as shown in Fig. 4.
and a pressure sensor 5 that detects this degree of vacuum and operates or stops a vacuum pump 4 that lowers the pressure in the decompression chamber 2 via a control circuit 3.

上記脱気装置Aによって液体6等に溶存する気体、ある
いは含有される微細気泡を除去すること力咄来る。減圧
室2内をポンプ7を用い多孔質性高分子スパイラルチュ
ーブ内を所定速度で通過させる。液体から所望の溶存空
気をあるいは含有される微細気泡を脱気脱泡しながら処
理量を多くする方法としては特開昭59−216606
号公報。
The deaerator A is used to remove gas dissolved in the liquid 6, etc., or fine bubbles contained therein. The porous polymer spiral tube is passed through the vacuum chamber 2 using the pump 7 at a predetermined speed. A method for increasing the throughput while degassing desired dissolved air or contained fine bubbles from the liquid is disclosed in Japanese Patent Application Laid-Open No. 59-216606.
Publication No.

特開昭60−25514号公報を参考にして、チューブ
の材質、内径および肉厚を決定し、所望の溶存空気の脱
気量および処理量を満足するチューブ1本当りの長さを
求め、チューブを並列に配置した多管モジュールを作製
するのに必要な本数を決定することが出来る。
With reference to Japanese Patent Application Laid-open No. 60-25514, determine the material, inner diameter and wall thickness of the tube, find the length of each tube that satisfies the desired amount of dissolved air degassing and throughput, and It is possible to determine the number of pipes required to create a multi-tube module in which the pipes are arranged in parallel.

調整された感光性塗布液は、まず前述の超音波処理工程
において該液中に溶存する空気が微細気泡として析出さ
れる。どの位の溶存空気を析出させ微細気泡とするかは
、次の脱気脱泡工程において該気泡が脱泡される程度、
酸液が必要とする脱気程度、酸液の組成、塗布装置によ
って連続的に走行する基材に塗布された時の感光膜の形
状等によって決定される。このようにして析出した微細
気泡は次に多孔質性高分子膜チューブを用いた脱気脱泡
工程において、除去されるが、この時微細気泡として析
出されなかった残存溶存空気や、気泡の大きさにもよる
が超音波工程に流入して脱気工程に導かれた気泡も同時
に除去される。
In the prepared photosensitive coating liquid, air dissolved in the liquid is first precipitated in the form of fine bubbles in the above-mentioned ultrasonic treatment step. How much dissolved air is precipitated and turned into fine bubbles depends on the degree to which the bubbles are defoamed in the next degassing and defoaming step,
It is determined by the degree of degassing required by the acid solution, the composition of the acid solution, the shape of the photosensitive film when coated on a substrate that is continuously moved by a coating device, etc. The microbubbles precipitated in this way are then removed in a degassing process using a porous polymer membrane tube, but at this time, residual dissolved air that has not been precipitated as microbubbles and Depending on the process, air bubbles that flow into the ultrasonic process and are led to the degassing process are also removed at the same time.

以上の連続した工程で処理された該感光性塗布液は気泡
のない脱気された液となり、今度は空気を吸収溶解しや
すい杖態となる。従って該感光性塗布液中に溶存する空
気を上記2つの工程で連続して処理して少なくすればす
るほど空気を吸収溶解する能力が高い感光性塗布液とな
る。
The photosensitive coating liquid treated through the above-described continuous steps becomes a deaerated liquid without bubbles, and now takes on the form of a stick that easily absorbs and dissolves air. Therefore, the more the amount of air dissolved in the photosensitive coating liquid is reduced by successively performing the above two steps, the higher the ability of the photosensitive coating liquid to absorb and dissolve air will be.

どの位の溶存空気を除去するかは、前の超音波処理工程
で析出する微細気泡の量あるいは大きさ。
How much dissolved air is removed depends on the amount or size of the microbubbles that precipitate during the previous ultrasonic treatment process.

感光性塗布液の組成、必要とする脱気程度等によって決
定される。
It is determined by the composition of the photosensitive coating liquid, the degree of degassing required, etc.

このようにして処理された感光性塗布液は空気を吸収溶
解する能力が高いので、塗布装置までの流路の形態や滞
留時間にもよるが、例えばフィルター中に残存している
空気がある場合、それを吸収溶解し、塗布装置へ気泡が
流出するのを防止することが出来たり、大きな気泡が前
記超音波処理工程に誤って流入しても塗布装置までの流
路において例えばフィルター等でトラップされ、滞留す
れば同様に溶存空気として吸収溶解する。
The photosensitive coating liquid treated in this way has a high ability to absorb and dissolve air, so depending on the form of the flow path and residence time to the coating device, for example, if there is air remaining in the filter. By absorbing and dissolving the bubbles, it is possible to prevent the bubbles from flowing into the coating device, and even if large bubbles accidentally enter the ultrasonic treatment process, they can be trapped in the flow path to the coating device with a filter, etc. If it remains, it will be absorbed and dissolved as dissolved air.

弗酸感光性塗布液の液温上昇や剪断力による溶存空気の
気泡としての析出を防止することが出来、結果的にはこ
のような感光性塗布液を基材に塗布した時には縦すじ、
ピンホール、ブリスター等塗布−ヒの欠陥の発生を防止
出来るので均一な感光膜が得られる。
It is possible to prevent dissolved air from precipitating as bubbles due to temperature rise or shear force in the hydrofluoric acid photosensitive coating solution, and as a result, when such a photosensitive coating solution is applied to a substrate, vertical streaks,
Since coating defects such as pinholes and blisters can be prevented, a uniform photoresist film can be obtained.

次にこの発明を第2図に示す超音波処理装置及び第3図
に示す脱気脱泡装置にもとづいて説明する。
Next, the present invention will be explained based on the ultrasonic treatment apparatus shown in FIG. 2 and the degassing and defoaming apparatus shown in FIG. 3.

先ず第2図は、超音波処理装置の代表的なものを示して
いる。主は超音波処理装置で管軸を上下方向に保持され
た円又は多角形の管体9の外面に多数の超音波振動子1
0を管中心に向けて周方向に配置してなり、該管体9内
には下部に超音波処理される感光性塗布液11aの流入
口12a、上部に流出口12bを有する導液管13を設
けてい咳導液管13と前記管体9との間隙部14には一
定の温度、圧力に保持された温11iI¥15が満され
ている。16aは温調液15の注入口、16bは溢出口
である。該管体9の外側には多数の超音波振動子10を
保護する2護管17を設けられている。前記導液管13
は脱気装置の前に接続され、該導管13を下から上へ流
れる感光性塗布液11aはは、その周囲から中心に向け
て配置された多数の超音波振動子10により発生した超
音波が前記温調液15を伝播媒体として照射される。
First, FIG. 2 shows a typical ultrasonic processing apparatus. The main device is an ultrasonic processing device, in which a large number of ultrasonic transducers 1 are mounted on the outer surface of a circular or polygonal tube body 9 whose tube axis is held vertically.
0 is arranged in the circumferential direction toward the center of the tube, and inside the tube body 9 is a liquid guide tube 13 having an inlet 12a at the lower part for the photosensitive coating liquid 11a to be subjected to ultrasonic treatment, and an outlet 12b at the upper part. The gap 14 between the cough fluid conduit 13 and the tube body 9 is filled with a temperature 11iI\15 maintained at a constant temperature and pressure. 16a is an inlet for the temperature control liquid 15, and 16b is an overflow port. Two protection tubes 17 are provided on the outside of the tube body 9 to protect a large number of ultrasonic transducers 10. The liquid guide pipe 13
is connected in front of the deaerator, and the photosensitive coating liquid 11a flowing from the bottom to the top through the conduit 13 is exposed to ultrasonic waves generated by a large number of ultrasonic transducers 10 arranged from the periphery toward the center. Irradiation is performed using the temperature control liquid 15 as a propagation medium.

この時該感光性塗布液11aは、溶存空気を超音波の照
射によるキャビティージョンにより微細気泡16を析出
させられるので、多数の微細気泡を含んだ該塗布液11
bとなり流出口12bより一  流出する。
At this time, fine bubbles 16 are precipitated in the photosensitive coating liquid 11a by the cavity ion created by irradiating dissolved air with ultrasonic waves, so that the coating liquid 11a contains many fine bubbles.
b and flows out from the outlet 12b.

次に、第3図に示す脱気脱泡装置土産は、コア19のま
わりにスパイラル状に巻つけられ管状多孔質性高分子膜
からなる多数本のチューブ20で形成されたモジュール
21.減圧室22.多数の微細気泡17を含む感光性塗
布液の入口23a。
Next, the degassing and defoaming device souvenir shown in FIG. 3 is a module 21 which is formed of a large number of tubes 20 made of tubular porous polymer membranes wound in a spiral around a core 19. Decompression chamber 22. An inlet 23a for a photosensitive coating liquid containing a large number of microbubbles 17.

出口23b、排気管24.真空ポンプ25.圧力センサ
ー26.および制御回路27で構成され、モジエール2
1は減圧室22の中に内蔵されている。
Outlet 23b, exhaust pipe 24. Vacuum pump 25. Pressure sensor 26. and a control circuit 27.
1 is built in a decompression chamber 22.

チューブ20の出入口28a、28bはそれぞれ液の出
入口23a、23bに開口している。減圧室22は真空
ポンプ25により排気管24を逼り排気され、圧力セン
サー26および制御回路27により所望の真空度に保た
れる。感光性塗布液11bは液入口23aより供給され
チューブの入口28aへ導かれコア19にスパイラル状
に巻かれた内径6−程度のチューブ20の中を通過する
間に、該感光性塗布液11bの中の溶存空気は拡散によ
って脱気されると同時に微細気泡は遠心力により該塗布
液の中でスパイラル外側のチューブの内壁に移動しチュ
ーブ外に除去され、モジュール21の出口28bへと到
達し、脱気脱泡された感光性塗布液11cとなる。モジ
ュール21の中を通過する間に除去された溶存空気およ
び微細気泡は減圧室22の真空度を低下させるが、この
時圧力センサー26が真空度を検出して、制御回路27
により真空ポンプ25を作動させ、減圧室22を所望の
真空度に保つようにする。
Inlets and outlets 28a and 28b of the tube 20 open to liquid inlets and outlets 23a and 23b, respectively. The decompression chamber 22 is evacuated by a vacuum pump 25 through an exhaust pipe 24, and is maintained at a desired degree of vacuum by a pressure sensor 26 and a control circuit 27. The photosensitive coating liquid 11b is supplied from the liquid inlet 23a, guided to the tube inlet 28a, and passed through the tube 20 with an inner diameter of approximately 6 mm, which is spirally wound around the core 19. The dissolved air inside is degassed by diffusion, and at the same time, the microbubbles move within the coating liquid to the inner wall of the spiral outer tube due to centrifugal force, are removed outside the tube, and reach the outlet 28b of the module 21. A degassed and defoamed photosensitive coating liquid 11c is obtained. Dissolved air and microbubbles removed while passing through the module 21 reduce the degree of vacuum in the decompression chamber 22, but at this time the pressure sensor 26 detects the degree of vacuum and the control circuit 27
The vacuum pump 25 is operated to maintain the decompression chamber 22 at a desired degree of vacuum.

なおモジュール21を形成するスパイラル状多孔質性高
分子膜チューブは、その材質がポリ四フフ化エチレン樹
脂であり、内径6m、肉厚は0.25鵬のものが用いら
れているが、耐圧力性を向上させるため、このチューブ
の外側にポリ四フッ化エチレン樹脂製の補強材を設け、
複合形としている。
The material of the spiral porous polymer membrane tube that forms the module 21 is polytetrafluoroethylene resin, and the inner diameter is 6 m and the wall thickness is 0.25 mm. In order to improve the durability, a reinforcing material made of polytetrafluoroethylene resin is provided on the outside of this tube.
It is a composite form.

以上超音波処理装置及び脱気装置について説明したが、
超音波処理装置およびそれに続く脱気脱泡装置からなる
感光性塗布液処理装置は導液管内及びチューブ内で処理
がされることにより被処理液の流れが一様となり、液の
よどみを作ることなく、管内及びチューブ内液の置換性
の向−ヒに寄与するものである。
The ultrasonic treatment device and deaeration device have been explained above,
The photosensitive coating liquid processing device, which consists of an ultrasonic treatment device and a subsequent degassing and defoaming device, processes the liquid in the liquid conduit and tube, so that the flow of the liquid to be treated is uniform and no stagnation occurs. This contributes to improving the displacement of the fluid inside the tube and inside the tube.

さらに導液管13内及びチューブ20内で処理される結
果、特別な洗浄装置なしに単に洗浄液を流すだけで容易
に洗浄出来る。
Further, as a result of the processing inside the liquid conduit 13 and the tube 20, it can be easily cleaned by simply flowing the cleaning liquid without a special cleaning device.

第1図は上記効果を確認するための実験装置のフローを
示すもので図中、29は調製タンク、30はポンプ、8
は超音波処理装置、18は脱気脱泡装置である。
Figure 1 shows the flow of the experimental equipment used to confirm the above effects. In the figure, 29 is a preparation tank, 30 is a pump, and 8
1 is an ultrasonic treatment device, and 18 is a degassing and defoaming device.

感光性塗布液11はポンプ30により攪拌機31が設け
られた調製タンク29から吸引され超音波処理装置8を
通り、脱気脱泡装置18に供給される。
The photosensitive coating liquid 11 is sucked by a pump 30 from a preparation tank 29 provided with an agitator 31, passes through an ultrasonic treatment device 8, and is supplied to a degassing and defoaming device 18.

しかして超音波処理装置8と脱気脱泡装置18の間及び
脱気脱泡袋N18の出側の配管に気泡検出132.33
をとりつけ、気泡検出器33の上側配管から流出する該
塗布液をサンプリングし、脱気程度を調べる。
Therefore, air bubbles were detected between the ultrasonic processing device 8 and the degassing device 18 and in the piping on the outlet side of the degassing and defoaming bag N18.
is attached, and the coating liquid flowing out from the upper piping of the bubble detector 33 is sampled to check the degree of deaeration.

これにより脱気能力及び脱泡能力を評価しようとするも
のである。
This is intended to evaluate the degassing ability and defoaming ability.

〔実 施 例〕〔Example〕

以下本発明の実施態様を具体的な1実施例によって述べ
るが、これらの実施例は何ら本発明の範囲を限定するも
のではない。
The embodiments of the present invention will be described below with reference to one specific example, but these examples are not intended to limit the scope of the present invention in any way.

実路例−1〜2.比較例−1,2,3 第1図の実験装置を用い第1表に組成と物性を示す感光
性塗布液(液温20 ’C)の処理を実施した。
Actual road example-1 to 2. Comparative Examples 1, 2, 3 A photosensitive coating liquid (liquid temperature: 20'C) whose composition and physical properties are shown in Table 1 was processed using the experimental apparatus shown in FIG.

第   1   表 ■  音波処理装置の仕様及び条件 8M4音波振動子  周波数  40KHzb導液管 
    長さ  800+w内径  175mm 管内圧0.1〜0.3 kg/c4 ゲージ圧 C温調液     温度   20′c圧力   0.
5kg/cイ ゲージ圧 流量   1ffi/分 ■ 脱気脱泡装置の仕様及び条件 aJ圧真空度       30Torr 160To
rrbチユーブ    材質 ポリ四フッ化エチレン樹
脂 内径  6.〇− 肉厚  0.25閣 上記条件にて感光性塗布液の通過流量を変化させ、超音
波処理装置と脱気脱泡装置の間および脱気脱泡装置の出
側の気泡検出器の検出信号を比較した結果を第2表に示
す。
Table 1 ■ Specifications and conditions of the sonic processing device 8M4 sonic vibrator Frequency 40KHzb Liquid conduit
Length 800+w Inner diameter 175mm Pipe pressure 0.1-0.3 kg/c4 Gauge pressure C temperature control liquid Temperature 20'c Pressure 0.
5kg/c gauge Pressure flow rate 1ffi/min Specifications and conditions of degassing device aJ pressure Vacuum degree 30Torr 160To
rrb tube Material Polytetrafluoroethylene resin Inner diameter 6. 〇- Wall thickness: 0.25cm Under the above conditions, change the flow rate of the photosensitive coating liquid and detect the air bubbles between the ultrasonic processing device and the degassing device and on the outlet side of the degassing and defoaming device. Table 2 shows the results of signal comparison.

さらに感光性塗布液の脱気度を調べるため気泡検出器3
3の出側の配管から脱気液をサンプリングして溶存酸素
濃度を溶存酸素濃度計で測定した。
Furthermore, a bubble detector 3 was used to check the degree of deaeration of the photosensitive coating liquid.
The degassed liquid was sampled from the outlet pipe of No. 3, and the dissolved oxygen concentration was measured using a dissolved oxygen concentration meter.

脱気度を表す言葉として「相対溶存空気〒」を次のよう
に定義する。
"Relative dissolved air" is defined as a term expressing the degree of deaeration as follows.

相対溶存空気量100パーセントとは、ある温度(この
場合は20 ’C)で脱気すべき液体を充分攪拌し、溶
存空気を飽和させ、溶存酸素濃度を溶存酸素濃度計で測
定した時にそれが示す値を言い、脱気された液体の溶存
空気量については、該脱気液体を脱気される前の飽和溶
存空気含有の液体と同じ温度(この場合は20°C)に
し、同様に溶存酸素濃度を溶存酸素濃度計で測定し、こ
の時の値を相対溶存空気1100パーセントの液に対す
る相対値として表し、相対溶存空気量と呼びパーセント
で表示する。従って相対溶存空気量が小さいほど、脱気
度は高いと言える。
100% relative dissolved air content means that the liquid to be degassed is sufficiently stirred at a certain temperature (20'C in this case) to saturate the dissolved air, and the dissolved oxygen concentration is measured using a dissolved oxygen meter. Regarding the amount of dissolved air in the degassed liquid, the degassed liquid is brought to the same temperature as the liquid containing saturated dissolved air before being degassed (20°C in this case), and the amount of dissolved air is The oxygen concentration is measured with a dissolved oxygen concentration meter, and the value at this time is expressed as a relative value for a liquid with relative dissolved air of 1100%, and is called the relative dissolved air amount and expressed as a percentage. Therefore, it can be said that the smaller the relative amount of dissolved air, the higher the degree of deaeration.

第   2   表 第  2  表(つヌき) Δ・・・入側検出信号に比べ出側検出信号はやや少ない ◇・・・入側検出信号に比べ出側検出信号はかなり少な
い O・・・出側検出信号は極少ない(1〜100回/10
分間 ◎・・・出側検出信号は全くなし 第2表かられかるように脱気脱泡処理を施す前に超音波
処理を施すことは、単に脱気脱泡処理を施すよりも相対
溶存空気量を少なくできることがわかる。
Table 2 Table 2 (Tsunuki) Δ... Output detection signal is slightly smaller than the incoming detection signal ◇... Outgoing detection signal is considerably smaller than the incoming detection signal O... Output There are very few side detection signals (1 to 100 times/10
Minutes ◎...No output detection signal As shown in Table 2, applying ultrasonic treatment before degassing and defoaming is more effective than simply degassing and defoaming. It turns out that the amount can be reduced.

ただし超音波処理装置の出力をあげると相対溶存空気〒
も低下するが、脱泡性は悪くなることもわかる。
However, if the output of the ultrasonic treatment device is increased, the relative dissolved air
However, it can also be seen that the defoaming properties become worse.

従って超音波処理装置の出力を適当に選ぶことにより、
適正な感光性塗布液を得ることが出来ることが推定され
る。
Therefore, by appropriately selecting the output of the ultrasonic processing device,
It is presumed that an appropriate photosensitive coating liquid can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る感光性塗布液の処理方法
は、鋼装した感光性塗布液を塗布工程に導く前に該塗布
液に超音波を照射し、該塗布液中に含まれる溶存空気を
微細気泡として析出させ、ひき続いて微細気泡を液中に
析出させた該塗布液を多孔質性高分子膜チューブの内側
を通し該チューブの外側を減圧し、該塗布液中の微細気
泡及び溶存空気を同時に除去することを特徴とする感光
性塗布液の処理方法により、従来技術に比べ脱気脱泡装
置を簡単にして洗浄ロスも少くすることが出来る。
As described above, the method for treating a photosensitive coating liquid according to the present invention involves irradiating the coating liquid with ultrasonic waves before introducing the steel-clad photosensitive coating liquid to the coating process, and removing dissolved substances contained in the coating liquid. Air is precipitated as microbubbles, and then the coating solution in which microbubbles are precipitated in the solution is passed through the inside of a porous polymer membrane tube and the pressure is reduced on the outside of the tube to remove the microbubbles in the coating solution. By using a method for processing a photosensitive coating liquid, which is characterized by simultaneously removing dissolved air and dissolved air, it is possible to simplify the degassing and defoaming equipment and reduce cleaning loss compared to conventional techniques.

従って実際の長時間連続した塗布工程において、本発明
による処理を施された感光性塗布液は気泡の溶解吟収能
力がもともと高いので気泡の流出や析出がなく、さらに
怒光膜形成後のブリスターの発生を防止できそれによっ
て形成された怒光膜は均一なものにすることが出来る。
Therefore, in the actual long-term continuous coating process, the photosensitive coating liquid treated according to the present invention has a high ability to dissolve and absorb bubbles, so there is no outflow or precipitation of bubbles, and there is no blister formation after the formation of an angry light film. This can prevent the occurrence of irradiation, thereby making it possible to make the formed angry light film uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実験装置の1実施例の概略説明図、第
2図は本発明で溶存空気を析出させるのに用いる超音波
処理装置の1例の概略断面図、第3図は本発明で微細気
泡及び溶存空気の除去に用いる脱気脱泡装置の1実施例
の概略説明図、第4図は本発明にも適用可能な従来の多
孔質性高分子膜からなるチューブを用いた脱気装置の一
般的な概略断面図である。 l・・・超音波処理装置 9・・・管体 】O・・・超音波振動子 12a・・・流入口 12b・・・流出口13・・・導
液管  14・・・間隔部■・・・脱気脱泡¥を置 20・・・多孔質性高分子膜チューブ 22・・・減圧室  25・・・真空ポンプ26・・・
圧力センサー  。 27・・・制御回IPr 29・・・調製タンク30・
・・ポンプ  31・・・攪拌機32.33・・・気泡
検出器 34・・・圧力計 (ほか 3名) 第  1  図 第2図 1b lba:;iamIkλ口    11a:6t、It
;i/r1M″J3図
Fig. 1 is a schematic explanatory diagram of one embodiment of the experimental apparatus of the present invention, Fig. 2 is a schematic cross-sectional view of an example of the ultrasonic processing apparatus used to precipitate dissolved air in the present invention, and Fig. 3 is a schematic explanatory diagram of one embodiment of the experimental apparatus of the present invention. A schematic explanatory diagram of one embodiment of the degassing and defoaming device used in the invention to remove microbubbles and dissolved air, FIG. FIG. 1 is a general schematic cross-sectional view of a deaerator. l... Ultrasonic processing device 9... Pipe body] O... Ultrasonic vibrator 12a... Inlet 12b... Outlet 13... Liquid guiding pipe 14... Interval part ■- ...Deaeration and defoaming ¥20...Porous polymer membrane tube 22...Decompression chamber 25...Vacuum pump 26...
pressure sensor . 27... Control cycle IPr 29... Preparation tank 30.
... Pump 31... Stirrer 32. 33... Bubble detector 34... Pressure gauge (3 others) Fig. 1 Fig. 2 Fig. 1b lba:;iamIkλ port 11a: 6t, It
;i/r1M″J3 diagram

Claims (1)

【特許請求の範囲】[Claims] 調製した感光性塗布液を塗布する前に該塗布液に超音波
を照射し該塗布液中に含まれる溶存空気を微細気泡とし
て液中に析出させ、ひき続いて微細気泡を液中に析出さ
せた塗布液を多孔質性高分子膜チューブの内側に通し該
チューブの外側を減圧し、該塗布液中の微細気泡及び溶
存空気を同時に除去することを特徴とする感光性塗布液
の処理方法。
Before applying the prepared photosensitive coating liquid, the coating liquid is irradiated with ultrasonic waves to cause the dissolved air contained in the coating liquid to be precipitated into the liquid as fine bubbles, and subsequently, the fine bubbles are precipitated into the liquid. A method for processing a photosensitive coating solution, which comprises passing the coating solution through the inside of a porous polymer membrane tube and reducing the pressure on the outside of the tube to simultaneously remove microbubbles and dissolved air in the coating solution.
JP2135588A 1988-02-02 1988-02-02 Treatment of photosensitive coating solution Pending JPH01199607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135588A JPH01199607A (en) 1988-02-02 1988-02-02 Treatment of photosensitive coating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135588A JPH01199607A (en) 1988-02-02 1988-02-02 Treatment of photosensitive coating solution

Publications (1)

Publication Number Publication Date
JPH01199607A true JPH01199607A (en) 1989-08-11

Family

ID=12052786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135588A Pending JPH01199607A (en) 1988-02-02 1988-02-02 Treatment of photosensitive coating solution

Country Status (1)

Country Link
JP (1) JPH01199607A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169304A (en) * 1989-11-28 1991-07-23 Nitto Denko Corp Spiral type degassing membrane module
JPH03193106A (en) * 1989-12-25 1991-08-22 Fuji Photo Film Co Ltd Method and apparatus for degassing and defoaming liquid
JPH03224602A (en) * 1990-01-31 1991-10-03 Suido Kiko Kk Device for adjusting dissolved gas concentration in liquid
JP2000176261A (en) * 1998-12-11 2000-06-27 Fuji Photo Film Co Ltd Method for deaerating water-based coating liquid
JP2003080005A (en) * 2001-06-28 2003-03-18 Fuji Photo Film Co Ltd Defoaming apparatus and defoaming method
US6648943B2 (en) * 2001-12-21 2003-11-18 Eastman Kodak Company Integrated use of deaeration methods to reduce bubbles and liquid waste
JP2013092686A (en) * 2011-10-26 2013-05-16 Shin Etsu Chem Co Ltd Production method of lithographic resist composition
JP2019532212A (en) * 2016-10-14 2019-11-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Degassing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169304A (en) * 1989-11-28 1991-07-23 Nitto Denko Corp Spiral type degassing membrane module
JPH03193106A (en) * 1989-12-25 1991-08-22 Fuji Photo Film Co Ltd Method and apparatus for degassing and defoaming liquid
JPH03224602A (en) * 1990-01-31 1991-10-03 Suido Kiko Kk Device for adjusting dissolved gas concentration in liquid
JP2000176261A (en) * 1998-12-11 2000-06-27 Fuji Photo Film Co Ltd Method for deaerating water-based coating liquid
JP2003080005A (en) * 2001-06-28 2003-03-18 Fuji Photo Film Co Ltd Defoaming apparatus and defoaming method
US6648943B2 (en) * 2001-12-21 2003-11-18 Eastman Kodak Company Integrated use of deaeration methods to reduce bubbles and liquid waste
JP2013092686A (en) * 2011-10-26 2013-05-16 Shin Etsu Chem Co Ltd Production method of lithographic resist composition
JP2019532212A (en) * 2016-10-14 2019-11-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Degassing device
US11111911B2 (en) 2016-10-14 2021-09-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Degassing apparatus

Similar Documents

Publication Publication Date Title
US3904392A (en) Method of and apparatus for debubbling liquids
KR101907351B1 (en) Liquid treatment method and removal system of gas in filter
US7638052B2 (en) Polysulfone-based hollow-fiber membrane with selective permeability
US7837042B2 (en) Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
US6648943B2 (en) Integrated use of deaeration methods to reduce bubbles and liquid waste
US6620226B2 (en) Bubble elimination tube with acutely angled transducer horn assembly
JPH0657302B2 (en) Backwashing method for hollow fiber membrane filters
JPH01199607A (en) Treatment of photosensitive coating solution
JPH05192658A (en) System for purifying water by reverse osmosis and degassing the same
WO2017045354A1 (en) Bubble removing system
JP5320665B2 (en) Ultrapure water production apparatus and method
FI121149B (en) Method and apparatus for degassing the coating material
WO2017073347A1 (en) Bubble liquid concentration device, bubble liquid concentration method, and device for generating highly dense fine bubble liquid
JP2961665B2 (en) Degassing and degassing of liquid
JPS63178843A (en) Treatment of photosensitive coating liquid
JPS63178807A (en) Treatment of photosensitive coating liquid
JPS6243722B2 (en)
JP4205318B2 (en) Filter medium processing method in liquid flow path
JP3516175B2 (en) Degassing method
JPH04122403A (en) Feeder of liquid and defoaming method
JP2821887B2 (en) Ultrasonic cleaning equipment
JPH0759283B2 (en) Degassing / defoaming device
JPS5862637A (en) Method and device for defoaming
JPH059042Y2 (en)
JPH06130547A (en) Method for deforming photographic coating solution