JPH01199191A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
JPH01199191A
JPH01199191A JP63024170A JP2417088A JPH01199191A JP H01199191 A JPH01199191 A JP H01199191A JP 63024170 A JP63024170 A JP 63024170A JP 2417088 A JP2417088 A JP 2417088A JP H01199191 A JPH01199191 A JP H01199191A
Authority
JP
Japan
Prior art keywords
reactor
control rods
control rod
rods
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024170A
Other languages
Japanese (ja)
Inventor
Yukihisa Fukazawa
深沢 幸久
Akira Nishimura
章 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63024170A priority Critical patent/JPH01199191A/en
Publication of JPH01199191A publication Critical patent/JPH01199191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable a realization of a high burn up reactor, by using boron as a neutron absorbing material of control rods for a reactor shut down and hafnium as a neutron absorbing material of control rods for an output power regulation of a nuclear reactor. CONSTITUTION:Control rods 5B can be easily exchanged with new control rods because there are no upper grid plates 14. Therefore, the control rods 5B are used as control rods for output power regulation of a nuclear reactor, in which a neutron absorbing material is rapidly consumed. Hafnium is used as a neutron absorbing material of this control rods 5B and therewith a life extension of the control rods can be attained. On the other hand, it is pretty hard for control rods 5A to be taken out from a reactor core and to be exchanged with new ones due to the existence of grid plates 14 above them. Therefore, the control rods 5A are used as control rods which is used during a full life of the reactor. As a neutron absorbing material for the control rods 5A, a boron carbide (B4C) is used. With a usage of the B4C, a high burn up reactor with an enough reactor shut off margin can be realized.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、原子炉に係り、特に高燃焼度の沸騰水型原子
炉として好適な原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear reactor, and particularly to a nuclear reactor suitable as a high burnup boiling water reactor.

[従来の技術] 沸騰水型原子炉においては、減速材と冷却材の働きをす
る水が、チャンネルボックス内側の2相流部分と、チャ
ンネルボックス外側の飽和水部分の2つの領域に分かれ
て存在する。現行の限られた空間の中で、これら2つの
領域の面積割合に対する最適値は、評価する対象により
異なる。
[Prior art] In a boiling water reactor, water that acts as a moderator and coolant exists in two regions: a two-phase flow region inside the channel box and a saturated water region outside the channel box. do. In the current limited space, the optimal value for the area ratio of these two regions varies depending on the target to be evaluated.

沸騰水型原子炉において、燃料の高燃焼度化を図り燃料
の寿命延長、省クラン等の対策を通じて燃料経済性を向
上させるには、燃料集合体の中に非沸騰領域つまり多数
本のクォータロッドを配置する方法(この−例として特
開昭61−118689号公報は、燃料集合体内のクォ
ータロッドの本数を増加させ、また、制御棒を燃料集合
体の1つのコーナ部にのみ直接隣接するように配置した
沸騰水型原子炉を開示している。)、燃料集合体内のウ
ラン装荷量を従来より増加させる方法、格子の構成数を
増加させる方法などが考えられる。
In a boiling water reactor, in order to improve fuel economy through measures such as increasing the burnup of the fuel, extending the fuel life, and reducing combustion, it is necessary to create a non-boiling region in the fuel assembly, that is, a large number of quarter rods. (For example, Japanese Patent Application Laid-Open No. 118689/1989 discloses a method of arranging control rods by increasing the number of quarter rods in the fuel assembly and placing the control rods directly adjacent to only one corner of the fuel assembly. ), a method of increasing the amount of uranium loaded in the fuel assembly compared to the conventional method, a method of increasing the number of lattice structures, etc. can be considered.

[発明が解決しようとする課題] しかしながら、従来のチャンネルボックスの大きさで燃
料集合体の中に多数本のクォータロッドを配置すると、
ぬれぶち面積の増加と冷却材流路面積の減少で、圧損が
大幅に上昇するとともに、燃料棒間隔接近により、冷却
能力が低下する問題がある。また、従来のチャンネルボ
ックスの大きさでウラン装荷量を増加させると、冷却材
による圧損の増加と冷却能力の低下を招くことになる。
[Problem to be solved by the invention] However, when a large number of quarter rods are arranged in a fuel assembly with the size of a conventional channel box,
An increase in the wetted area and a decrease in the area of the coolant flow path causes a significant increase in pressure loss, and there is a problem in that the cooling capacity decreases due to the closer spacing of the fuel rods. In addition, increasing the amount of uranium loaded with the conventional channel box size will result in an increase in pressure loss due to the coolant and a decrease in cooling capacity.

また、従来のチャンネルボックスの大きさで格子の構成
数を増加させると、やはり圧損の増加と冷却能力の低下
は避けられなかった。
Furthermore, when increasing the number of grids in a conventional channel box, an increase in pressure loss and a decrease in cooling capacity were unavoidable.

特開昭81−118689号公報に示された沸騰水型原
子炉は、ある程度の燃料経済性の向上及び高燃焼度化を
図ることができるが、しかし、現時点においては、燃焼
度が70GWd/を程度に達する高燃焼度の原子炉(高
燃焼炉)が要求されており、上記の従来技術を適用して
もこの課題の達成は不可能である。
The boiling water reactor disclosed in Japanese Patent Application Laid-open No. 81-118689 can improve fuel economy to some extent and achieve a high burnup, but at present, the burnup is less than 70 GWd/. There is a need for a nuclear reactor (high burnup reactor) with a high burnup that can reach a certain level, and it is impossible to achieve this goal even by applying the above-mentioned conventional technology.

高燃焼炉を実現するためには、燃料集合体中のウォータ
ロッド領域をさらに増加させ中性子スペクトルを一層ソ
フト(熱中性子の平均速度を遅くする)にする必要があ
る。従来の燃料集合体の大きさのままで、ウォータロッ
ド領域を増加する場合には、その分だけ燃料集合体当り
のウラン装荷量が減少してしまい、燃料経済性の向上が
あまり期待できないと言う問題があった。特開昭61−
1188139号公報の沸騰水型原子炉も、燃料集合体
内のつオータロラドを増して中性子スペクトルのソフト
化を図るものであるが、達成できる燃焼度は約40 G
Wd/を程度が限界となる また、高燃焼炉では、燃料集合体の濃縮度がさらに高く
なるので中性子スペクトルが従来よりも硬化する。従っ
て、特開昭61−118689号公報の構造を高燃焼炉
に適用した場合には、制御棒価値が不足する。高燃焼炉
の実現のためには、核***性物質の濃縮度の増大に伴う
中性子スペクトルの硬化による制御棒価値の低下に対す
る対策及び硬化した中性子スペクトルのソフト化に対す
る対策が必要である。
In order to realize a high combustion reactor, it is necessary to further increase the water rod area in the fuel assembly and to soften the neutron spectrum (lower the average velocity of thermal neutrons). If the water rod area is increased while the size of the conventional fuel assembly remains the same, the amount of uranium loaded per fuel assembly will decrease by that amount, making it difficult to expect much improvement in fuel economy. was there. Unexamined Japanese Patent Publication 1986-
The boiling water reactor disclosed in Publication No. 1188139 also aims to soften the neutron spectrum by increasing the number of autororads in the fuel assembly, but the burnup that can be achieved is approximately 40 G.
In addition, in a high combustion furnace, the enrichment degree of the fuel assembly becomes even higher, so that the neutron spectrum becomes harder than in the past. Therefore, when the structure of JP-A-61-118689 is applied to a high combustion reactor, the control rod value is insufficient. In order to realize a high combustion reactor, it is necessary to take measures against the decrease in the value of control rods due to the hardening of the neutron spectrum due to the increase in the enrichment of fissile material, and against the softening of the hardened neutron spectrum.

さらに、高燃焼炉においては、各サイクルでの運転日数
として現行沸騰水型原子炉の12ケ月の1.5倍の18
ケ月運転が考えられている。そのため、放射性廃棄物と
なる使用済み制御棒の発生本数を低減させる必要がある
Furthermore, high combustion reactors require 18 days of operation in each cycle, which is 1.5 times the 12 months of current boiling water reactors.
Monthly driving is being considered. Therefore, it is necessary to reduce the number of used control rods that become radioactive waste.

本発明の目的は、十分な制御棒価値を有し、且つ、使用
済制御棒の発生本数を低減させ且高燃焼化を可能にした
原子炉を提供することにある。
An object of the present invention is to provide a nuclear reactor that has sufficient control rod value, reduces the number of spent control rods, and enables high burnup.

[課題を解決するための手段] 本発明は、複数の燃料集合体が装荷されてなる炉心と、
前記炉心内の前記燃料集合体間に挿入される複数の断面
十字型の制御棒とを有し、前記夫々の燃料集合体の対角
線方向に対向する2つのコーナ部に直接隣接するように
前記制御棒がそれぞれ配置され、夫々4体の前記燃料集
合体の上端部が挿入される大きさの升目を有する格子状
の上部炉心支持部材を設けた原子炉において、前記燃料
集合体に直接隣接する前記制御棒のうち、自身の上方に
前記上部炉心支持部材が存在する制御棒を原子炉停止用
制御棒とし、その中性子吸収材としてホウ素を用い、他
方、自身の上方に前記上部炉心支持部材が存在しない制
御棒を原子炉出力調節用制御棒とし、その中性子吸収材
としてハフニウムを用いたことを特徴とする。
[Means for Solving the Problems] The present invention provides a reactor core loaded with a plurality of fuel assemblies,
a plurality of control rods having a cross-shaped cross section inserted between the fuel assemblies in the reactor core, and the control rods are arranged so as to be directly adjacent to two diagonally opposite corners of each of the fuel assemblies. In a nuclear reactor provided with a lattice-like upper core support member in which rods are arranged and each has a grid-like square having a size into which the upper end portions of the four fuel assemblies are inserted, Among the control rods, the control rod in which the upper core support member exists above itself is used as a control rod for reactor shutdown, boron is used as its neutron absorbing material, and on the other hand, the above-mentioned upper core support member exists above itself. The main feature of this system is that the control rods used in this system are used as control rods for adjusting the reactor output, and hafnium is used as the neutron absorbing material.

[作 用] 燃料集合体の対角線方向に対向する2つのコーナ部に直
接隣接するように断面十字型の制御棒がそれぞれ配置さ
れるので、この十字型の制御棒を構成するブレードの翼
長を長くでき、制御棒価値を増加できる。
[Function] Since control rods each having a cross-shaped cross section are arranged directly adjacent to two diagonally opposite corners of the fuel assembly, the wing length of the blades constituting this cross-shaped control rod can be It can be lengthened and the control rod value can be increased.

中性子照射量の多い原子炉出力調節用制御棒には、交換
が容易にできる上部炉心支持部材下にない制御棒を用い
る。この制御棒の中性子吸収材はHe  (ハフニウム
)なので、従来の84G制御棒に比較して、約3〜5倍
の寿命を持ち、従って、運転期間の長い高燃焼炉におい
ても使用済み制御棒(放射性廃棄物)の発生本数を低減
できる。
Control rods that are not located under the upper core support member and can be easily replaced are used as control rods for adjusting reactor power that receive a large amount of neutron irradiation. Since the neutron absorbing material of this control rod is He (hafnium), it has a lifespan approximately 3 to 5 times longer than that of a conventional 84G control rod. It is possible to reduce the number of radioactive waste (radioactive waste) generated.

上部炉心支持部材下にある制御棒は交換しにくいので、
出力運転時に使用しないで炉停止用にのみ使用する制御
棒とする。従って、原子炉が寿命(30〜40年)にな
るまで使用しても、この制御棒の受ける中性子照射量は
、出力調節用制御棒が寿命中に受ける照射量より約2相
手さい。この制御棒としては、冷温時でも十分大きな制
御棒価値を与える84C(ボロンカーバイト)制御棒が
適している。更に、84G制御棒は、He制御棒に比べ
、吸収材のコストが安く、さらに、重量も軽いので、制
御棒駆動系に対する負担も少さく、制御棒駆動系を単純
化できる可能性もある。
The control rods under the upper core support member are difficult to replace, so
The control rod is not used during power operation and is used only for reactor shutdown. Therefore, even if the reactor is used until the end of its lifespan (30 to 40 years), the amount of neutron irradiation received by the control rods is about 2 times the amount of irradiation received by the power adjustment control rods during their lifespan. As this control rod, an 84C (boron carbide) control rod is suitable as it provides a sufficiently large control rod value even in cold temperatures. Furthermore, compared to He control rods, 84G control rods have lower absorption material costs and are also lighter in weight, so there is less burden on the control rod drive system, and there is a possibility that the control rod drive system can be simplified.

[実施例] 沸騰水型原子炉に適用した本発明の好適な一実施例を図
面に基づいて説明する。
[Embodiment] A preferred embodiment of the present invention applied to a boiling water reactor will be described based on the drawings.

本実施例の沸騰水型原子炉は、第2図に示すように、原
子炉圧力容器10、燃料集合体IAを装荷してなる炉心
11及びインターナルポンプ16を有している。炉心シ
ュラウド12が、原子炉圧力容器10内に配置されて原
子炉圧力容器10に取付けられている。インターナルポ
ンプ16は原子炉圧力容器10と炉心シュラウド12と
の間に配置され、原子炉圧力容器10の底部に設置され
る。炉心下部支持板13は、炉心シュラウド12の下端
部に取付けられ、しかも炉心シュラウド12内に配置さ
れる。複数の燃料支持金具15が炉心下部支持板13を
貫通して炉心下部支持板13に設置される。他方、上部
格子板14が炉心シュラウド12内に配置され、炉心シ
ュラウド12に取付けられる。炉心下部支持板13より
下方の下部ブレナム17内に、多数の制御棒案内管18
が設置されている。制御棒駆動装置ハウジング19が、
原子炉圧力容器10の底部に取付けられている。制御棒
5A、5Bは、該当する制御棒案内管18内に設置され
、制御棒駆動装置ハウジング19内に設置された制御棒
駆動装置(図示せず)に連絡されている。20は気水分
離器、21はドライヤである。
As shown in FIG. 2, the boiling water reactor of this embodiment includes a reactor pressure vessel 10, a reactor core 11 loaded with fuel assemblies IA, and an internal pump 16. A core shroud 12 is disposed within and attached to the reactor pressure vessel 10 . Internal pump 16 is disposed between reactor pressure vessel 10 and reactor core shroud 12 and installed at the bottom of reactor pressure vessel 10 . The core lower support plate 13 is attached to the lower end of the core shroud 12 and is disposed within the core shroud 12 . A plurality of fuel support fittings 15 pass through the core lower support plate 13 and are installed on the core lower support plate 13 . On the other hand, an upper grid plate 14 is disposed within and attached to core shroud 12 . A large number of control rod guide tubes 18 are installed in the lower brenum 17 below the core lower support plate 13.
is installed. The control rod drive housing 19 is
It is attached to the bottom of the reactor pressure vessel 10. The control rods 5A, 5B are installed in the corresponding control rod guide tubes 18 and communicated with a control rod drive (not shown) installed in the control rod drive housing 19. 20 is a steam/water separator, and 21 is a dryer.

炉心11内における燃料集合体IA及び制御棒5A及び
5Bの配置関係を第3図により説明する。第3図に示す
ように、燃料集合体IAの対向する一対のコーナ部に面
した位置に2本の十字型の制御棒5A及び5Bが挿入さ
れる。すべての制御棒5A及び5Bが炉心11内に挿入
された時、炉心11内の燃料集合体IAは、2本の制御
棒5A及び5Bによって直接挟まれる形となる。
The arrangement relationship of the fuel assembly IA and the control rods 5A and 5B in the reactor core 11 will be explained with reference to FIG. As shown in FIG. 3, two cross-shaped control rods 5A and 5B are inserted at positions facing a pair of opposing corners of the fuel assembly IA. When all the control rods 5A and 5B are inserted into the reactor core 11, the fuel assembly IA in the reactor core 11 is directly sandwiched between the two control rods 5A and 5B.

燃料集合体IAは、特開昭61−1111689号公報
の沸騰水型原子炉で使用される燃料集合体6(破線で表
示)に対して一辺の長さで約ff倍、横断面積で2倍に
大型化されている。本実施例での制御棒の配列ピッチは
、特開昭61−118689号公報の沸騰水型原子炉の
制御棒7(破線)の配列ピッチと同一である。しかし、
燃料集合体IAならびに制御棒5A及び5Bの配置角度
は、従来の燃料集合体6および制御棒7に対して45°
回転させている。
The fuel assembly IA is approximately ff times the length of one side and twice the cross-sectional area of the fuel assembly 6 (indicated by a broken line) used in the boiling water reactor of JP-A No. 61-1111689. It has been enlarged to. The arrangement pitch of the control rods in this embodiment is the same as the arrangement pitch of the control rods 7 (broken line) of a boiling water reactor disclosed in Japanese Patent Application Laid-open No. 118689/1989. but,
The arrangement angle of the fuel assembly IA and control rods 5A and 5B is 45° with respect to the conventional fuel assembly 6 and control rods 7.
It's rotating.

次に、本実施例に用いられる燃料集合体IAの詳細構造
を第4図により説明する。燃料集合体IAは横断面が正
方形状をしている角筒であるチャンネルボックス4内に
多数の燃料棒3及び9木の大径のクォータロッド2を配
置することによ?て構成される。燃料集合体IAは、図
示されていないが上部タイブレート及び下部タイプレー
トを有している。燃料棒3及びウォータロッド2の両端
部は、上部及び下部タイブレートに保持される。チャン
ネルボックス4は、上部タイブレートに取付けられる。
Next, the detailed structure of the fuel assembly IA used in this embodiment will be explained with reference to FIG. The fuel assembly IA is constructed by arranging a large number of fuel rods 3 and nine large-diameter quarter rods 2 in a channel box 4, which is a rectangular tube with a square cross section. It consists of Although not shown, the fuel assembly IA has an upper tie plate and a lower tie plate. Both ends of the fuel rod 3 and water rod 2 are held by upper and lower tie plates. Channel box 4 is attached to the upper tie plate.

燃料棒3は、14行14列に等間隔で配置されている。The fuel rods 3 are arranged at equal intervals in 14 rows and 14 columns.

9本のウォータロッド2の各々の横断面積は4本の燃料
棒3内の横断面積を合計したものよりも大きい。本実施
例の燃料集合体IAのチャンネルボックス4の内側の幅
は201mmであり、特開昭61−118689号公報
の燃料集合体のそれ(134mm)の約7丁倍になって
いる。
The cross-sectional area of each of the nine water rods 2 is larger than the sum of the cross-sectional areas within the four fuel rods 3. The inner width of the channel box 4 of the fuel assembly IA of this embodiment is 201 mm, which is approximately seven times as wide as that (134 mm) of the fuel assembly disclosed in Japanese Patent Application Laid-Open No. 118689/1989.

本実施例の燃料集合体IAは、現行の沸騰水型原子炉の
標準仕様である制御棒の配列ピッチ内に納まる程度の大
きさにすることができる。従って、現行の沸騰水型原子
炉の制御棒ピッチを変えることなく、燃料集合体IAを
特開昭61−118689号公報に示す従来の燃料集合
体の約2体分の大きさにすることができる。この燃料集
合体IAを用いることにより、従来の燃料集合体が炉心
に配置された時に生ずる燃料集合体相互間の水領域の一
部分の面積を燃料集合体IA内に取込むことができ、そ
の取り込んだ分をクォータロッド領域の増加として使用
できるので、従来に比べて高燃焼度化を実現し得る。
The fuel assembly IA of this embodiment can be made large enough to fit within the control rod array pitch that is the standard specification for current boiling water reactors. Therefore, without changing the control rod pitch of the current boiling water reactor, it is possible to make the fuel assembly IA approximately twice the size of the conventional fuel assembly shown in JP-A-61-118689. can. By using this fuel assembly IA, it is possible to incorporate into the fuel assembly IA a part of the water area that occurs between the fuel assemblies when conventional fuel assemblies are placed in the reactor core. Since the surplus can be used to increase the quarter rod area, it is possible to achieve higher burnup than in the past.

現行の沸騰水型原子炉の炉心の制御棒ピッチは、約30
5mm〜310mmである。この寸法に制御棒挿入に必
要な燃料集合体I人相互間に形成される間隙の幅約13
a+mとチャンネルボックスの肉厚的2mm〜3mmを
考慮すると、チャンネルボックス4の内側の幅は約19
6mm 〜202m+aとなる。
The control rod pitch of the core of current boiling water reactors is approximately 30
The length is 5 mm to 310 mm. With this dimension, the width of the gap formed between fuel assemblies I required for control rod insertion is approximately 13
Considering a + m and the wall thickness of the channel box of 2 mm to 3 mm, the inner width of the channel box 4 is approximately 19
6mm to 202m+a.

本実施例における制御棒5A及び5Bと前記の上部格子
板14(第2図)との位置関係を第1図に示す、上部格
子板14は、多数の升目25を形成している。この各升
目25内に、隣接する4体の燃料集合体IAの上端部が
挿入される。制御棒5Bは、1つの升目25内に挿入さ
れた4体の燃料集合体IA間に配置され、制御棒駆動装
置にて下方よりこれらの燃料集合体IA間に挿入される
。制御棒5Bの上方には上部格子板14が存在しない。
The positional relationship between the control rods 5A and 5B and the above-mentioned upper grid plate 14 (FIG. 2) in this embodiment is shown in FIG. 1. The upper grid plate 14 forms a large number of squares 25. The upper ends of four adjacent fuel assemblies IA are inserted into each square 25. The control rod 5B is arranged between four fuel assemblies IA inserted into one square 25, and is inserted between these fuel assemblies IA from below by a control rod drive device. There is no upper grid plate 14 above the control rod 5B.

炉心11内に装荷された燃料集合体IA相互間の間隙の
幅は、前述したように約13mmである。このため、升
目25内に挿入された燃料集合体IAは、上部格子板1
4の側面に接触している。また、上部格子板14の真下
には制御棒5Aが配置される。この制御棒5Aの周囲に
は、上部格子板14の異なる4つの升目25に挿入され
た画体の燃料集合体IAが隣接する。制御棒5A及び5
Bとも、断面十字型をしており、軸心から互いに直角の
角度で放射状に延びる4枚のブレードを有している。こ
れらのブレード内に中性子吸収材が設置されている。
As described above, the width of the gap between the fuel assemblies IA loaded in the core 11 is about 13 mm. Therefore, the fuel assembly IA inserted into the square 25 is
It is in contact with the side of 4. Furthermore, a control rod 5A is arranged directly below the upper grid plate 14. The control rod 5A is surrounded by adjacent fuel assemblies IA inserted into four different squares 25 of the upper grid plate 14. Control rods 5A and 5
Both blades B have a cross-shaped cross section and have four blades extending radially from the axis at right angles to each other. Neutron absorbers are installed within these blades.

制御棒5Bは、その上方に上部格子板14が存在しない
ので、新しい制御棒と容易に交換することができる。従
って、制御棒5Bは、中性子吸収材の消耗が激しい原子
炉出力調節用制御棒として用いられる。この原子炉出力
調節用制御棒は、運転時に炉心11内に挿入されて原子
炉出力の調節制御のために引抜または挿入操作され、さ
らに原子炉を停止させる時に鎗炉心11内に完全に挿入
される。この制御棒5Bの中性子吸収材として、ハフニ
ウム(Ht )を用いる。Hfを用いることにより制御
棒の長寿命化が可能となるため、高燃焼炉による運転日
数の増加によって問題となる使用済制御棒の増加を防ぐ
ことができる。
Since the control rod 5B does not have the upper grid plate 14 above it, it can be easily replaced with a new control rod. Therefore, the control rod 5B is used as a control rod for adjusting the reactor power, in which the neutron absorbing material is severely consumed. These control rods for adjusting reactor power are inserted into the reactor core 11 during operation and are pulled out or inserted to control the adjustment of the reactor power, and are further inserted completely into the reactor core 11 when shutting down the reactor. Ru. Hafnium (Ht) is used as the neutron absorbing material for this control rod 5B. By using Hf, it is possible to extend the life of the control rods, so it is possible to prevent an increase in the number of spent control rods, which becomes a problem due to an increase in the number of operating days due to a high combustion furnace.

他方、制御棒5Aは、その上方に上部格子板14が存在
するので、炉心11から取出して新しい制御棒と交換す
ることが困難である。このため、制御棒5Aは、原子炉
が寿命になるまで使用される制御棒として用いる。従っ
て、制御棒5Aは、原子炉を停止する時にのみ炉心11
内に挿入される原子炉停止用制御棒として用いられる。
On the other hand, since the upper grid plate 14 exists above the control rod 5A, it is difficult to take it out from the core 11 and replace it with a new control rod. For this reason, the control rod 5A is used as a control rod that is used until the reactor reaches the end of its life. Therefore, the control rods 5A are used in the core 11 only when stopping the reactor.
It is used as a control rod inserted into the reactor to shut down the reactor.

この制御棒5Aの中性子吸収材として84Cを用いる。84C is used as the neutron absorbing material for this control rod 5A.

 B、Cを用いることにより、制御棒価値が大きく、十
分な炉停止余裕を有した高燃焼炉を実現できる。
By using B and C, it is possible to realize a high combustion reactor with a large control rod value and sufficient reactor shutdown margin.

[発明の効果] 本発明によれば、高燃焼度化が可能で、しかも、高燃焼
度化による運転日数の長期化に伴う使用済み制御棒の発
生本数の増加を防ぎ、中性子スペクトルの硬化による制
御棒価値の低下にも十分対処できる原子炉が実現できる
[Effects of the Invention] According to the present invention, it is possible to increase the burnup, prevent the increase in the number of spent control rods due to the increase in the number of operating days due to the increase in the burnup, and prevent the increase in the number of spent control rods due to hardening of the neutron spectrum. It is possible to create a nuclear reactor that can adequately cope with the decline in the value of control rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適な一実施例である原子炉内での燃
料集合体と制御棒および上部炉心支持部材の配置関係を
示す平面図であって第2図の■−■で見た図、第2図は
本発明の一実施例である原子炉の縦断面図、第3図は第
2図のI−I断面図、第4図は上記実施例における燃料
集合体の詳細横断面図である。 IA・・・燃料集合体、2・・・クォータロッド、3・
・・燃料棒、   10・・・原子炉圧力容器、11・
・・炉心、    13・・・炉心下部支持板、14・
・・上部格子板、5A・・・84C制御棒、5B・・・
Hf制御棒。
FIG. 1 is a plan view showing the arrangement of fuel assemblies, control rods, and upper core support members in a nuclear reactor according to a preferred embodiment of the present invention, as viewed from ■-■ in FIG. 2 is a vertical cross-sectional view of a nuclear reactor that is an embodiment of the present invention, FIG. 3 is a cross-sectional view taken along the line II in FIG. 2, and FIG. 4 is a detailed cross-sectional view of a fuel assembly in the above embodiment. It is a diagram. IA...fuel assembly, 2...quarter rod, 3.
...Fuel rod, 10...Reactor pressure vessel, 11.
... Core, 13 ... Core lower support plate, 14.
...Upper grid plate, 5A...84C control rod, 5B...
Hf control rod.

Claims (1)

【特許請求の範囲】[Claims]  複数の燃料集合体が装荷されてなる炉心と、前記炉心
内の前記燃料集合体間に挿入される複数の断面十字型の
制御棒とを有し、前記夫々の燃料集合体の対角線方向に
対向する2つのコーナ部に直接隣接するように前記制御
棒がそれぞれ配置され、夫々4体の前記燃料集合体の上
端部が挿入される大きさの升目を有する格子状の上部炉
心支持部材を設けた原子炉において、前記燃料集合体に
直接隣接する前記制御棒のうち、自身の上方に前記上部
炉心支持部材が存在する制御棒を原子炉停止用制御棒と
し、その中性子吸収材としてホウ素を用い、他方、自身
の上方に前記上部炉心支持部材が存在しない制御棒を原
子炉出力調節用制御棒とし、その中性子吸収材としてハ
フニウムを用いたことを特徴とする原子炉。
A reactor core loaded with a plurality of fuel assemblies, and a plurality of control rods each having a cross-shaped cross section and inserted between the fuel assemblies in the core, and facing diagonally to each of the fuel assemblies. The control rods are arranged directly adjacent to the two corner portions of the fuel assembly, and each of the control rods is provided with a lattice-shaped upper core support member having a square size into which the upper end portions of the four fuel assemblies are inserted. In the nuclear reactor, among the control rods directly adjacent to the fuel assembly, a control rod in which the upper core support member is present above the control rod is used as a reactor shutdown control rod, and boron is used as the neutron absorbing material, On the other hand, a nuclear reactor characterized in that a control rod above which the upper core support member does not exist is used as a control rod for adjusting reactor power, and hafnium is used as a neutron absorbing material for the control rod.
JP63024170A 1988-02-04 1988-02-04 Nuclear reactor Pending JPH01199191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024170A JPH01199191A (en) 1988-02-04 1988-02-04 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024170A JPH01199191A (en) 1988-02-04 1988-02-04 Nuclear reactor

Publications (1)

Publication Number Publication Date
JPH01199191A true JPH01199191A (en) 1989-08-10

Family

ID=12130871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024170A Pending JPH01199191A (en) 1988-02-04 1988-02-04 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPH01199191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201582A (en) * 2000-01-19 2001-07-27 General Electric Co <Ge> Fuel bundle/control rod assembly for reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201582A (en) * 2000-01-19 2001-07-27 General Electric Co <Ge> Fuel bundle/control rod assembly for reactor

Similar Documents

Publication Publication Date Title
WO2018074341A1 (en) Fuel assembly and reactor core of boiling water nuclear reactor loaded with same
EP2088600A1 (en) Core of a boiling water reactor
US20090196392A1 (en) Core Of A Boiling Water Reactor
JP4970871B2 (en) Boiling water type light water reactor core
JP2573399B2 (en) Fuel assembly
US6643350B2 (en) Fuel assembly
JP2856728B2 (en) Fuel assembly
JPH01199191A (en) Nuclear reactor
KR101017318B1 (en) Nuclear Fuel Grid Assembly with Hydraulically Balanced Mixing Vane Pattern
JPH06174874A (en) Fuel assembly and reactor core
JP2597589B2 (en) Fuel assembly
JP2006184174A (en) Fuel assembly of boiling water reactor
JPS6382392A (en) Nuclear reactor
EP0514215B1 (en) Part length rod placement in boiling water reactor fuel assembly for reactivity control
JP2019178896A (en) Fuel assembly
JP3036129B2 (en) Fuel assembly
JP3958545B2 (en) Fuel assembly
JP2002189094A (en) Fuel assembly for boiling water reactor
JP3009183B2 (en) Reactor core
JP3990013B2 (en) Fuel assemblies and reactor cores
JP3884192B2 (en) MOX fuel assembly, reactor core, and operating method of reactor
JPH0627277A (en) Method of operating boiling water type reactor
JPH11109073A (en) Fuel assembly for boiling water reactor
JPH04113296A (en) Nuclear reactor and fuel assembly
JPH0588792B2 (en)