JPH01199155A - Filler for liquid chromatography - Google Patents

Filler for liquid chromatography

Info

Publication number
JPH01199155A
JPH01199155A JP63152119A JP15211988A JPH01199155A JP H01199155 A JPH01199155 A JP H01199155A JP 63152119 A JP63152119 A JP 63152119A JP 15211988 A JP15211988 A JP 15211988A JP H01199155 A JPH01199155 A JP H01199155A
Authority
JP
Japan
Prior art keywords
clay mineral
cations
water
filler
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63152119A
Other languages
Japanese (ja)
Other versions
JP2692862B2 (en
Inventor
Kazuo Higashikubo
東久保 和雄
Satoshi Matsumoto
聡 松本
Michihiro Yamaguchi
山口 道広
Atsushi Nakamura
淳 中村
Yutaka Otsu
裕 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP63152119A priority Critical patent/JP2692862B2/en
Priority to CA000570892A priority patent/CA1321188C/en
Priority to EP19880306015 priority patent/EP0297901B1/en
Priority to DE8888306015T priority patent/DE3870727D1/en
Publication of JPH01199155A publication Critical patent/JPH01199155A/en
Application granted granted Critical
Publication of JP2692862B2 publication Critical patent/JP2692862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a filler which can be packed in high density and with excellent reproducibility, by using a spherical clay obtained by substituting cations other than sodium ions for interlayer ions of a clay mineral having a water bloating tendency, or a baked clay mineral obtained by baking said mineral. CONSTITUTION:A filler formed of a spherical clay mineral obtained by substituting substantially cations other than sodium ions for interlayer ions of a clay mineral having a water bloating tendency, or of a baked clay mineral obtained by baking said clay mineral, is used. The clay mineral having the water bloating tendency is a stratiform silicate mineral belonging to a smectite layer, and montmorillonite, beidellite or the like is selected. As for the filler, the powder thereof having a larger specific surface has a larger adsorption capacity and can hld solute molecules firmly. As for metal cations other than sodium ones, monovalent cations of silver, cesium or the like, divalent cations of calcium, copper or the like, trivalent cations of aluminum, iron or the like, or others are used. As for organic cations, an ammonium salt of benzyldimethyl stearyl ammonium chloride or the like can be used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体クロマトグラフィー用充填剤に関する。更
に詳しくは、特定の層間カチオンを有する球状の粘土鉱
物及びそれらを焼成して得られる新規な液体り0マドグ
ラフイー用充填剤である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a packing material for liquid chromatography. More specifically, the present invention relates to spherical clay minerals having specific interlayer cations and a novel filler for liquid lithography obtained by firing them.

そしてこれを用いることにより従来の充填剤では分離が
困難であった各種物質が効率良く分離、分析で鎗、ざら
に短時間で効率よく分取精製可能な新規な液体クロマト
グラフィー用充填剤を提供するものである。
By using this material, we provide a new packing material for liquid chromatography that can efficiently separate various substances that are difficult to separate using conventional packing materials, and can be used for analysis in a very short time. It is something to do.

[従来の技術] 液体クロマトグラフィーは、その分離機構により、大き
くは吸着クロマトグラフィーと分配クロマトグラフィー
に分類される。分配クロマトグラフィーは更に、溶離液
と充填剤の極性の関係から順相分配クロマトグラフィー
と逆相分配クロマトグラフィーとに分けられる。
[Prior Art] Liquid chromatography is broadly classified into adsorption chromatography and partition chromatography depending on its separation mechanism. Partition chromatography is further divided into normal phase partition chromatography and reverse phase partition chromatography based on the polarity relationship between the eluent and the packing material.

吸着及び順相分配クロマトグラフィーにおける充填剤と
しては、いずれも巨大孔と微細孔が綱目状に分布した全
多孔性シリカ系がほとんどであり、その他アルミナ系及
びスチレンジビニルベンゼン、ヒドロキシメタクリレー
トなどのポーラスポリマー系、また特殊な用途として水
酸化カルシウム粉末、リン酸カルシウムゲルなどが用い
られている。
Most of the packing materials used in adsorption and normal phase partition chromatography are completely porous silica-based materials in which macropores and micropores are distributed in a grid pattern, and other materials include alumina-based materials and porous polymers such as styrene divinylbenzene and hydroxymethacrylate. Calcium hydroxide powder, calcium phosphate gel, etc. are used for special purposes.

逆相分配クロマトグラフィー用充填剤としては、ODS
に代表されるように、前記充填剤(例えばシリカ)を担
体とし、これにオクタデシル基等のアルキル基等を化学
結合させたものが多く用いられている。
As a packing material for reverse phase partition chromatography, ODS
As typified by , those in which the filler (for example, silica) is used as a carrier and an alkyl group such as an octadecyl group is chemically bonded to the carrier are often used.

一方、充填剤の粒子の形状には、球形と不定形があるが
、一般に、球形充填剤は高密度に再現性よく充填するこ
とができることから、カラム効率が良い。
On the other hand, the shape of the particles of the filler includes spherical and amorphous shapes, but in general, spherical fillers can be packed with high density and good reproducibility, and therefore have good column efficiency.

[発明が解決しようとする課題] 吸着及び順相分配クロマトグラフィーでは、孔径60人
ないし100人、比表面積約300〜500m2/gの
シリカゲルが最も広く普及している。シリカゲル表面の
活性点はシラノール基(5i−OH)で、このシラノー
ル基に対する溶質分子の官能基の吸着エネルギーが重要
な要因となっている。従って、その適用は酸素、窒素原
子を含む官能基(カルボニル基、水酸基、アミノ基など
)を少数個もつ非イオン性分子に限られ、このような意
味からシリカゲル充填剤は中間極性をもつ、中位の分子
量の溶質に良好に適用される。このようなことからイオ
ン性物質や極性の強い物質には自ずとその適用範囲に限
界がある。
[Problems to be Solved by the Invention] In adsorption and normal phase partition chromatography, silica gel with a pore size of 60 to 100 pores and a specific surface area of about 300 to 500 m2/g is most widely used. The active sites on the silica gel surface are silanol groups (5i-OH), and the adsorption energy of the functional groups of solute molecules to these silanol groups is an important factor. Therefore, its application is limited to nonionic molecules that have a small number of functional groups (carbonyl groups, hydroxyl groups, amino groups, etc.) containing oxygen and nitrogen atoms, and in this sense, silica gel fillers have intermediate polarity. It is well applied to solutes with a molecular weight of about For this reason, ionic substances and highly polar substances naturally have a limited range of application.

一方、ポーラスポリマーはポリマーの種類により溶質分
子と特殊な相互作用をして、シリカゲル充填剤とは異な
った分離様式を示し、シリカゲル充填剤では分離が困難
であった溶質分子の分離も可能となる場合も多い。しか
しながら、ポリマーの溶解や膨潤などにより、分離効率
が低下するといった欠点をもっている。また、耐圧性も
シリカゲル充填剤には劣る。
On the other hand, porous polymers have special interactions with solute molecules depending on the type of polymer, and exhibit a different separation mode than silica gel packings, making it possible to separate solute molecules that are difficult to separate using silica gel packings. There are many cases. However, it has the disadvantage that the separation efficiency decreases due to dissolution and swelling of the polymer. In addition, pressure resistance is inferior to silica gel fillers.

また、シリカ表面にアルキル基を導入した従来の逆相分
配液体クロマトグラフィー用充填剤においては、シラノ
ール基とアルキルクロルシランとの反応が完結せずシラ
ノール基が10〜20%残存して逆相分配液体クロマト
グラフィーにおいて太きな問題点となっている。すなわ
ち、残存シラノール基が存在すると、極性物質との相互
作用が強く起こり、このため、分析や分取において極性
化合物のピークは輻尋となり、ざらにテーリング現象が
起きる。ざらに、残存シラノール基は、極性の大きい化
合物と非可逆的な吸着を起こすので、このために充填カ
ラム6劣化が早(なる。ざらに、残存シラノール基の存
在およびシリカ質の存在により、耐酸性および耐アルカ
リ性が弱く、使用できる移動相溶媒のPH領領域、従来
の充填カラムの場合、pH2〜7に制限される等の数多
くの問題点が存在している。このため、従来の充填カラ
ムの一部には、ジメチルオクタデシルクロルシランある
いはジメチルオクチルクロルシランとの反応の後で、残
存シラノール基を封鎖するために、再度トリメチルクロ
ルシラン(TMS)等で処理したものもある。しかしな
がら、トリメチルシリル化処理によっても、残存シラノ
ール基を完全になくすことはできない。
In addition, in conventional packing materials for reversed-phase partition liquid chromatography in which alkyl groups are introduced onto the silica surface, the reaction between the silanol groups and the alkylchlorosilane is not completed, and 10 to 20% of the silanol groups remain, resulting in reversed-phase partitioning. This is a major problem in liquid chromatography. That is, the presence of residual silanol groups causes strong interaction with polar substances, and therefore, in analysis and preparative separation, the peaks of polar compounds become narrow, and a tailing phenomenon occurs. In general, residual silanol groups cause irreversible adsorption with highly polar compounds, which causes the packed column 6 to deteriorate quickly. There are many problems such as poor pH and alkali resistance, and the pH range of mobile phase solvents that can be used is limited to pH 2 to 7 in the case of conventional packed columns.For this reason, conventional packed columns have In some cases, after the reaction with dimethyloctadecylchlorosilane or dimethyloctylchlorosilane, some are treated again with trimethylchlorosilane (TMS) etc. to block the remaining silanol groups.However, trimethylsilylation Even with treatment, residual silanol groups cannot be completely eliminated.

本発明者らは、このような事情に鑑み鋭意研究を重ねた
結果、水膨潤性粘土鉱物の層間イオンをナトリウム以外
の他の金属または有機イオンに実質的に交換した球状の
粘土鉱物を充填剤として用いることにより、吸着及び順
相分配クロマトグラフィーにおいては従来のシリカゲル
充填剤やポーラスポリマーでは分離が困難であった物質
も効率良(分離できることを、また逆相分配クロマトグ
ラフィーにおいてはシラノール基の影響が無いため、塩
基性物質や強い極性の物質のピークがシャープで、長期
にわたって使用可能であることを見出し、この知見に基
づいて本発明を完成するに到った。
In view of these circumstances, the present inventors have conducted extensive research, and as a result, we have developed a filler using spherical clay minerals in which the interlayer ions of water-swellable clay minerals have been substantially exchanged with metals or organic ions other than sodium. In adsorption and normal phase partition chromatography, it is possible to efficiently separate substances that are difficult to separate with conventional silica gel packings and porous polymers. It was discovered that the peaks of basic substances and strongly polar substances are sharp and can be used for a long period of time because of the lack of oxidation, and based on this knowledge, the present invention was completed.

[課題を解決するための手段] すなわち本発明は、水W潤性粘土鉱物の層間イオンがナ
トリウムイオン以外の他のカチオンで実質的に置換され
てなる球状の粘土鉱物からなる液体クロマトグラフィー
用充填剤、および該粘土鉱物を焼成して得られる焼成粘
土鉱物からなる液体クロマトグラフィー用充填剤を提供
するものである。
[Means for Solving the Problems] That is, the present invention provides a packing for liquid chromatography consisting of a spherical clay mineral in which the interlayer ions of the water-wettable clay mineral are substantially replaced with cations other than sodium ions. The present invention provides a filler for liquid chromatography comprising a fired clay mineral obtained by firing the clay mineral, and a fired clay mineral obtained by firing the clay mineral.

以下、本発明の構成について詳述する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明に用いる水膨潤性粘土鉱物は、スメクタイト属に
属する層状ケイ酸塩鉱物であり、モンモリロナイト、バ
イデライト、ノントロナイト、サボナイト及びヘクトラ
イト等であり、天然又は合成品のいずれでもよい。具体
的には、クニビア、スメクトン(クニミネ工業)、ビー
ガム(パンダービルト社)、ラポナイト(ラボルテ社)
、フッ累日ケイ素雲母(トビ−工業)等が利用できる。
The water-swellable clay mineral used in the present invention is a layered silicate mineral belonging to the genus smectite, such as montmorillonite, beidellite, nontronite, savonite, and hectorite, and may be either natural or synthetic. Specifically, Knivia, Smectone (Kunimine Industries), Veegum (Panderbilt), Laponite (Laborte)
, fluorinated disilicic mica (Tobi Industries), etc. can be used.

本発明の実施にあたっては、これらの水膨潤性粘土鉱物
のうちから、一種または二種以上が任意に選択される。
In carrying out the present invention, one or more types of water-swellable clay minerals are arbitrarily selected from among these water-swellable clay minerals.

クロマトグラフィー用充填剤としては、比表面積の大き
い粉末である程、吸着容量が太き(、溶質分子を強く保
持することができ充填剤として適している。このような
意味から、合成品である水l!li潤性粘土鉱物が適し
ており、たとえば合成サボナイトであるスメクントや合
成ヘクトライトであるラポナイトが特に好ましい。
As a packing material for chromatography, the larger the specific surface area of the powder, the larger the adsorption capacity (the more strongly it can hold solute molecules, making it suitable as a packing material.In this sense, it is preferable to use synthetic powders. Water-wettable clay minerals are suitable, such as the synthetic sabonite smectite and the synthetic hectorite laponite, which are particularly preferred.

水膨潤性粘土鉱物は粉末表面やその層間マ各種極性分子
と特殊な相互作用をする性質があり、そのため溶質分子
に対する選択性が吸着及び順相分配クロマトグラフィー
におけるシリカゲル充填剤や逆相分配クロマトグラフィ
ーにおけるアルキル基を化学結合きせた従来の充填剤と
は異なっており、新しいタイプの充填剤となっている。
Water-swellable clay minerals have the property of having special interactions with various polar molecules on the powder surface and between the layers, and therefore, the selectivity for solute molecules is enhanced by adsorption and silica gel packing in normal phase partition chromatography, and in reverse phase partition chromatography. This is a new type of filler, which is different from conventional fillers in which alkyl groups are chemically bonded.

また−般にシリカ表面は酸性であるため、塩基性物質と
特異的な吸着をし、このような物質ではピークはテーリ
ングしてくる。これに対して、粘土鉱物表面は塩基性で
あるため、塩基性物質に対しシャープなピークを得るこ
とができる。
Furthermore, since the silica surface is generally acidic, it specifically adsorbs basic substances, and such substances cause peak tailing. On the other hand, since the clay mineral surface is basic, a sharp peak can be obtained for basic substances.

液体クロマトグラフィー用充填剤としては、球形である
程カラム効率が良くなる。本発明に係る充填剤も球形で
あることを特徴とする。
As a packing material for liquid chromatography, the more spherical the packing material, the better the column efficiency. The filler according to the present invention is also characterized by being spherical.

本発明に係る充填剤を得る簡便な方法としてはまず、球
形の水膨潤性粘土鉱物を得、その後、層間の交換可能な
カチオンをナトリウム以外のカチオンで置換する方法が
あげられる。球形の水膨潤性粘土鉱物を、得るには噴霧
乾燥法によるのが良い。
A simple method for obtaining the filler according to the present invention is to first obtain a spherical water-swellable clay mineral, and then replace the exchangeable cation between the layers with a cation other than sodium. Spray drying is preferably used to obtain spherical water-swellable clay minerals.

これを用いることにより、簡便で比較的粒径の整つた球
形の粘土鉱物が得られる。
By using this, it is possible to obtain a simple spherical clay mineral with a relatively uniform particle size.

すなわち、水膨潤性粘土鉱物を水性溶媒中に分散してゲ
ル化し、しかる後に該分散液を噴!乾燥する方法である
That is, a water-swellable clay mineral is dispersed in an aqueous solvent to form a gel, and then the dispersion is sprayed! This is a drying method.

上記ゲルを調製するにあたっては水膨潤性粘土鉱物の濃
度が20重量%以下になるようにすることが望ましく、
特に望ましくは1〜10重量%である。
When preparing the above gel, it is desirable that the concentration of the water-swellable clay mineral is 20% by weight or less,
Particularly preferably, it is 1 to 10% by weight.

20重量%を越える濃度ではゲル粘度が2高く、噴霧乾
燥時の噴霧ノズルへの液の送りが難しく、またノズルの
目づまり等が生じてしまう。
If the concentration exceeds 20% by weight, the gel viscosity is 2 times higher, making it difficult to feed the liquid to the spray nozzle during spray drying, and clogging the nozzle.

また上記ゲルの調製に際しては、水膨&I憔粘土鉱物が
十分に分散、膨潤するように十分撹拌することが好まし
い。分散、膨潤が不十分な場合は噴霧乾燥時にノズルの
目づまりや、得られた球状粘土鉱物がふぞろいとなる場
合があり好ましくない=噴霧乾燥に際しては、ディスク
タイプや加圧ノズル式、2流体ノズル式などの一般的噴
霧乾燥法が適用できる。
Further, when preparing the above gel, it is preferable to stir sufficiently so that the water-swollen clay mineral is sufficiently dispersed and swollen. If dispersion and swelling are insufficient, the nozzle may become clogged during spray drying, and the resulting spherical clay minerals may become uneven, which is undesirable. For spray drying, use a disc type, pressure nozzle type, or two-fluid nozzle. General spray drying methods such as the formula can be applied.

いずれの場合も噴霧時の入口空気温度は、粘土鉱物が3
00℃位までは熱的に十分安定であることから、150
〜300℃程度の広い温度範囲が設定できる。
In either case, the inlet air temperature during spraying is 3.
Since it is thermally stable enough up to about 00℃, 150℃
A wide temperature range of ~300°C can be set.

また排気温度はノズルからの噴霧流量などによって規定
されるが、大旨100℃前後で良い。こうして得られる
球状粘土鉱物の粒子径は2〜20μmである。
Further, the exhaust temperature is determined by the flow rate of the spray from the nozzle, etc., but generally speaking, it may be around 100°C. The particle size of the spherical clay mineral thus obtained is 2 to 20 μm.

これらの、水膨潤性粘土鉱物の層間には、通常ナトリウ
ムイオンやリチウムイオンなどのカチオンが存在し、水
膨潤性粘土鉱物全体を電気的に中和しているが、これら
のカチオンは交換性であり、容易に他のカチオンと置き
換わることができる。
Cations such as sodium ions and lithium ions usually exist between the layers of these water-swellable clay minerals, and electrically neutralize the entire water-swellable clay mineral, but these cations are not exchangeable. and can be easily replaced with other cations.

こ、のカチオン交換容量は水[i性粘土鉱物の!類によ
っても異なるが、粘土鉱物100g当り大兄6゜から1
50ミリ当量であ払。さらにこのように他の金属カチオ
ンや有機カチオンに置き換わった粘土鉱物は水膨潤性が
無くなり、水と接してもゲルとはならず粉末として存在
している。前記のようにして得られた球状の粘土鉱物そ
のままでは、水に接すると膨潤し充填剤として適当でな
い。本発明の充填剤は、この粘土鉱物の層間イオンを他
の金属カチオンや有機カチオンに換え、水膨潤性を無く
して充填剤として用いるものである。本発明の充填剤は
、吸着、順相分配、又は逆相分配クロマトグラフィーの
いずれにおいても用いることができるが、層間が有機カ
チオンの場合、より疎水的な充填剤となり逆相分配クロ
マトグラフィーに特に適している。
The cation exchange capacity of this is water [i-type clay mineral! Although it varies depending on the type, it is 6° to 1° per 100g of clay mineral.
Payment is made in 50 mm equivalent. Furthermore, clay minerals that have been replaced with other metal cations or organic cations lose their water-swelling properties, and do not form a gel even when in contact with water, but instead exist as a powder. If the spherical clay mineral obtained as described above swells when it comes into contact with water, it is not suitable as a filler. The filler of the present invention is used as a filler by replacing the interlayer ions of this clay mineral with other metal cations or organic cations to eliminate water swelling properties. The packing material of the present invention can be used in any of adsorption, normal phase partitioning, or reversed phase partition chromatography, but when the interlayer is an organic cation, the packing material becomes more hydrophobic and is particularly suitable for reversed phase partitioning chromatography. Are suitable.

ナトリウム以外の金属カチオンとしては、銀、ルビジウ
ム、セシウムなどの一層カチオン、カルシウム、銅、亜
鉛、コバルト、カドミウム、ニッケルなどの二価カチオ
ンやアルミニウム、鉄、ルテニウムなどの三価カチオン
などが用いられる。
Examples of metal cations other than sodium include monovalent cations such as silver, rubidium, and cesium, divalent cations such as calcium, copper, zinc, cobalt, cadmium, and nickel, and trivalent cations such as aluminum, iron, and ruthenium.

有機カチオンとしては、ベンジルジメチルステアリルア
ンモニウムクロライド、ジメチルジステアリルアンモニ
ウムクロライド、トリメチルステアリルアンモニウムク
ロライド等の四級アンモニウム塩などを用いることがで
きる。
As the organic cation, quaternary ammonium salts such as benzyldimethylstearylammonium chloride, dimethyldistearylammonium chloride, and trimethylstearylammonium chloride can be used.

層間カチオンの交換方法としては、水や有機溶媒に金属
イオンや有機カチオンの塩を溶解し、そこに球状の水膨
潤性粘土鉱物を分散し、撹拌する。
As a method for exchanging interlayer cations, metal ions and salts of organic cations are dissolved in water or an organic solvent, spherical water-swellable clay minerals are dispersed therein, and the mixture is stirred.

その後、粘土鉱物を分離し、洗浄し、しかる後に乾燥す
ればよい。
Thereafter, the clay minerals may be separated, washed, and then dried.

ここで用いる金属イオンや有機カチオンの塩としては、
これらの塩化物、硝酸塩、硫酸塩など溶解性のものであ
ればいずれでもよい。有機溶媒としては、エタノール、
メタノール又はアセトンなど一般的なものが用いられる
The metal ion and organic cation salts used here are:
Any soluble chloride, nitrate, sulfate, etc. may be used. As the organic solvent, ethanol,
Common materials such as methanol or acetone are used.

製造時の水膨潤性粘土鉱物の濃度は、特に制限はないが
20重量%以上になると、撹拌が困難となり、イオン交
換が行なわれ難くなる。分散液中の金属イオンや有機カ
チオンの量は、水膨潤性粘土鉱物のカチオン交換容量以
上であることが望ましい。イオン交換反応を行なう際の
分散液の温度は、何度でもよ(、通常室温で充分である
。乾燥温度は、有機カチオン及び粘土鉱物の分解温度以
下であれば何度でもよい。
The concentration of the water-swellable clay mineral during production is not particularly limited, but if it exceeds 20% by weight, stirring becomes difficult and ion exchange becomes difficult. It is desirable that the amount of metal ions and organic cations in the dispersion is equal to or greater than the cation exchange capacity of the water-swellable clay mineral. The temperature of the dispersion during the ion exchange reaction may be any temperature (usually room temperature is sufficient).The drying temperature may be any temperature as long as it is below the decomposition temperature of the organic cation and clay mineral.

1ざらに、これらの粉末を焼成して用いても良い。These powders may be fired and used.

焼成温度、焼成時間は用いた粘土鉱物や分離しようとす
る溶質分子に応じて選択されるが、球状粉末が互いに焼
結を起こす温度以下であることが必要である。層間イオ
ンが金属イオンの場合、焼成により耐溶剤性は増す。
The firing temperature and firing time are selected depending on the clay mineral used and the solute molecules to be separated, but it is necessary that the temperature is below the temperature at which the spherical powders mutually sinter. When the interlayer ions are metal ions, the solvent resistance increases by firing.

このようにして得られた球状粘土鉱物の層間イオンがナ
トリウム以外の他のカチオンで実質的に置換されている
ことは、次のようにして確認できる。即ち層間イオンが
金属カチオンの場合には、原子吸光等を用いて元素分析
すれば容易に交換したカチオンの量を確認できる。同様
に層間イオンが有機カチオンの場合には、層間隔をX線
回折測定から求めることにより層間隔の拡大をもって置
換されたことが確認できる。
It can be confirmed as follows that the interlayer ions of the spherical clay mineral thus obtained are substantially replaced with cations other than sodium. That is, when the interlayer ions are metal cations, the amount of exchanged cations can be easily confirmed by elemental analysis using atomic absorption or the like. Similarly, when the interlayer ions are organic cations, substitution can be confirmed by increasing the interlayer spacing by determining the interlayer spacing from X-ray diffraction measurements.

本発明の充填剤は必要に応じて通常の乾式分級法により
分級して液体クロマトグラフィー用充填剤として利用さ
れる。
The packing material of the present invention is used as a packing material for liquid chromatography after being classified by a conventional dry classification method, if necessary.

[発明の効果] 本発明の球状の粘土鉱物からなる充填剤は、−般に用い
られるシリカを担体とした充填剤に比べて、表面シラノ
ール基の影響が無いため、特に塩基性分子や極性分子に
対してラヤープなピークが得られ、また層間に交換した
カチオンにより、各々独特の分離特性をもたせることが
できる。またこれらの分子に対し幅広い溶離液で溶出可
能であり、加えて球状であることがらカラム効率が格段
に良い新規な液体クロマトグラフィー用充填剤である。
[Effects of the Invention] The filler made of the spherical clay mineral of the present invention is less affected by surface silanol groups than the commonly used filler using silica as a carrier, so it is particularly sensitive to basic molecules and polar molecules. A broad peak can be obtained for each layer, and each layer can have unique separation characteristics due to the cations exchanged between the layers. Furthermore, these molecules can be eluted with a wide range of eluents, and in addition, because of its spherical shape, it is a novel packing material for liquid chromatography that has extremely high column efficiency.

〔実施例] 次に本発明の一層の理解のために、実施例をあげて更に
詳細に説明する。本発明はこれらによって限定されるも
のではない。
[Example] Next, in order to further understand the present invention, the present invention will be described in further detail by giving examples. The present invention is not limited to these.

実施例1 ラポナイトXLG300gをイオン交換水10Lに撹拌
しながら分散させる。得られたゲルをディスク式噴霧乾
燥実験器によりディスク回転数20.OOOrpm。
Example 1 300 g of Laponite XLG is dispersed in 10 L of ion-exchanged water with stirring. The obtained gel was dried in a disk-type spray dryer at a disk rotation speed of 20. OOOrpm.

入口空気温度約200℃、排気温度約110℃で噴霧乾
燥したところ、2〜20μmの球状粉末が240g得ら
れた。このものの走査型電子顕微鏡写真を図1に示す。
When spray-dried at an inlet air temperature of about 200°C and an exhaust temperature of about 110°C, 240 g of spherical powder with a diameter of 2 to 20 μm was obtained. A scanning electron micrograph of this product is shown in FIG.

この球状粘土鉱物を乾式分級機TARBOCLASSI
FIHERTC−158(日清エンジニアリング社製)
を用いて分級し、5〜10uI11の粒径の粉末を60
gを得た。
This spherical clay mineral is processed using the dry classifier TARBOCLASSI.
FIHERTC-158 (manufactured by Nisshin Engineering Co., Ltd.)
The powder with a particle size of 5 to 10 uI was classified using 60
I got g.

実施例2 エタノール500dに塩化カルシウム(2水和物)2.
21 gを溶解し、実施例1で得られた分級した球状粘
土鉱物10gを分散し、4時間攪拌する。その後、濾過
し水で洗浄し、80℃で乾燥して球状粉末を得た。この
もののカルシウム量を原子吸光を用いて求めたところ2
.2重量%であり、はぼ100%カチオン交換が行なわ
れたことが確認された。次いで該粉末5gをパッカーと
ポンプを用いて、内径4.61および長き25cmのス
テンレススチール製カラムに平衡スラリー法で充填し、
充填カラムを作成した。
Example 2 Calcium chloride (dihydrate) in 500 d of ethanol2.
10 g of the classified spherical clay mineral obtained in Example 1 was dispersed therein, and the mixture was stirred for 4 hours. Thereafter, it was filtered, washed with water, and dried at 80°C to obtain a spherical powder. The amount of calcium in this substance was determined using atomic absorption.2
.. 2% by weight, confirming that almost 100% cation exchange was performed. Then, 5 g of the powder was packed into a stainless steel column with an inner diameter of 4.61 and a length of 25 cm using an equilibrium slurry method using a packer and a pump.
A packed column was created.

本カラムを高速液体クロマトグラフに接続し、移動相と
して、n−ヘキサン:エタノール(90: 10)を毎
分111tで流し、炭化水素、エステル、ニトロ化合物
およびアミ′ノ化合物の代表として、トルエン、安息香
酸メチル、ニトロベンゼンおよびアニリンを選び、これ
らの標準混合物を注入し、Uv検出器を用いて280n
mで検出し、クロマトグラムを得た。これを第2図に示
す。この図のように、これらの物質が良好に分離されて
いる。
This column was connected to a high-performance liquid chromatograph, and n-hexane:ethanol (90:10) was flowed at 111 tons per minute as the mobile phase. Select methyl benzoate, nitrobenzene and aniline, inject a standard mixture of these and test at 280nm using a UV detector.
Detection was performed using m, and a chromatogram was obtained. This is shown in FIG. As shown in this figure, these substances are well separated.

比較例1 市販シリカゲル充填カラム(細孔60人、粒径5μ論)
を用いて、実施例2と同じ条件で同じ物質を分析した。
Comparative Example 1 Commercially available silica gel packed column (60 pores, 5μ particle size)
The same substance was analyzed using the same conditions as in Example 2.

このクロマトグラムを第3図に示す。This chromatogram is shown in FIG.

トルエン、安息香酸メチル、ニトロベンゼンはシリカ表
面との水素結合がほとんど無い事より同じような小さな
保持時間をもち、一方アニリンはシリカ表面との強い吸
着により、これらの分子より大きな保持時間をもってい
る。
Toluene, methyl benzoate, and nitrobenzene have similar small retention times due to almost no hydrogen bonding with the silica surface, while aniline has a longer retention time than these molecules due to strong adsorption with the silica surface.

このように、本発明の充填剤は塩基性であるアニリンに
対し、シリカゲル充填剤のように特異的な吸着をしない
ため、これらの分子の分離が極めてよい。
As described above, since the packing material of the present invention does not specifically adsorb basic aniline unlike the silica gel packing material, separation of these molecules is extremely good.

実施例3 エタノール500 dに塩化第二鉄(無水)4.87g
を溶解し、実施例1で得られた球状粘土鉱物10gを分
散し、4時間攪拌する。その後、濾過水洗し、80℃で
乾燥した後、500℃で4時間焼成し、実施例2と同様
にカラムに充填し、充填カラムを作成した。
Example 3 4.87 g of ferric chloride (anhydrous) in 500 d of ethanol
and dispersed therein 10 g of the spherical clay mineral obtained in Example 1, followed by stirring for 4 hours. Thereafter, the mixture was filtered, washed with water, dried at 80°C, and then calcined at 500°C for 4 hours, and packed into a column in the same manner as in Example 2 to produce a packed column.

本カラムを高速液体クロマトグラフに接続し、移動相と
して、水:メタノール(20:80)を毎分1dで流し
、ナフタレンとアントラセンを注入し、U■検出器を用
いて254nmで検出し、クロマトグラムを得た。これ
を第4図に示す。この図のように、これらの物質が良好
に分離されている。
This column was connected to a high-performance liquid chromatograph, water:methanol (20:80) was flowed at a rate of 1 d/min as the mobile phase, naphthalene and anthracene were injected, and detection was performed at 254 nm using a U detector. Got a gram. This is shown in FIG. As shown in this figure, these substances are well separated.

実施例4 エタノール500+dにトリメチルモノステアリルアン
モニウムクロライド10.44gを溶解し、実施例1で
得られた分級した球状粘土鉱物10gを分散し、4時間
攪拌した。その後、濾過し水で洗浄し、80℃で乾燥し
て、球状粉末を得た。このものの層間隔をX線回折測定
により求めたところ、実施例1の分級した球状粘土鉱物
に比べて約3人拡がっており、層間のイオンがトリメチ
ルモノステアリルアンモニウムクロライドで置換された
ことが確認きれた。このようにして得られた粉末を実施
例2と同様にカラムに充填し、充填カラムを作成した。
Example 4 10.44 g of trimethylmonostearyl ammonium chloride was dissolved in ethanol 500+d, and 10 g of the classified spherical clay mineral obtained in Example 1 was dispersed therein, followed by stirring for 4 hours. Thereafter, it was filtered, washed with water, and dried at 80°C to obtain a spherical powder. When the interlayer spacing of this material was determined by X-ray diffraction measurement, it was found to be about 3 times wider than the classified spherical clay mineral of Example 1, confirming that the ions between the layers were replaced with trimethylmonostearyl ammonium chloride. Ta. The thus obtained powder was packed into a column in the same manner as in Example 2 to create a packed column.

本カラムを高速液体クロマトグラフに接続し、移動相と
して、メタノールを毎分1mlで流し、ナフタレンとア
ントラセンを注入し、U■検出器を用いて254nmで
検出し、クロマトグラムを得た。
This column was connected to a high-performance liquid chromatograph, methanol was flowed at 1 ml per minute as a mobile phase, naphthalene and anthracene were injected, and detection was performed at 254 nm using a U2 detector to obtain a chromatogram.

これを第5図に示す。この図のように、これらの物質が
良好に分離されている。
This is shown in FIG. As shown in this figure, these substances are well separated.

比較例2 市販の0DS−シリカゲル充填カラムを用いて、実施例
4と同じ条件で同じ物質を分析した。このクロマトグラ
ムを第6図に示す。
Comparative Example 2 The same substance was analyzed under the same conditions as in Example 4 using a commercially available 0DS-silica gel packed column. This chromatogram is shown in FIG.

第5図と第6図の比較より、本発明の充填剤がこれらの
分離に従来のシリカゲル充填剤より優れていることがわ
かる。
A comparison between FIG. 5 and FIG. 6 shows that the packing material of the present invention is superior to the conventional silica gel packing material in these separations.

実施例5 エタノール500dにジメチルジステアリルアンモニウ
ムクロライド17.60 gを溶解し、実施例1で得ら
れた分級した球状粘土鉱物10gを分散し、4時間攪拌
する。その後、濾過し水で洗浄し、80℃で乾燥する。
Example 5 17.60 g of dimethyl distearyl ammonium chloride is dissolved in 500 d of ethanol, 10 g of the classified spherical clay mineral obtained in Example 1 is dispersed, and the mixture is stirred for 4 hours. Thereafter, it is filtered, washed with water, and dried at 80°C.

そのようにして得られた粉末を実施例2と同様にカラム
に充填し、充填カラムを作成した。
The powder thus obtained was packed into a column in the same manner as in Example 2 to create a packed column.

本カラムを高速液体クロマトグラフに接続し、移動相と
して、水を毎分1 mlで流し、核酸のアデニンを注入
し、UV検出器を用いて260nmで検出し、クロマト
グラムを得た。これを第7図に示す。
This column was connected to a high performance liquid chromatograph, water was flowed as a mobile phase at a rate of 1 ml per minute, the nucleic acid adenine was injected, and the column was detected at 260 nm using a UV detector to obtain a chromatogram. This is shown in FIG.

この図のように、この物質がシャープに検出されている
As shown in this figure, this substance is clearly detected.

比較例3 市販の0DS−シリカゲル充填カラムを用いて、実施例
5と同じ条件で同じ物質を分析した。このクロマトグラ
ムを第8図に示す。このような塩基性物質は0DS−シ
リカゲル充填剤表面に残存しているシラノール基との相
互作用によりピークはテーリングしている。
Comparative Example 3 The same substance was analyzed under the same conditions as in Example 5 using a commercially available 0DS-silica gel packed column. This chromatogram is shown in FIG. The peak of such a basic substance is tailed due to interaction with the silanol groups remaining on the surface of the 0DS-silica gel filler.

第7図と第8図の比較より、本発明の充填剤がこのよう
な塩基性物質に対し従来の0DS−シリカゲル充填剤よ
り優れていることがわかる。
A comparison between FIG. 7 and FIG. 8 shows that the filler of the present invention is superior to the conventional 0DS-silica gel filler with respect to such basic substances.

実施例6 エタノールILに硝酸銀1.7gを溶解し、実施例1で
得られた分級した球状粘土鉱物10gを分散し、4時間
撹拌する。その後濾過、水で洗浄し、80℃で乾燥し、
実施例2と同様にカラムに充填し、充填カラムを作成し
た。
Example 6 1.7 g of silver nitrate is dissolved in ethanol IL, 10 g of the classified spherical clay mineral obtained in Example 1 is dispersed, and the mixture is stirred for 4 hours. After that, it was filtered, washed with water, and dried at 80°C.
A column was filled in the same manner as in Example 2 to create a packed column.

本カラムを高速液体クロマトグラフに接続し、移動相と
してアセトンを毎分1mlで流し、各種の脂肪酸(パル
ミチン酸、オレイン酸、リノール酸、γ−リルイン酸)
のエチルエステルの混合物を注入し、RI検出器を用い
て検出しクロマトグラムを得た。これを第9図に示す。
This column was connected to a high-performance liquid chromatograph, and acetone was flowed at a rate of 1 ml per minute as the mobile phase.
A mixture of ethyl esters was injected and detected using an RI detector to obtain a chromatogram. This is shown in FIG.

0DS−シリカゲルのような逆相系の充填剤を用いて分
析を行った場合は溶出順序が逆になり、パルミチン酸と
オレイン酸のピークが完全に重なってしまい、分離が不
可能であるが、本カラムを用いた場合は図から明らかな
ようにきれいに分離している。また本カラムを用いた場
合は、試料負荷量が約5倍大きく、分取に適していると
言える。このように本カラムは不飽和度の違う物質の分
離に適していることがわかる。
When analysis is performed using a reversed-phase packing material such as 0DS-silica gel, the elution order is reversed and the palmitic acid and oleic acid peaks completely overlap, making separation impossible. As is clear from the figure, when this column was used, the separation was clear. Furthermore, when this column is used, the sample load is about 5 times larger, making it suitable for preparative separation. This shows that this column is suitable for separating substances with different degrees of unsaturation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる球状のラポナイトの粒子構造を
示す走査型電子顕微鏡写真である。 第2図は実施例2の充填剤を用いて、トルエン、安息香
酸メチル、ニトロベンゼンおよびアニリンを分析した場
合のクロマトグラムである。 第3図は市販シリカゲル充填カラム(細孔60人、粒径
5μm)を用いて、トルエン、安息香酸メチル、ニトロ
ベンゼンおよびアニリンを分析した場合のクロマトグラ
ムである。 第2図と第3図において、1はトルエン、2は安息香酸
メチル、3はニトロベンゼン、4はアニリンを示してい
る。 第4図は実施例3の充填剤を用いて、ナフタレンとアン
トラセンを分析した場合のクロマトグラムである。 第5図は実施例4の充填剤を用いて、ナフタレンとアン
トラセンを分析した場合のクロマトグラムである。 第6図は市販0DS−シリカゲル充填カラムを用いて、
ナフタレンとアントラセンを分析した場合のクロマトグ
ラムである。 第4図、第5図及び第6図において、1はナフタレン、
2はアントラセンを示している。 第7図は実施例5の充填剤を用いて、アデニンを分析し
た場合のクロマトグラムである。 第8図は市販0DS−シリカゲル充填カラムを用いて、
アデニンを分析した場合のクロマトグラムである。 第9図は実施例6の充填剤を用いて、各種の脂肪酸(バ
ルミチン酸、オレイン酸、リノール酸、γ−リルイン酸
)のエチルエステルの混合物を分析した場合のクロマト
グラムである。 第9図において、1はバルミチン酸エチルエステル、2
はオレイン酸エチルエステル、3はリノール酸エチルエ
ステル、4は7−リルイン酸エチルエステルを示してい
る。 特許出願人 株式会社  資生堂 蓼 1 ■ in 竿 2 回 in ¥ 3− 0    5    IQ    15   20m1
n 蓼 4 田 in 某 51!7 in ¥6 困 in 寥7 回 min 第8 口 in 竿9rgJ
FIG. 1 is a scanning electron micrograph showing the grain structure of spherical laponite used in the present invention. FIG. 2 is a chromatogram obtained when toluene, methyl benzoate, nitrobenzene, and aniline were analyzed using the packing material of Example 2. FIG. 3 is a chromatogram obtained when toluene, methyl benzoate, nitrobenzene and aniline were analyzed using a commercially available silica gel packed column (60 pores, particle size 5 μm). In Figures 2 and 3, 1 represents toluene, 2 represents methyl benzoate, 3 represents nitrobenzene, and 4 represents aniline. FIG. 4 is a chromatogram when naphthalene and anthracene were analyzed using the packing material of Example 3. FIG. 5 is a chromatogram when naphthalene and anthracene were analyzed using the packing material of Example 4. Figure 6 shows the results using a commercially available 0DS-silica gel packed column.
This is a chromatogram when analyzing naphthalene and anthracene. In Figures 4, 5 and 6, 1 is naphthalene;
2 indicates anthracene. FIG. 7 is a chromatogram when adenine was analyzed using the packing material of Example 5. Figure 8 shows the results using a commercially available 0DS-silica gel packed column.
This is a chromatogram when analyzing adenine. FIG. 9 is a chromatogram obtained by analyzing a mixture of ethyl esters of various fatty acids (valmitic acid, oleic acid, linoleic acid, and γ-liluic acid) using the packing material of Example 6. In Figure 9, 1 is valmitic acid ethyl ester, 2
indicates oleic acid ethyl ester, 3 indicates linoleic acid ethyl ester, and 4 indicates 7-liluic acid ethyl ester. Patent Applicant Shiseido Tate Co., Ltd. 1 ■ in rod 2 times in ¥ 3-0 5 IQ 15 20m1
n 蓼 4 田 in certain 51!7 in ¥6 trouble in 寥 7 times min 8th mouth in rod 9rgJ

Claims (4)

【特許請求の範囲】[Claims] (1)水膨潤性粘土鉱物の層間イオンがナトリウムイオ
ン以外の他のカチオンで実質的に置換されてなる球状の
粘土鉱物からなる液体クロマトグラフィー用充填剤。
(1) A packing material for liquid chromatography consisting of a spherical clay mineral in which the interlayer ions of the water-swellable clay mineral are substantially replaced with cations other than sodium ions.
(2)水膨潤性粘土鉱物の層間イオンがナトリウムイオ
ン以外の他のカチオンで実質的に置換されてなる球状の
粘土鉱物を焼成して得られる焼成粘土鉱物からなる液体
クロマトグラフィー用充填剤。
(2) A filler for liquid chromatography comprising a fired clay mineral obtained by firing a spherical clay mineral in which the interlayer ions of the water-swellable clay mineral are substantially replaced with cations other than sodium ions.
(3)ナトリウムイオン以外の他のカチオンが一価乃至
三価の金属カチオンである請求項1又は2に記載の液体
クロマトグラフィー用充填剤。
(3) The packing material for liquid chromatography according to claim 1 or 2, wherein the cation other than the sodium ion is a monovalent or trivalent metal cation.
(4)ナトリウムイオン以外の他のカチオンが有機カチ
オンである請求項1又は2に記載の液体クロマトグラフ
ィー用充填剤。
(4) The packing material for liquid chromatography according to claim 1 or 2, wherein the cation other than the sodium ion is an organic cation.
JP63152119A 1987-07-03 1988-06-22 Packing material for liquid chromatography Expired - Lifetime JP2692862B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63152119A JP2692862B2 (en) 1987-10-31 1988-06-22 Packing material for liquid chromatography
CA000570892A CA1321188C (en) 1987-07-03 1988-06-30 Packing material for liquid chromatography
EP19880306015 EP0297901B1 (en) 1987-07-03 1988-07-01 Packaging material for liquid chromatography
DE8888306015T DE3870727D1 (en) 1987-07-03 1988-07-01 PACKING MATERIAL FOR LIQUID CHROMATOGRAPHY.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-276668 1987-10-31
JP27666887 1987-10-31
JP63152119A JP2692862B2 (en) 1987-10-31 1988-06-22 Packing material for liquid chromatography

Publications (2)

Publication Number Publication Date
JPH01199155A true JPH01199155A (en) 1989-08-10
JP2692862B2 JP2692862B2 (en) 1997-12-17

Family

ID=26481133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152119A Expired - Lifetime JP2692862B2 (en) 1987-07-03 1988-06-22 Packing material for liquid chromatography

Country Status (1)

Country Link
JP (1) JP2692862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167294A (en) * 1989-11-27 1991-07-19 Shiseido Co Ltd Method for separating and purifying eicosapentaenoic acid compound
JPH0495048A (en) * 1990-08-10 1992-03-27 Shiseido Co Ltd Separation and purification of docosahexaenoic acid compound
WO1994019278A1 (en) * 1993-02-26 1994-09-01 Shiseido Co., Ltd. Cation-substituted clay mineral, process for producing the same, and chromatographic packing comprising the same
JP2012121790A (en) * 2010-11-15 2012-06-28 Shiseido Co Ltd Spherical porous diamond particle and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442378A (en) * 1977-09-09 1979-04-04 Nippon Saafuakutanto Kougiyou Manufacture of organic denatured clay mineral
JPS5855332A (en) * 1981-09-28 1983-04-01 Kunimine Kogyo Kk Thermally stable clay derivative having structure with large surface area
JPS6163521A (en) * 1984-09-05 1986-04-01 Topy Ind Ltd Freely swelling synthetic mica
JPS61204138A (en) * 1985-03-07 1986-09-10 Asahi Chem Ind Co Ltd Method of resolving optical isomer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442378A (en) * 1977-09-09 1979-04-04 Nippon Saafuakutanto Kougiyou Manufacture of organic denatured clay mineral
JPS5855332A (en) * 1981-09-28 1983-04-01 Kunimine Kogyo Kk Thermally stable clay derivative having structure with large surface area
JPS6163521A (en) * 1984-09-05 1986-04-01 Topy Ind Ltd Freely swelling synthetic mica
JPS61204138A (en) * 1985-03-07 1986-09-10 Asahi Chem Ind Co Ltd Method of resolving optical isomer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167294A (en) * 1989-11-27 1991-07-19 Shiseido Co Ltd Method for separating and purifying eicosapentaenoic acid compound
JPH0495048A (en) * 1990-08-10 1992-03-27 Shiseido Co Ltd Separation and purification of docosahexaenoic acid compound
JPH0813776B2 (en) * 1990-08-10 1996-02-14 株式会社資生堂 Method for separating and purifying docosahexaenoic acid compound
WO1994019278A1 (en) * 1993-02-26 1994-09-01 Shiseido Co., Ltd. Cation-substituted clay mineral, process for producing the same, and chromatographic packing comprising the same
JP2012121790A (en) * 2010-11-15 2012-06-28 Shiseido Co Ltd Spherical porous diamond particle and method for manufacturing the same

Also Published As

Publication number Publication date
JP2692862B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
Trüdinger et al. Porous zirconia and titania as packing materials for high-performance liquid chromatography
US4101460A (en) High performance ion exchange composition
US4874518A (en) Porous silica microspheres having a silanol enriched surface
Peristyy et al. Diamond based adsorbents and their application in chromatography
US3782075A (en) Completely porous microspheres for chromatographic uses
Yilmaz et al. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates
EP0123293B1 (en) Process for preparing superficially porous supports for chromatography and catalysts
Clausen et al. Chromatographic characterization of phosphonate analog EDTA-modified zirconia support for biochromatographic applications
US5108595A (en) Porous silica microspheres having silanol-enriched and silanized surfaces
Janzen et al. Adsorption of proteins on porous and non-porous poly (ethyleneimine) and tentacle-type anion exchangers
Ahmed et al. Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications
Jadhav et al. Packed hybrid silica nanoparticles as sorbents with thermo-switchable surface chemistry and pore size for fast extraction of environmental pollutants
US5145578A (en) Packing material for liquid chromatography
JPH01199155A (en) Filler for liquid chromatography
Ge et al. Titanium-coated silica spheres prepared by self-assembly technique for use as HPLC packing
EP0297901B1 (en) Packaging material for liquid chromatography
Barrett et al. Characterization of a range of alkyl-bonded silica HPLC stationary phases: chromatographic behavior of neutral, acidic, and basic test solutes
US3676366A (en) Process for the production of highly porous bead-form silica catalyst supports
dos Santos et al. Quantification of Hydroxyl Groups from Alumina in Aluminosilicate Materials by Adsorption Isotherms
EP0221780A2 (en) Porous silica microspheres having silanol-enriched and silanized surfaces
US6316647B1 (en) Cation-exchanged clay mineral, packing material for chromatography using the same and method of producing the same
Filbert et al. Pore-Size Effects on Column Performance in Gas-Liquid Chromatography
JP2548874B2 (en) Chromatographic separation packing material
Kaneko et al. Silica-containing mixed-oxide gels prepared by a coprecipitation method as novel packing materials for liquid chromatography
JP3664746B2 (en) Chromatographic packing material using cation-substituted clay mineral, method for separating fish oil and fat using the same, and method for producing cation-substituted clay mineral

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

EXPY Cancellation because of completion of term