JPH0119880B2 - - Google Patents

Info

Publication number
JPH0119880B2
JPH0119880B2 JP55039726A JP3972680A JPH0119880B2 JP H0119880 B2 JPH0119880 B2 JP H0119880B2 JP 55039726 A JP55039726 A JP 55039726A JP 3972680 A JP3972680 A JP 3972680A JP H0119880 B2 JPH0119880 B2 JP H0119880B2
Authority
JP
Japan
Prior art keywords
glucose
electrode
enzyme
immobilized
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55039726A
Other languages
Japanese (ja)
Other versions
JPS56137899A (en
Inventor
Kenichi Nakamura
Shiro Nankai
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3972680A priority Critical patent/JPS56137899A/en
Publication of JPS56137899A publication Critical patent/JPS56137899A/en
Publication of JPH0119880B2 publication Critical patent/JPH0119880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、固定化されたグルコースオキシダー
ゼと電気化学的電極とを組み合わせてグルコース
濃度を測定する酵素電極の改良に関する。さらに
詳しくは固定化されたグルコースオキシダーゼ
に、さらに固定されたムタロターゼを組み合わせ
た複合固定化酵素を用いることにより、上記複合
酵素固定化反応において生成あるいは消費される
物質濃度を電気化学的に測定しグルコース濃度を
求める方法の測定感度を上げることを目的として
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an enzyme electrode for measuring glucose concentration by combining immobilized glucose oxidase and an electrochemical electrode. More specifically, by using a complex immobilized enzyme that combines immobilized glucose oxidase and further immobilized mutarotase, we can electrochemically measure the concentration of substances produced or consumed in the above complex enzyme immobilization reaction. The purpose is to increase the measurement sensitivity of the method used to determine concentration.

グルコースオキシダーゼと電気化学的電極、例
えば酸素濃度測定用電極あるいは過酸化水素濃度
測定用電極を組み合わせてグルコース濃度を測定
する方法については従来からよく知られている。
一般に、グルコースは、水溶液中では以下に示す
ようにα型とβ型の平衡混合物として存在してい
る。
A method of measuring glucose concentration using a combination of glucose oxidase and an electrochemical electrode, such as an electrode for measuring oxygen concentration or an electrode for measuring hydrogen peroxide concentration, is well known.
Generally, glucose exists in an aqueous solution as an equilibrium mixture of α-type and β-type as shown below.

ここで、α型とβ型の違いは、C1位のOH基の
向きが異なるのみである。現在グルコースオキシ
ダーゼとして知られている酵素は、このα型とβ
型の中でβ型のみに作用し、これをD―グルコノ
ラクトンに変換する。
Here, the only difference between the α type and β type is the orientation of the OH group at the C1 position. The enzyme currently known as glucose oxidase is the α-type and β-type.
It acts only on the β type and converts it to D-gluconolactone.

β―D―グルコース+O2グルコースオキシダーゼ ――――――――――――→ D―グルコノラクトン+H2O2 ……(1) ここでβ―D―グルコース濃度が減少するとα
とβ間の平衡値を保つためにα→βの変換反応が
起こりうるが、この反応は上記のグルコースオキ
シダーゼが触媒する反応に比較すると速度が遅
い。したがつてグルコースオキシダーゼ単独酵素
と電気化学的電極を組み合わせてグルコース濃度
を測定する方法では、実際上はαとβの平衡混合
物の中でβ型のみを測定していることになる。
β-D-glucose + O 2 glucose oxidase――――――――――→ D-gluconolactone + H 2 O 2 ...(1) Here, when the β-D-glucose concentration decreases, α
In order to maintain an equilibrium value between and β, an α → β conversion reaction may occur, but this reaction is slow compared to the reaction catalyzed by glucose oxidase described above. Therefore, the method of measuring glucose concentration using a combination of glucose oxidase alone and an electrochemical electrode actually measures only the β form in an equilibrium mixture of α and β.

本発明のグルコース濃度測定用酵素電極では、
α,β間の平衡反応を促進する酵素であるムタロ
ターゼをグルコースオキシダーゼに組み合わせる
ことを特徴としている。この方法によれば、溶液
中のα型グルコースはβ型グルコースにすみやか
に変換されるため、α,β両グルコース濃度を同
時に測定することとなり、結果として測定感度が
向上することになる。以下に本発明の実施例につ
いて述べる。
In the enzyme electrode for measuring glucose concentration of the present invention,
It is characterized by combining mutarotase, an enzyme that promotes the equilibrium reaction between α and β, with glucose oxidase. According to this method, α-type glucose in the solution is quickly converted to β-type glucose, so both α and β glucose concentrations are measured simultaneously, resulting in improved measurement sensitivity. Examples of the present invention will be described below.

実施例 1 グルコースオキシダーゼの凍結乾燥品100mgを
1mlのリン酸緩衝液(PH5.6)中に溶解させ、さ
らにこの混合液中にムタロターゼ6000ユニツト相
当を溶解させる。作製したグルコースオキシダー
ゼとムタロターゼとの混合溶液を市販のガルバニ
ツクセル方式の酵素濃度計に用いるテフロン膜上
に塗布した後、架橋固定化試薬であるグルタルア
ルデヒドを作用させる。このようにしてグルコー
スオキシダーゼームタロターゼ複合酵素固定化テ
フロン膜が作製できる。またムタロターゼを加え
ないて上記と同様にしてグルコースオキシダーゼ
単独固定化テフロン膜を作製した。これら2種類
の膜を上記酸素濃度計の電極先端にとりつけ同一
グルコース標準液に対する応答電流値を比較し
た。
Example 1 100 mg of lyophilized glucose oxidase is dissolved in 1 ml of phosphate buffer (PH5.6), and the equivalent of 6000 units of mutarotase is further dissolved in this mixture. The prepared mixed solution of glucose oxidase and mutarotase is applied onto a Teflon membrane used in a commercially available galvanic cell type enzyme concentration meter, and then glutaraldehyde, which is a cross-linking immobilization reagent, is applied. In this way, a Teflon membrane with immobilized glucose oxidase tarotase complex enzyme can be produced. In addition, a Teflon membrane immobilized with glucose oxidase alone was prepared in the same manner as above without adding mutarotase. These two types of membranes were attached to the electrode tip of the oxygen concentration meter, and the response current values to the same glucose standard solution were compared.

第1図は酸素濃度計に接触した緩衝液中にグル
コース標準液を添加し、緩衝液中のグルコース濃
度を0から10-4Mに変化させた場合の酸素濃度計
の応答電流の比較を示した。曲線aはグルコース
オキシダーゼとムタロターゼとの複合酵素固定化
膜を用いた場合のもので、bはグルコースオキシ
ダーゼ単独固定化膜を用いた場合のものである。
Figure 1 shows a comparison of the response current of the oximeter when a glucose standard solution was added to the buffer solution in contact with the oximeter and the glucose concentration in the buffer solution was changed from 0 to 10 -4 M. Ta. Curve a is obtained when a membrane immobilized with a composite enzyme of glucose oxidase and mutarotase is used, and curve b is obtained when a membrane immobilized with glucose oxidase alone is used.

これからわかるように、複合酵素固定化膜を用
いた場合は、単独固定化膜を用いた場合に比較し
て応答電流値の大きさが約1.5倍で応答感度が向
上している。なおガルバニツクセル方式の酸素濃
度計では酸素の還元電流を測定しており、グルコ
ース濃度が上昇すると(1)式に示した反応で酸素濃
度が減少し、結果としてこの還元電流が減少す
る。応答電流の大きさはこの還元電流の減少の大
きさを示している。
As can be seen, when a composite enzyme-immobilized membrane is used, the response current value is approximately 1.5 times greater than when a single immobilized membrane is used, and the response sensitivity is improved. Note that the galvanic cell type oxygen concentration meter measures the reduction current of oxygen, and when the glucose concentration increases, the oxygen concentration decreases due to the reaction shown in equation (1), and as a result, this reduction current decreases. The magnitude of the response current indicates the magnitude of this decrease in reduction current.

実施例 2 テフロン膜に代えて多孔質セルロースアセテー
ト膜を使用する以外は実施例1と同様にして作製
したグルコースオキシダーゼ単独あるいはムタロ
ターゼとの複合固定化膜を白金電極に密着させ、
この白金電極作用極をポテンシヨスタツトを用い
て、参照電極(飽和カロメル電極)に対し+
0.6Vの定電位に設定し、対極との間に流れる電
流値を測定する。
Example 2 A membrane immobilized with glucose oxidase alone or in combination with mutarotase, prepared in the same manner as in Example 1 except for using a porous cellulose acetate membrane instead of the Teflon membrane, was brought into close contact with a platinum electrode,
Using a potentiostat, this platinum electrode working electrode was
Set to a constant potential of 0.6V, and measure the value of the current flowing between it and the counter electrode.

第2図はこの3電極を組み込んだ測定系の構成
を示す。1は白金電極、1′は白金電極の表面に
保持された固定化酵素膜、2は参照電極、3は対
極、4は緩衝液、5はセパレータである。
FIG. 2 shows the configuration of a measurement system incorporating these three electrodes. 1 is a platinum electrode, 1' is an immobilized enzyme membrane held on the surface of the platinum electrode, 2 is a reference electrode, 3 is a counter electrode, 4 is a buffer solution, and 5 is a separator.

上記の測定系の緩衝液中のグルコース濃度を実
施例1と同様にして0から10-4Mに変化させた場
合の応答電流値を第3図に示した。cは複合酵素
固定化膜を用いた場合、dは単独酵素固定化膜の
場合である。この結果から複合酵素固定化膜の方
が約1.5倍応答電流が大であり、応答感度の向上
が認められる。なお、ここで測定しているのは前
記反応式(1)によつて生成するH2O2の酸化電流で
ある。
FIG. 3 shows the response current value when the glucose concentration in the buffer solution of the above measurement system was changed from 0 to 10 -4 M in the same manner as in Example 1. c is the case when a composite enzyme-immobilized membrane is used, and d is the case when a single enzyme-immobilized membrane is used. This result shows that the composite enzyme-immobilized membrane has a response current that is about 1.5 times larger and has an improved response sensitivity. Note that what is measured here is the oxidation current of H 2 O 2 generated by the reaction formula (1).

実施例 3 カーボン電極表面に実施例1で用いたのと同じ
酵素溶液を塗布し、グルタルアルデヒドで処理し
て、電極表面に直接グルコースオキシダーゼ単独
あるいはムタロターゼとの複合酵素固定化膜を形
成する。このようにして作製した2種の電極を実
施例2と同様の測定系に組み入れる。この場合緩
衝液中には10-3Mの濃度でレドツクス化合物の一
種であるP―ベンゾキノンが溶解されている。
Example 3 The same enzyme solution as used in Example 1 is applied to the surface of a carbon electrode and treated with glutaraldehyde to directly form an enzyme-immobilized membrane containing glucose oxidase alone or mutarotase in combination on the electrode surface. The two types of electrodes produced in this way are incorporated into the same measurement system as in Example 2. In this case, P-benzoquinone, a type of redox compound, is dissolved in the buffer at a concentration of 10 -3 M.

上記酵素固定化カーボン電極を飽和カロメル電
極に対し0.4Vに電位設定し、実施例1,2と同
様グルコース濃度変化(0から1×10-4M)にと
もなう電流値の変化を求めた。
The potential of the enzyme-immobilized carbon electrode was set to 0.4 V with respect to the saturated calomel electrode, and as in Examples 1 and 2, changes in current value with changes in glucose concentration (from 0 to 1×10 −4 M) were determined.

第4図に複合酵素固定化の場合eと単独酵素固
定化の場合fとの比較を示す。これから複合固定
化酵素を用いる場合の方が約1.5倍応答感度が大
であることがわかる。ここでは、式(1)のO2にか
わつてP―ベンゾキノンが酵素反応にともなつて
ヒドロキノンになり、この生成したヒドロキノン
の酸化電流を測定していることになる。
FIG. 4 shows a comparison between case e of composite enzyme immobilization and case f of single enzyme immobilization. This shows that the response sensitivity is about 1.5 times higher when using a complex immobilized enzyme. Here, instead of O 2 in formula (1), P-benzoquinone becomes hydroquinone through an enzymatic reaction, and the oxidation current of the generated hydroquinone is measured.

レドツクス化合物としてはP―ベンゾキノン以
外にチオニン、インドフエノール、フエリシアン
化カリ等のレドツクス色素を用いることができ
る。またこれらのレドツクス色素はすでに本発明
者らが提案しているごとく電極に固定化して用い
ることも可能である。
As the redox compound, in addition to P-benzoquinone, redox dyes such as thionine, indophenol, and potassium ferricyanide can be used. Furthermore, these redox dyes can also be used by being immobilized on electrodes as already proposed by the present inventors.

さらにグルコースオキシダーゼとムタロターゼ
の固定化の割合は、ムタロターゼの活性がグルコ
ースオキシダーゼの活性に比較して十分高いこと
が望ましい。
Furthermore, regarding the immobilization ratio of glucose oxidase and mutarotase, it is desirable that the activity of mutarotase is sufficiently higher than that of glucose oxidase.

以上実施例1〜3いずれにおいてもムタロター
ゼとの複合固定化酵素を用いる方法がグルコース
オキシダーゼ単独を用いる方法に比較して約1.5
倍の応答電流値を示している。水溶液中(20℃)
においてグルコースのα型とβ型の比率α/βは
36/64であることが知られており、この数字を考
慮すると上記の1.5倍という数字はほぼ説明がつ
く。すなわちαグルコースがムタロターゼの作用
できわめてすみやかにβグルコースに変換される
とともに、グルコースオキシダーゼの作用を受け
るために、結果として溶液中のαグルコースもβ
グルコースもともにグルコースオキシダーゼの作
用を受けることになり、本発明のグルコース濃度
測定用酵素電極を用いた方法ではαグルコースと
βグルコースの総グルコース濃度を測定している
わけである。実際α型も同時に反応に関与すると
すると36+64/64=1.56倍の応答が得られることに なり、この値は実施例で得られている値にかなり
近い。
In all of Examples 1 to 3 above, the method using a complex immobilized enzyme with mutarotase was approximately 1.5% higher than the method using glucose oxidase alone.
The response current value is twice as large. In aqueous solution (20℃)
The ratio α/β of the α-form and β-form of glucose is
It is known that the ratio is 36/64, and considering this number, the above number of 1.5 times can be explained. In other words, α-glucose is very quickly converted to β-glucose by the action of mutarotase, and since it is also subjected to the action of glucose oxidase, as a result, α-glucose in the solution is also converted to β-glucose.
Both glucose is affected by the action of glucose oxidase, and the method using the enzyme electrode for measuring glucose concentration of the present invention measures the total glucose concentration of α-glucose and β-glucose. In fact, if the α type also participates in the reaction at the same time, a response that is 36+64/64=1.56 times greater will be obtained, and this value is quite close to the value obtained in the example.

グルコースオキシダーゼ単独を電極に固定化し
た酵素電極によつてグルコース全濃度を測定する
には、濃度測定を目的とするグルコース含有被検
液の応答と濃度既知の標準液の濃度とを比較する
ことによつて行われる。すなわち濃度測定を目的
とするグルコース含有液と濃度既知のグルコース
標準液とでαとβの含有割合が一定であると仮定
して両液のβ型に対して得られた応答を比較して
求めているわけである。ところが実際の被検液で
は液の温度、PH、夾雑物等によつてαとβの平衡
値は当然変動しうる。そして標準液を被検液とま
つたく同じα,β間干衡状態に保つことは当然の
ことながら困難であり、分析の誤差をまねきやす
い。このことからα,β両グルコースに活性を有
する複合酵素系を用いる本発明の方法は、より精
度良く全グルコース濃度を測定しうるという利点
も有している。
To measure the total glucose concentration using an enzyme electrode in which glucose oxidase alone is immobilized on the electrode, it is necessary to compare the response of a glucose-containing test solution whose concentration is to be measured with the concentration of a standard solution whose concentration is known. It is done by folding. In other words, assuming that the content ratio of α and β is constant between a glucose-containing solution whose concentration is to be measured and a glucose standard solution of known concentration, the response obtained for the β-type of both solutions is compared. That's why. However, in an actual test liquid, the equilibrium values of α and β may vary depending on the temperature, pH, impurities, etc. of the liquid. Naturally, it is difficult to maintain the standard solution in the same equilibrium state between α and β as the test solution, which tends to lead to analytical errors. Therefore, the method of the present invention using a composite enzyme system having activity on both α and β glucose also has the advantage of being able to measure the total glucose concentration with higher accuracy.

また、上記2種の酵素をリン酸緩衝液に溶解し
た状態で室温保存すると急速に活性が低下するの
に対して、実施例1〜3に示した複合固定化酵素
系においては、緩衝液中300日の室温保存後にお
いても初期の約75%の応答性を維持しており、保
存性に優れたものであつた。
Furthermore, if the above two types of enzymes are dissolved in phosphate buffer and stored at room temperature, the activity rapidly decreases, whereas in the composite immobilized enzyme system shown in Examples 1 to 3, the activity is Even after storage at room temperature for 300 days, it maintained approximately 75% of its initial responsiveness, indicating excellent storage stability.

以上のようにムタロターゼとグルコースオキシ
ダーゼからなる複合固定化酵素を用い、グルコー
ス濃度を電気化学的に測定する酵素電極において
は、全グルコース濃度を測定していることにな
り、応答感度、測定精度が向上し、さらには保存
性にも優れるという効果がある。
As described above, the enzyme electrode that electrochemically measures glucose concentration using a composite immobilized enzyme consisting of mutarotase and glucose oxidase measures the total glucose concentration, improving response sensitivity and measurement accuracy. Furthermore, it has the effect of being excellent in storage stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素濃度計の応答曲線を示す図、第2
図は3電極電気化学測定系の構成図、第3図は
H2O2の酸化電流を測定する場合の電流応答曲線、
第4図はヒドロキノンの酸化電流を測定する場合
の電流応答曲線である。
Figure 1 shows the response curve of the oximeter, Figure 2 shows the response curve of the oximeter.
The figure is a configuration diagram of a three-electrode electrochemical measurement system, and Figure 3 is
Current response curve when measuring the oxidation current of H 2 O 2 ,
FIG. 4 is a current response curve when measuring the oxidation current of hydroquinone.

Claims (1)

【特許請求の範囲】 1 固定化されたグルコースオキシダーゼとムタ
ロターゼからなる複合固定化酵素膜を電極近傍に
備えてなり、複合固定化酵素反応により生成ある
いは消費される物質の濃度を前記電極で電気化学
的に検知することを特徴とするグルコース濃度測
定用酵素電極。 2 複合固定化酵素反応により生成される物質
が、H2O2あるいは還元型のレドツクス化合物で
ある特許請求の範囲第1項に記載のグルコース濃
度測定用酵素電極。 3 複合固定化酵素反応により消費される物質
が、O2である特許請求の範囲第1項に記載のグ
ルコース濃度測定用酵素電極。
[Scope of Claims] 1. A composite immobilized enzyme membrane consisting of immobilized glucose oxidase and mutarotase is provided near an electrode, and the concentration of a substance produced or consumed by the composite immobilized enzyme reaction is measured electrochemically at the electrode. An enzyme electrode for measuring glucose concentration, which is characterized by its ability to detect glucose concentration. 2. The enzyme electrode for measuring glucose concentration according to claim 1, wherein the substance produced by the complex immobilized enzyme reaction is H 2 O 2 or a reduced redox compound. 3. The enzyme electrode for measuring glucose concentration according to claim 1, wherein the substance consumed by the complex immobilized enzyme reaction is O2 .
JP3972680A 1980-03-27 1980-03-27 Determining method of glucose concentration Granted JPS56137899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3972680A JPS56137899A (en) 1980-03-27 1980-03-27 Determining method of glucose concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3972680A JPS56137899A (en) 1980-03-27 1980-03-27 Determining method of glucose concentration

Publications (2)

Publication Number Publication Date
JPS56137899A JPS56137899A (en) 1981-10-28
JPH0119880B2 true JPH0119880B2 (en) 1989-04-13

Family

ID=12560978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3972680A Granted JPS56137899A (en) 1980-03-27 1980-03-27 Determining method of glucose concentration

Country Status (1)

Country Link
JP (1) JPS56137899A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024444A (en) * 1983-07-19 1985-02-07 Matsushita Electric Ind Co Ltd Bio-sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973193A (en) * 1972-09-28 1974-07-15
JPS5236092A (en) * 1975-09-17 1977-03-19 Omron Tateisi Electronics Co Measuring electrode
JPS5258995A (en) * 1975-11-07 1977-05-14 Owens Illinois Inc Measuring method and apparatus for glucose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973193A (en) * 1972-09-28 1974-07-15
JPS5236092A (en) * 1975-09-17 1977-03-19 Omron Tateisi Electronics Co Measuring electrode
JPS5258995A (en) * 1975-11-07 1977-05-14 Owens Illinois Inc Measuring method and apparatus for glucose

Also Published As

Publication number Publication date
JPS56137899A (en) 1981-10-28

Similar Documents

Publication Publication Date Title
Cass et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose
US5746898A (en) Electrochemical-enzymatic sensor
Karyakin et al. A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Vadgama Enzyme electrodes as practical biosensors
Durliat et al. Spectrophotometric and electrochemical determinations of L (+)-lactate in blood by use of lactate dehydrogenase from yeast.
EP0710358B1 (en) Potentiometric biosensor and the method of its use
JPH04233446A (en) Electrochemical enzyme sensor
Kulys et al. Carbon-paste electrodes with incorporated lactate oxidase and mediators
Kulys et al. Sensitive yeast bioelectrode to L‐lactate
KR20140041784A (en) Reagents for electrochemical test strips
Kulys et al. Glucose biosensor based on the incorporation of Meldola Blue
Casero et al. Peroxidase enzyme electrodes as nitric oxide biosensors
JP2006349412A (en) Creatinine biosensor
CA1109374A (en) Stabilization of activated galactose oxidase enzyme
Eremenko et al. Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols
Ikeda et al. Amperometric response to reducing carbohydrates of an enzyme electrode based on oligosaccharide dehydrogenase. Detection of lactose and α-amylase
Wang et al. Screen printed cupric-hexacyanoferrate modified carbon enzyme electrode for single-use glucose measurements
Van Os et al. Glucose detection at bare and sputtered platinum electrodes coated with polypyrrole and glucose oxidase
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
JPH0119880B2 (en)
Groom et al. Electrical communication between a water-soluble 1, 1′-dimethylferrocene-2-hydroxypropyl-β-cyclodextrin complex and glucose oxidase: biosensor applications
JP4000708B2 (en) Method for measuring substances using enzyme-immobilized electrode
Christiansen et al. The slow penetration of enzymebased biosensors into clinical chemistry analysis
Dock et al. Effect of interfering substances on current response of recombinant peroxidase and glucose oxidase–recombinant peroxidase modified graphite electrodes