JPH01194491A - Manufacture of copper-pressed metallic base substrate - Google Patents

Manufacture of copper-pressed metallic base substrate

Info

Publication number
JPH01194491A
JPH01194491A JP1993388A JP1993388A JPH01194491A JP H01194491 A JPH01194491 A JP H01194491A JP 1993388 A JP1993388 A JP 1993388A JP 1993388 A JP1993388 A JP 1993388A JP H01194491 A JPH01194491 A JP H01194491A
Authority
JP
Japan
Prior art keywords
copper
ceramic
carbon fiber
prepreg
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1993388A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛士 長谷川
Mitsuhiro Inoue
光弘 井上
Tokuo Okano
岡野 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1993388A priority Critical patent/JPH01194491A/en
Publication of JPH01194491A publication Critical patent/JPH01194491A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PURPOSE:To obtain a copper-clad metallic base substrate of high heat dissipation capacity, by spraying molten ceramics on copper leaf to form a ceramic layer, placing a prepreg of a carbon fiber base material between the ceramic layer and a metal plate which is a base, and performing thermocompression to form an integrated body. CONSTITUTION:Molten alumina is sprayed on the rough surface of 35mum thick electrolytic copper leaf 1 with a plasma spraying equipment to form a 150mum thick alumina sprayed layer 2. A prepreg 4 of carbon fiber base material and epoxy resin is placed between the side of the alumina sprayed layer of the copper leaf 1 having the alumina sprayed layer 2 and a 1mm thick 42-alloy plate 3 and thermocompression forming is performed for 90 minutes at 130 deg.C and under a pressure of 10kg/cm<2>. This metallic base substrate has high heat dissipation capacity and the blow holes of the alumina layer formed by spraying are completely closed because said blow holes are impregnated with the epoxy resin of a viscosity decreased when thermocompression forming with the prepreg of carbon fiber base material is performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱放散性にすぐれた銅張金属ベース基板の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a copper-clad metal base substrate with excellent heat dissipation properties.

(従来の技術) 従来、プリント配線板としては紙基材フェノール樹脂積
層板、ガラス布基材エポキシ樹脂積層板などのプラスチ
ック系基板が多く用いられてきた。しかし、最近では電
子機器の小型化、高性能化、高密度化が進みそのために
発生する熱をいかに処理するか、あるいは塔載するセラ
ミックチップ、シリコンチップ等との接続信頼性を確保
するために基板の低熱膨張化が要求されるようになって
きた。
(Prior Art) Conventionally, plastic substrates such as paper-based phenol resin laminates and glass cloth-based epoxy resin laminates have often been used as printed wiring boards. However, in recent years, as electronic devices have become smaller, more sophisticated, and more dense, it has become difficult to deal with the heat generated by these devices, or to ensure the reliability of connections with mounted ceramic chips, silicon chips, etc. There is a growing demand for lower thermal expansion of substrates.

これに刻して、従来のプラスチック系基板は熱伝導率が
低(、熱放散性が悪いために、このような用途には不向
である。そのために、熱伝導性にすぐれた基板として熱
伝導率の高いアルミニラム、鉄などの金属板をベースと
し、その表面に絶縁層を形成した金属ベース基板が注目
この金属ベース基板はアルミニウムなどの熱伝導性の高
い金属板の表面にエポキシ樹脂、ポリイミド樹脂などの
樹脂からなる薄い絶縁層を設け、さらにその上に回路を
形成する銅箔を貼りつけた構造のものが主流である。し
かし、このような構造では、回路と金属板との間に熱伝
導性の低い樹脂層が存在するため、その下の金騰板の高
熱伝導性を十分に生かすことができない。これについて
は樹脂絶縁層を極力薄くする、あるいは樹脂に熱伝導性
の高い無機質フィラーを混入するなどの方法が考えられ
ているがその効果は十分とはいえない。
In light of this, conventional plastic substrates have low thermal conductivity (and poor heat dissipation), making them unsuitable for such applications. This metal-based substrate is a metal base substrate made of a highly conductive metal plate such as aluminum or iron, with an insulating layer formed on its surface. The mainstream structure is that a thin insulating layer made of resin or other resin is provided, and then a copper foil that forms the circuit is pasted on top of that.However, in this type of structure, there is a gap between the circuit and the metal plate. Since there is a resin layer with low thermal conductivity, it is not possible to take full advantage of the high thermal conductivity of the metal plate underneath.For this, the resin insulation layer should be made as thin as possible, or the resin should be made of an inorganic material with high thermal conductivity. Methods such as mixing fillers have been considered, but their effects cannot be said to be sufficient.

このようなことから絶縁層として熱伝導性にすぐれたア
ルミナなどのセラミックを使用する方法が考えられてい
る。具体的にはベースとなる金属板の表面にセラミック
を溶射してセラミック層を形成する方法である。この方
法によれば熱伝導性の低い樹脂を全く使用しないため、
熱伝導性は向上するものの、金属板とセラミック勉との
密着性が十分でない、あるいは溶射により形成されるセ
ラミック層には気孔か存在するために耐電圧、吸湿時の
絶縁特性が低下する欠点があり、一部で実用化されてい
るのみでその用途は限られたものとなっている。
For this reason, a method of using ceramics such as alumina, which has excellent thermal conductivity, as an insulating layer has been considered. Specifically, this method involves spraying ceramic onto the surface of a base metal plate to form a ceramic layer. This method does not use any resin with low thermal conductivity, so
Although thermal conductivity is improved, there are drawbacks such as insufficient adhesion between the metal plate and the ceramic layer, or the presence of pores in the ceramic layer formed by thermal spraying, resulting in a decrease in withstand voltage and insulation properties when moisture is absorbed. However, its use is limited as it has only been put into practical use in some areas.

また、このような構造の基板は、回路形成するには導体
ペースト塗布法、めっきなど煩雑な工程を経なければな
らない。
Further, in order to form a circuit on a board having such a structure, it is necessary to undergo complicated processes such as a conductive paste coating method and plating.

本発明は、これらの欠点を改良し熱放散性にすぐれた銅
張金属ベース基板を提供するものですなわち、本発明は
、銅箔にセラミックを溶射してセラミック層を形成し、
該セラミック周側とベースとなる金属板の間に炭素繊維
基材プリプレグを配置して熱圧成形、一体止することを
特徴とするものである。
The present invention improves these drawbacks and provides a copper-clad metal base substrate with excellent heat dissipation. Namely, the present invention provides a copper-clad metal base substrate with excellent heat dissipation properties. Namely, the present invention provides a ceramic layer formed by thermally spraying ceramic on copper foil,
It is characterized in that a carbon fiber base material prepreg is placed between the ceramic peripheral side and the metal plate serving as the base, and is integrally fixed by hot pressure molding.

溶射するセラミックは、電気特性の点からセラミック基
板として最も一般的に用いられているアルミナが好適で
あるか、その他にスピネル、ムライト、シリカ、コージ
ェライト、ジルコニアなどの電気絶縁性のセラミックを
用いることができる。その溶射法はカス溶射法、プラズ
マ溶射法、水プラズマ溶射法、減圧プラズマ溶射法など
が過用できる。
The ceramic to be thermally sprayed is preferably alumina, which is the most commonly used ceramic substrate from the viewpoint of electrical properties, or other electrically insulating ceramics such as spinel, mullite, silica, cordierite, and zirconia. Can be done. As the thermal spraying method, dregs spraying, plasma spraying, water plasma spraying, reduced pressure plasma spraying, etc. can be used.

次1ζ本発明に用いる.炭素繊維基相プリプレグについ
て述べる。炭素繊維の形態は本発明を限定するものでは
なく任意であり、PAN系炭素炭素繊維ッチ系炭素繊維
の短&維、あるいは長繊維の引きそろえロービング、ク
ロスなどが用いられる。
The following 1ζ is used in the present invention. The carbon fiber-based prepreg will be described. The form of the carbon fibers is not limited to the present invention and is arbitrary, and PAN-based carbon fibers, short and fiber-based carbon fibers, long fibers, aligned rovings, cloth, etc. are used.

プリプレグの樹脂は、接着性の点からはエポキシ樹脂、
耐熱性の点からはポリイミド樹脂が好適であるが、その
他にフェノール樹脂、ビニルエステル樹脂、不飽和ポリ
エステル樹脂などが用いられる。
Prepreg resins are epoxy resins,
From the viewpoint of heat resistance, polyimide resins are preferred, but phenol resins, vinyl ester resins, unsaturated polyester resins, and the like may also be used.

また、ベースとなる金属板は、アルミニウム、銅、鉄、
ステンレス、真ちゅう、42合金、インバー合金などが
用いられる。この中で42合金、インバー合金は熱膨張
係数が小さく (3〜4 X 10−@/℃) 、セラ
ミック(6〜7 X I Q−’/’C)に近いため、
これらをベース金属とすれば基板の熱膨張係数を低くす
ることができ、セラミックチップ、シリコンチップ実装
時の接続信頼性の向上に非常に大きな効果かある。また
、42合金、インバー合金は必要に応じて銅、アルミニ
ウムなどの他の金属とクラッドした状態で用いてもよい
In addition, the base metal plate can be aluminum, copper, iron,
Stainless steel, brass, 42 alloy, invar alloy, etc. are used. Among these, 42 alloy and Invar alloy have a small thermal expansion coefficient (3 to 4
If these are used as base metals, the coefficient of thermal expansion of the substrate can be lowered, which has a very large effect on improving connection reliability when mounting ceramic chips or silicon chips. Furthermore, the 42 alloy and the Invar alloy may be used in a state where they are clad with other metals such as copper and aluminum, if necessary.

なお、本発明においてベースとなる金属板へのセラミッ
ク絶縁層の形成は片面のみでも、両面でも良い。
In the present invention, the ceramic insulating layer may be formed on only one side or both sides of the metal plate serving as the base.

(作用) 本発明の方法により得られる銅張金属ベース基板は回路
となる銅箔に布着してセラミック層が存在し、さらに炭
素繊維強化プラスチック(以下CFRPと記す)屑を通
して金属板と一体化しているため、その熱放散性は極め
て良好である。すなわち、従来の銅張金属ベース基板は
、回路を形成する銅箔の真下は熱伝導性の極めて低い樹
脂層であるため、ベースである金属板の高熱伝導性が十
分に生かしきれない。ところが、本発明においては、絶
縁石は熱伝導性にすぐれたセラミックであり、しかも、
そのセラミック層とベース金属とはCFRPにより接着
、一体止している。CFRPの熱伝導率は0.05〜0
゜15 cal / cm、s、℃と、樹脂(熱伝導率
約0.0004 oa l / cm、s、 ’C)あ
るいは、ガラス繊維強化プラスチック(熱伝導率約0.
 OOO7cat 7cm−s。
(Function) The copper-clad metal base substrate obtained by the method of the present invention is bonded to a copper foil that forms a circuit, has a ceramic layer, and is further integrated with a metal plate through carbon fiber reinforced plastic (hereinafter referred to as CFRP) scraps. Therefore, its heat dissipation properties are extremely good. That is, in the conventional copper-clad metal base board, the resin layer with extremely low thermal conductivity is located directly under the copper foil that forms the circuit, so the high thermal conductivity of the base metal plate cannot be fully utilized. However, in the present invention, the insulating stone is a ceramic with excellent thermal conductivity, and
The ceramic layer and the base metal are bonded and fixed together by CFRP. The thermal conductivity of CFRP is 0.05~0
°15 cal/cm, s, °C, resin (thermal conductivity approx. 0.0004 oa l/cm, s, 'C) or glass fiber reinforced plastic (thermal conductivity approx. 0.
OOO7cat 7cm-s.

°Cに比べると非常に大きい。そのために、従来の樹脂
あるいはガラス繊維強化プラスチックを絶縁層とした金
執ベース基板に比べると絶縁層の熱伝導性が向上し、ベ
ースとなる金属板の高熱伝導性を十分に生かすことがで
きる。したがって、熱放散性にすぐれた金属ベース基板
を得ることができる。
It is very large compared to °C. Therefore, the thermal conductivity of the insulating layer is improved compared to conventional metal base substrates in which the insulating layer is made of resin or glass fiber reinforced plastic, and the high thermal conductivity of the base metal plate can be fully utilized. Therefore, a metal base substrate with excellent heat dissipation properties can be obtained.

また、従来のセラミック溶射を利用したいわゆる溶射基
板においては、ベースとなる金属板の表面に直接、絶縁
層となるセラミックを溶射したものであるため、その密
着性は必ずしも十分とはいえず、信頼性に問題があった
。ところが、本発明においては、回路を構成する銅箔に
セラミックを溶射してセラミック層を構成し、これを炭
素繊維基材プリプレグを用いてベースとなる金属板と接
着するものである。このようにすると炭素繊維基材プリ
プレグの樹脂がセラミック鍮と金属板との接着剤の役目
を果たし、直接セラミックを溶射した場合では得られな
い強固な密着性を得ることができる。さらに、銅箔と銅
箔に溶射したセラミックとの密着性は銅箔として片面を
粗面化した電解銅箔を用い、その粗化面に溶射すること
によってアンカー効果により良好な密着性が得られる。
In addition, in so-called thermal sprayed substrates that use conventional ceramic thermal spraying, the ceramic that serves as the insulating layer is sprayed directly onto the surface of the base metal plate, so the adhesion is not necessarily sufficient and reliability is low. There was a problem with sexuality. However, in the present invention, a ceramic layer is formed by thermally spraying ceramic onto a copper foil that constitutes a circuit, and this is bonded to a base metal plate using a carbon fiber base material prepreg. In this way, the resin of the carbon fiber base material prepreg acts as an adhesive between the ceramic brass and the metal plate, and it is possible to obtain strong adhesion that cannot be obtained when ceramic is directly sprayed. Furthermore, the adhesion between the copper foil and the ceramic sprayed on the copper foil is achieved by using electrolytic copper foil with one side roughened as the copper foil, and by spraying onto the roughened surface, good adhesion can be obtained due to the anchor effect. .

そして、炭素繊維基材プリプレグと金属板との熱圧成形
時に熱により低粘度化した樹脂は、セラミック溶射層に
存在する気孔に含浸し、銅箔とセラミック溶射層との界
面まで達する。そのために銀箔と含浸してきた樹脂が接
着することによりさらに密着性は強固なものとなる。
Then, the resin whose viscosity is lowered by heat during hot-press molding of the carbon fiber base material prepreg and the metal plate impregnates the pores existing in the ceramic sprayed layer and reaches the interface between the copper foil and the ceramic sprayed layer. Therefore, the adhesion between the silver foil and the impregnated resin makes the adhesion even stronger.

また、セラミックと樹脂の密着性は一般には異種材料で
あるために乏しいとされているが、セラミック溶射によ
り形成されたセラミック溶射層の表面に粗面度が大きく
、しかも気孔を有するためにアンカー効果と気孔内への
樹脂の含浸によりその密着性は大きくなる。
In addition, the adhesion between ceramic and resin is generally considered to be poor because they are dissimilar materials, but the surface of the ceramic sprayed layer formed by ceramic spraying has a large surface roughness and has pores, so it has an anchoring effect. By impregnating the resin into the pores, the adhesion becomes greater.

なお、セラミック溶射層においては、溶射基板の場合で
も問題となっているように本質的に気孔が存在するため
に絶縁層として用いるには耐電圧、吸湿時特性に乏しい
。ところが本発明の方法によれば、炭素繊維基材プリプ
レグとの熱圧成形時に炭素繊維プリプレグの樹脂がセラ
ミック溶射層の気孔に含浸し、それによって封孔がなさ
れる。したがって、従来の溶射によって形成されたセラ
ミック層の欠点も容易に解決し得るのである。なお、炭
素繊維基材プリプレグの樹脂の粘度が高く、セラミック
層の封孔が十分ではないときは、熱圧成形に先立ってセ
ラミック溶射層に低粘度の樹脂を塗布しておいてもさし
つかえない。
It should be noted that ceramic sprayed layers inherently have pores, which is a problem even in the case of thermal sprayed substrates, so that they have poor withstand voltage and moisture absorption properties for use as an insulating layer. However, according to the method of the present invention, the resin of the carbon fiber prepreg impregnates the pores of the ceramic sprayed layer during hot press molding with the carbon fiber base material prepreg, thereby sealing the pores. Therefore, the drawbacks of ceramic layers formed by conventional thermal spraying can be easily overcome. In addition, if the viscosity of the resin of the carbon fiber base material prepreg is high and the sealing of the ceramic layer is not sufficient, it is possible to apply a low-viscosity resin to the ceramic sprayed layer prior to hot-press molding.

次に.炭素繊維基相プリプレグを用いることの特徴につ
いて述べる。炭素繊維基材プリプレグは、銅箔に溶射さ
れたセラミック層とベースとなる金属板との接着のため
に用いるのであるが、炭素繊維基材プリプレグを用いる
ことの利点の一つは炭素繊維基材プリプレグから形成さ
れるC F RPは熱伝導性が良いことである。一般の
金属ベース基板の絶縁層に用いられるエポキシ樹脂の熱
伝導率は約0.0004 cal 7cm、s−”C、
ガラス布基材エポキシ樹脂では約0. OOO7ca+
/cm、s、”l:、である。ところが、CFRPの熱
伝導率は0.05〜Q、l 5 cat 7cm、s−
℃とこれらに比べて格段に高いものである。したがって
、CFHP層を介してセラミック層と金属板を接着する
ことによって樹脂単独、あるいはガラス繊維強化プラス
チツク層で接着した場合に比べて、表面の回路に接続さ
れた部品から発生する熱をセラミック層、CFRP層を
通して効率よくベース金属板に逃がすことができ、基板
の熱放散性が格段に向上するのである。
next. The characteristics of using carbon fiber-based prepreg will be described. Carbon fiber base prepreg is used to bond the ceramic layer sprayed on copper foil to the base metal plate, but one of the advantages of using carbon fiber base prepreg is that the carbon fiber base prepreg C F RP formed from prepreg has good thermal conductivity. The thermal conductivity of epoxy resin used for the insulating layer of general metal base substrates is approximately 0.0004 cal 7cm, s-"C,
Approximately 0.0 for glass cloth base epoxy resin. OOO7ca+
/cm, s, "l:," However, the thermal conductivity of CFRP is 0.05~Q, l 5 cat 7cm, s-
℃, which is much higher than these. Therefore, by bonding the ceramic layer and the metal plate through the CFHP layer, the heat generated from the components connected to the circuit on the surface can be absorbed by the ceramic layer and the metal plate. Heat can be efficiently dissipated to the base metal plate through the CFRP layer, significantly improving the heat dissipation properties of the board.

炭素繊維基材プリプレグを用いることのもう一つの利点
は、得られる基板の熱膨張係数を低くすることができる
点である。CFRPの熱膨張係数は基材である炭素繊維
の熱膨張係数が繊維方向でゼロに近く、逆にマイナスの
値を示す。
Another advantage of using a carbon fiber base prepreg is that the resulting substrate can have a low coefficient of thermal expansion. The coefficient of thermal expansion of CFRP is that of carbon fiber, which is the base material, is close to zero in the fiber direction, and on the contrary, it shows a negative value.

そのために、CFRPの熱膨張係数は面方向で約0.7
 X 10−@/’C:と一般のガラス布基材エポキシ
樹脂(面方向の熱膨張係数10〜15×10−’/’C
)に比べて非常に小さいものとなる。
Therefore, the coefficient of thermal expansion of CFRP is approximately 0.7 in the plane direction.
X 10-@/'C: and general glass cloth base epoxy resin (planar thermal expansion coefficient 10 to 15 x 10-'/'C
) is very small compared to

したかって、CFRP層を介してセラミック層とベース
となる金属板を一体化した金属ベース基板の熱膨張係数
はCFRPとセラミック層の熱膨張係数が低いために従
来の金属ベース基板よりも低くすることができる。特に
、ベースとなる金属板に低熱膨張係数の42合金あるい
はインバー合金を主体としたものを用いると従来では得
られなかったセラミックチップ、シリコンチップ等の実
装部品の熱膨張係数に近い熱膨張係数をもつ金属ベース
基板を得ることができ、実装部品との接続信頼性を太き
(向上することができるものである。
Therefore, the coefficient of thermal expansion of a metal base substrate in which a ceramic layer and a base metal plate are integrated via a CFRP layer should be lower than that of a conventional metal base substrate because the coefficients of thermal expansion of CFRP and the ceramic layer are low. Can be done. In particular, if the base metal plate is made mainly of 42 alloy or Invar alloy, which has a low coefficient of thermal expansion, a coefficient of thermal expansion close to that of mounted components such as ceramic chips and silicon chips, which could not be obtained with conventional methods, can be achieved. This makes it possible to obtain a metal base substrate with a high level of heat resistance, thereby increasing (improving) the reliability of connections with mounted components.

(実施例) 本発明の実施例を第1図及び第2図に基づき以下説明す
る。
(Example) An example of the present invention will be described below based on FIGS. 1 and 2.

第1図は本発明の金属ベース基板の積層構成図、第2図
は得られた金属ベース基板の断面模式図である。
FIG. 1 is a stacked structure diagram of a metal base substrate of the present invention, and FIG. 2 is a schematic cross-sectional view of the obtained metal base substrate.

厚さ35μmの電解銅箔1の粗化面にプラズマ溶射装置
によりアルミナを溶射して厚さ150μmのアルミナ溶
射層2を形成した。次に第1図に示すごとく、アルミナ
溶射層2をもっ銅箔1のアルミナ溶射層側と厚さ1 r
rmrの42合金板3との間に炭素繊維基材エポキシ樹
脂プリプレグ(炭素繊維平織クロス、目付け100g/
醪、エポキシ樹脂含有率4Qwt96、成形後の厚み0
.1mm)4を置き、温度130’C1圧力10にノ/
 crdの条件で90分間熱圧成形し、第2図の断面構
造を有する金属ベース基板を得た。
Alumina was thermally sprayed onto the roughened surface of an electrolytic copper foil 1 having a thickness of 35 μm using a plasma spraying device to form a sprayed alumina layer 2 having a thickness of 150 μm. Next, as shown in FIG. 1, the alumina sprayed layer side of the copper foil 1 with the alumina sprayed layer 2
Carbon fiber base epoxy resin prepreg (carbon fiber plain weave cloth, basis weight 100g/
Moromi, epoxy resin content 4Qwt96, thickness after molding 0
.. 1mm) 4, temperature 130'C1 pressure 10/
The metal base substrate was hot-pressed for 90 minutes under CRD conditions to obtain a metal base substrate having the cross-sectional structure shown in FIG.

この金属ベース基板は高い熱放散性を有し1、溶射によ
り形成されたアルミナ層の気孔は炭素繊維基材プリプレ
グとの熱圧成形時に低粘度化したエポキシ樹脂がアルミ
ナ層の気孔に含浸したために完全に封孔され、吸湿時の
絶縁特性の低下は認められなかった。また、基板の熱膨
張係数も従来のものに比べて低くなったため、実装部品
との接続信頼性も向上した。
This metal base substrate has high heat dissipation properties1, and the pores in the alumina layer formed by thermal spraying are due to the epoxy resin whose viscosity was reduced during hot press molding with the carbon fiber base prepreg being impregnated into the pores of the alumina layer. The pores were completely sealed, and no deterioration in insulation properties was observed when moisture was absorbed. Additionally, the thermal expansion coefficient of the board is lower than that of conventional boards, which improves connection reliability with mounted components.

(発明の効果) 以上、述べてきたように本発明により得られる金属ベー
ス基板は、従来の金属ベース基板では問題となっていた
熱放散性、熱膨張係数の欠点を一挙に解決したものであ
る。
(Effects of the Invention) As described above, the metal base substrate obtained by the present invention solves all the problems of heat dissipation and thermal expansion coefficient that were problems with conventional metal base substrates. .

これによって電子機器の小型化、高出力化、高密度化に
対応した高熱放散性でしかも低熱膨張係数で実装部品と
の接続信頼性にすぐれた金属ベース基板を提供すること
ができるものである。
As a result, it is possible to provide a metal base substrate that has high heat dissipation properties that correspond to the miniaturization, high output, and high density of electronic devices, has a low coefficient of thermal expansion, and has excellent connection reliability with mounted components.

符号の説明 1・・・銅箔       2・・・アルミナ溶射層3
・・・42合金板 4・・・.炭素繊維基相プリプレグ 5・・・CFRP
Explanation of symbols 1...Copper foil 2...Alumina sprayed layer 3
...42 alloy plate 4... Carbon fiber base prepreg 5...CFRP

Claims (5)

【特許請求の範囲】[Claims] 1. 銅箔の片面にセラミックを溶射してセラミック層
を形成し、該セラミック溶射銅箔のセラミック層側と金
属板との間に炭素繊維基材プリプレグを配置しこれらを
熱圧成形して一体化することを特徴とする銅張金属ベー
ス基板の製造方法。
1. Ceramic is sprayed on one side of the copper foil to form a ceramic layer, a carbon fiber base prepreg is placed between the ceramic layer side of the ceramic sprayed copper foil and the metal plate, and these are integrally formed by thermo-pressure molding. A method for manufacturing a copper-clad metal base substrate, characterized by:
2. 溶射するセラミックがアルミナを主体とするもの
であることを特徴とする請求項1記載の銅張金属ベース
基板の製造方法。
2. 2. The method of manufacturing a copper-clad metal base substrate according to claim 1, wherein the ceramic to be thermally sprayed is mainly composed of alumina.
3. ベースとなる金属板が42合金またはインバー合
金であることを特徴とする請求項1項記載の銅張金属ベ
ース基板の製造方法。
3. 2. The method of manufacturing a copper-clad metal base substrate according to claim 1, wherein the base metal plate is made of 42 alloy or Invar alloy.
4. 炭素繊維基相プリプレグの樹脂がエポキシ樹脂で
あることを特徴とする請求項1記載の銅張金属ベース基
板の製造方法。
4. 2. The method for manufacturing a copper-clad metal base substrate according to claim 1, wherein the resin of the carbon fiber base prepreg is an epoxy resin.
5. 炭素繊維基材プリプレグの樹脂がポリイミド樹脂
であることを特徴とする請求項1記載の銅張金属ベース
基板の製造方法。
5. 2. The method of manufacturing a copper-clad metal base substrate according to claim 1, wherein the resin of the carbon fiber base material prepreg is a polyimide resin.
JP1993388A 1988-01-29 1988-01-29 Manufacture of copper-pressed metallic base substrate Pending JPH01194491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993388A JPH01194491A (en) 1988-01-29 1988-01-29 Manufacture of copper-pressed metallic base substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993388A JPH01194491A (en) 1988-01-29 1988-01-29 Manufacture of copper-pressed metallic base substrate

Publications (1)

Publication Number Publication Date
JPH01194491A true JPH01194491A (en) 1989-08-04

Family

ID=12013018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993388A Pending JPH01194491A (en) 1988-01-29 1988-01-29 Manufacture of copper-pressed metallic base substrate

Country Status (1)

Country Link
JP (1) JPH01194491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723298B1 (en) * 2005-08-23 2007-05-30 (주) 나노텍 Heat sink using prepreg
JP2011082361A (en) * 2009-10-07 2011-04-21 Fujitsu Ltd Circuit board and method of manufacturing the same
KR101054652B1 (en) * 2009-05-19 2011-08-04 주식회사 영일프레시젼 Manufacturing method of LED heat dissipation board coated with heat dissipation paint
JP2016201640A (en) * 2015-04-08 2016-12-01 三菱電機株式会社 Radome for flying body and manufacturing method of radome for flying body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723298B1 (en) * 2005-08-23 2007-05-30 (주) 나노텍 Heat sink using prepreg
KR101054652B1 (en) * 2009-05-19 2011-08-04 주식회사 영일프레시젼 Manufacturing method of LED heat dissipation board coated with heat dissipation paint
JP2011082361A (en) * 2009-10-07 2011-04-21 Fujitsu Ltd Circuit board and method of manufacturing the same
JP2016201640A (en) * 2015-04-08 2016-12-01 三菱電機株式会社 Radome for flying body and manufacturing method of radome for flying body

Similar Documents

Publication Publication Date Title
CA1230182A (en) Multilayer printed circuit board structure
US4713284A (en) Ceramic coated laminate and process for producing the same
JPS62251136A (en) Metal composite laminated board
KR20020023667A (en) Thermoconductive substrate and semiconductor module using the same
JPS59198790A (en) Printed circuit board
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JP3969477B2 (en) Multilayer wiring board and manufacturing method thereof
JP3156798B2 (en) Circuit board for semiconductor mounting
JPH01194384A (en) Manufacture of copper-clad laminated plate
JP4591181B2 (en) Printed wiring board
EP0784539A1 (en) Thermal management for additive printed circuits
JPH0446479B2 (en)
JPS60236279A (en) Plate for circuit
JPS60236278A (en) Plate for circuit
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPH01232796A (en) Manufacture of metal core insulated board
JPH01157589A (en) Manufacture of metal base substrate
JPS60236280A (en) Plate for circuit
JPH0654833B2 (en) Method for manufacturing insulating substrate
JPS63219562A (en) Manufacture of ceramic coat laminated sheet
JPH05110219A (en) Printed wiring board
JPH0360191B2 (en)
JP2806030B2 (en) Ceramic composite copper-clad laminate and method of manufacturing the same
JPH03231840A (en) Thermoplastic resin laminated sheet