JPH01192720A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH01192720A
JPH01192720A JP63014387A JP1438788A JPH01192720A JP H01192720 A JPH01192720 A JP H01192720A JP 63014387 A JP63014387 A JP 63014387A JP 1438788 A JP1438788 A JP 1438788A JP H01192720 A JPH01192720 A JP H01192720A
Authority
JP
Japan
Prior art keywords
powder
thin film
superconducting thin
film
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63014387A
Other languages
Japanese (ja)
Inventor
Kota Yoshikawa
浩太 吉川
Naoki Awaji
直樹 淡路
Keikou Boku
朴 慶浩
Nagisa Oosako
大迫 なぎさ
Narimoto Ri
李 成元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63014387A priority Critical patent/JPH01192720A/en
Priority to EP89101208A priority patent/EP0326087A3/en
Priority to US07/300,889 priority patent/US4914080A/en
Publication of JPH01192720A publication Critical patent/JPH01192720A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/641

Abstract

PURPOSE:To obtain RE1Ba2Cu3O7-x-based superconducting thin film by combining a calcined product from the oxides of the respective components in the above composition ratio with, as the vaporization source, a second calcined product from RE2O3 powder and Cu powder to ensure insufficient components to be compensated. CONSTITUTION:Firstly, respective oxides of rare earth element (RE), Ba and Cu are mixed in the ratio 1:2:3 and calcined to produce a sintered form of the formula RE1Ba2Cu3Ox. Secondly, this sintered form is ground and combined with, as the vaporization source, pellets formed by calcining RE2O3 powder and Cu powder. Finally, the resultant combination is subjected to electron beam deposition or sputterling process to obtain the objective superconducting thin film of the formula RE1Ba2Cu3O7-x. This process with allow the RE, Ba or Cu to be lost during the electron beam deposition or sputtering steps to be compensated, thus enabling a film giving superconductivity at the liquid nitrogen temperatures to be produced in a single step.

Description

【発明の詳細な説明】 ・′ 〔概要〕 超伝導薄膜の形成方法、特に電子ビーム(EB)蒸着、
スパッタ法による超伝導薄膜形成において、蒸着源(ソ
ース)として、RE、 gazcu sexの焼成粉体
に、RB+ Bar Cuを粉体で混合させたものを用
いる方法に関し、 REI Ba、Cu30xを蒸着源として薄膜を形成す
る場合、成膜された薄膜に欠乏するREとCuまたはB
aとCuとが補償される超伝導薄膜の形成方法を提供す
ることを目的とし、 蒸着法あるいはスパッタ法によりRE、Ba工Cu30
7−x系(ただし、REは希土類元素)の超伝導薄膜を
作成するにおいて、RE、 Bar Cuの酸化物を1
:2:3の比で混合した後に焼成し、かくして得られた
焼成物を粉砕したものにRE2O3とCuを粉体で加え
焼成したソースを用いることを特徴とする超伝導薄膜の
形成方法を含み構成する。
[Detailed description of the invention] ・′ [Summary] A method for forming superconducting thin films, particularly electron beam (EB) evaporation,
Regarding the method of using RE, gazcu sex fired powder mixed with powder of RB+ Bar Cu as a vapor deposition source in forming a superconducting thin film by sputtering method, REI Ba, Cu30x as a vapor deposition source. When forming a thin film, RE and Cu or B, which are deficient in the formed thin film,
The purpose of this study is to provide a method for forming a superconducting thin film in which a and Cu are compensated.
In creating a superconducting thin film of the 7-x system (where RE is a rare earth element), RE, Bar Cu oxide,
: A method for forming a superconducting thin film characterized by using a source obtained by mixing the mixture at a ratio of 2:3 and firing the resulting fired product, adding RE2O3 and Cu in the form of powder to the pulverized product, and firing the resulting product. Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は、超伝導薄膜の形成方法、特に電子ビーム(E
B)蒸着、スパッタ法による超伝導薄膜形成において、
蒸着源(ソース)として、Y、 Ba2.Cu3−OX
の焼成粉体に、’Y、 Ba、 Cuを粉体で混合させ
たものを用いる方法に関する。
The present invention relates to a method for forming a superconducting thin film, particularly an electron beam (E)
B) In forming a superconducting thin film by vapor deposition or sputtering,
As a vapor deposition source, Y, Ba2. Cu3-OX
The present invention relates to a method using a powder mixture of Y, Ba, and Cu in the fired powder.

〔従来の技術〕[Conventional technology]

液体窒素温度で超伝導状態を示すY−Ba−Cu−0系
セラミツクスが産業界に与えるインパクトは図り知れな
いものがある。かかるセラミックスをエレクトロニクス
に応用する場合に不可欠な事項は、その薄膜化である。
The impact that Y-Ba-Cu-0 ceramics, which exhibit a superconducting state at liquid nitrogen temperatures, has on industry is immeasurable. When applying such ceramics to electronics, it is essential to reduce the thickness of the ceramics.

現在、スパッタ法、 EB蒸着法。Currently, sputtering method, EB evaporation method.

MBB、(分子ビームエピタキシャル)法などによる薄
膜形成が試みられている状態である。
Attempts are being made to form thin films using MBB, (molecular beam epitaxial) methods, and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

Y−Ba−Cu−0系薄膜をEB蒸着法、 MBB法な
どで成膜する場合、希土類元素(RE)であるイツトリ
ウム(Y)、バリウム(Ba)および銅(Cu)を別々
に蒸着させる方法は既に検討されている。しかし、この
方法によると、プロセスが複雑化し、蒸着膜形成後のア
ニールでY、 Ba、 Cuの混合が不十分で、結晶化
が完全に進行しない問題がある。そこで、本願の発明者
等はYIBa、C勧Oxの焼結体を蒸着源として単一プ
ロセスで薄膜を形成することを試みた。しかし、 Y、
 Ba、Cu30x  (これは超伝導となる)を蒸着
源とした場合に、形成された膜は、YとCuとが足りな
い状態となることを確認した。
When forming a Y-Ba-Cu-0 based thin film using the EB evaporation method, MBB method, etc., there is a method in which the rare earth elements (RE) yttrium (Y), barium (Ba), and copper (Cu) are separately evaporated. is already being considered. However, this method has the problem that the process is complicated, and that Y, Ba, and Cu are insufficiently mixed during annealing after forming the deposited film, and crystallization does not proceed completely. Therefore, the inventors of the present application attempted to form a thin film in a single process using a sintered body of YIBa and COx as a deposition source. However, Y.
It was confirmed that when Ba and Cu30x (which are superconducting) were used as the evaporation source, the formed film was in a state in which Y and Cu were insufficient.

他方、Y−Ba−Cu−0系Wl膜をスパッタ法で成膜
する場合に、YI Ba1Cu30xのターゲットを用
いると、形成された膜ではBaとCuとが欠乏状態にあ
ることが判明した。そこで、Y、031 BaCO3+
 CuOの粉末をターゲットとする成膜方法をとったが
、その場合に得られる膜は液体He温度でしか超伝導に
ならないことが確認された。
On the other hand, it has been found that when a Y-Ba-Cu-0 based Wl film is formed by sputtering using a target of YI Ba1Cu30x, the formed film is deficient in Ba and Cu. Therefore, Y, 031 BaCO3+
A film formation method using CuO powder as a target was used, but it was confirmed that the film obtained in that case became superconducting only at the temperature of liquid He.

そこで、本発明は、RBI Ba2CuJOxを蒸着源
として薄膜を形成する場合、成膜された薄膜に欠乏する
REとCuまたはBaとCuとが補償される超伝導薄膜
の形成方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for forming a superconducting thin film that compensates for the lack of RE and Cu or Ba and Cu in the formed thin film when forming a thin film using RBI Ba2CuJOx as a deposition source. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、蒸着法あるいはスパッタ法によりRf!
IBazCu?Oフ−x系(ただし、REは希土類元素
)の超伝導薄膜を作成するにおいて、RL Ha、 C
uの酸化物を1:1.3の比で混合した後に焼成し、か
くして得られた焼成物を粉砕したものにREIO3とC
uを粉体で加え焼成したソースを用いることを特徴とす
る超伝導薄膜の形成方法によって解決される。
The above problem can be solved by using Rf!
IBazCu? In creating a superconducting thin film of O-x system (RE is a rare earth element), RL Ha, C
After mixing oxides of
This problem is solved by a method for forming a superconducting thin film characterized by using a source prepared by adding u in powder form and firing it.

〔作用〕[Effect]

欠乏するYとCuとを補償しようとする場合、酸化イン
ドリウム(YgL03) 、炭酸バリウム(BaCO3
)、酸化第1銅(Cub)の粉体を、YIBaz−CI
JJ Oxよりも、Y、Cuを補償した量論比で混合し
て、これを蒸着源として成膜したが、この方法によると
液体He温度でしか超伝導とならない、この方法で得た
薄膜の超伝導移転温度が低いのは、結晶化が完全に進行
していないことによるものと解される。
When trying to compensate for the deficiency of Y and Cu, indium oxide (YgL03), barium carbonate (BaCO3)
), cuprous oxide (Cub) powder, YIBaz-CI
A film was formed by mixing Y and Cu in a compensated stoichiometric ratio rather than JJ Ox and using this as a deposition source. It is understood that the low superconducting transition temperature is due to the fact that crystallization has not completely progressed.

そこで、本発明の方法においては、次のような蒸着源(
ソース)を用いた成膜を行った。すなわち、YJLO3
、CuO、BaCO3を混ぜて焼成し、YI Ba1C
u30xとなる焼結体を−先ず作ると、この焼結体は、
BaC03のCがほぼ完全に除去されたものであり、液
体窒素温度で超伝導となり、斜方晶ペロブスカイトであ
る。これを粉砕し、これにY工03粉、Cu粉を加え、
成型し、蒸着源とした。この方法によって得られた膜は
、液体N2温度で超伝導となった。
Therefore, in the method of the present invention, the following evaporation source (
Film formation was performed using a source (source). That is, YJLO3
, CuO, and BaCO3 are mixed and fired to form YI Ba1C.
When a sintered body of u30x is first made, this sintered body becomes
It is BaC03 from which C has been almost completely removed, becomes superconducting at liquid nitrogen temperature, and is an orthorhombic perovskite. Grind this, add Yko03 powder and Cu powder,
It was molded and used as a vapor deposition source. The membrane obtained by this method became superconducting at liquid N2 temperature.

他方、Y−Ba−Cu−Ox系薄膜をスパッタ法で成膜
する場合、Y、Ba1Cu30xのターゲットを用いる
と、膜ではBaとCuが欠乏状態となることが判明した
ので、Y、()31 BaC0a 1CuOの粉体を、
BaとCuが多くなるように混合して、これを圧粉して
ターゲットとする成膜方法をとると、液体He温度でし
か超伝導とならない。
On the other hand, when forming a Y-Ba-Cu-Ox based thin film by sputtering, it was found that if a Y, Ba1Cu30x target was used, the film would be deficient in Ba and Cu. BaC0a 1CuO powder,
If a film formation method is adopted in which a large amount of Ba and Cu is mixed and the mixture is pressed into powder and used as a target, superconductivity will occur only at the liquid He temperature.

そこで、本発明では、前記した場合と同様に、Y、03
 、 CuO、BaCO3粉体を混合し、Y、Ba、C
u、Oxとなる焼結体を−先ず作る。この焼結体は、液
体窒素温度で超伝導となる。これを粉砕し、それにBa
C03とCuO粉を加えて混合し、圧粉してターゲット
とした。この方法によって得られた膜は、液体窒素温度
で超伝導となった。
Therefore, in the present invention, as in the case described above, Y, 03
, CuO, BaCO3 powders are mixed, Y, Ba, C
First, a sintered body serving as u and Ox is made. This sintered body becomes superconductive at liquid nitrogen temperature. Crush this and add Ba
C03 and CuO powder were added, mixed, and pressed to form a target. The membrane obtained by this method became superconducting at liquid nitrogen temperatures.

〔実施例〕〔Example〕

以下、本発明を図示の一実施例により具体的に説明する
Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.

本発明の第1実施例はEB蒸着法に関する。先ず、YI
 Ba zcus Ox焼結体(斜方晶ペロブスカイト
、液体N2温度で超伝導となる)の作成方法は次のステ
ップによる。
A first embodiment of the present invention relates to an EB deposition method. First, YI
A method for producing a Bazcus Ox sintered body (orthorhombic perovskite, which becomes superconducting at liquid N2 temperature) is performed in the following steps.

YL03 + 2 BaCO3+ 3 CuOを混合し
、空気中で850℃+ 10 hr仮焼する。
YL03 + 2 BaCO3 + 3 CuO are mixed and calcined in air at 850°C + 10 hr.

次いで、粉砕、混合、圧粉を300kgf/ cm2で
行い、空気中で950℃、 10hr焼成する。次に、
0.5”C/minで冷却して Y、Ba3Cu30x の焼結体を得る。この焼成において、結晶生成の妨げと
なるBaC03のCが十分に除去される。
Next, pulverization, mixing, and powder compaction are performed at 300 kgf/cm2, followed by firing in air at 950°C for 10 hours. next,
A sintered body of Y, Ba3Cu30x is obtained by cooling at 0.5''C/min. In this firing, C of BaC03, which obstructs crystal formation, is sufficiently removed.

次に、蒸着源の作成と成膜について説明すると、上記の
方法で得られたYIBa□Cu30xの焼結体を粉砕し
、それにY2O3粉(Baに対して4〜6の割合)とC
u粉(Baに対して1の割合)とを混合すると、Ys−
,7BatCutFOx なる組成の粉体が得られる。Y(4の比率は、電子ビー
ムのパワーに応じて定まるものである。それをベレット
に成型し、 o2中で500℃、2hr仮焼する。
Next, to explain the creation of a vapor deposition source and film formation, the sintered body of YIBa□Cu30x obtained by the above method is crushed, and Y2O3 powder (4 to 6 ratios to Ba) and carbon are added to it.
When mixed with u powder (ratio of 1 to Ba), Ys-
, 7BatCutFOx is obtained. The ratio of Y(4) is determined depending on the power of the electron beam. It is formed into a pellet and calcined in O2 at 500°C for 2 hours.

次に、このペレットを用い、第1図の装置を用いるEB
蒸着方で成膜するが、第1図において、11はチャンバ
、12は基板ホルダー、13は基板、14はヒーター、
15は酸素供給管、15aは孔、16は酸素導入管、1
7は前記したY、y〜7BaLCuチ0χの蒸着源、1
日はフィラメント、19はマグネット、2oは電子銃、
21は電子ビーム(EB) 、22は排気管を示す。
Next, using this pellet, EB using the apparatus shown in FIG.
The film is formed by vapor deposition, and in FIG. 1, 11 is a chamber, 12 is a substrate holder, 13 is a substrate, 14 is a heater,
15 is an oxygen supply pipe, 15a is a hole, 16 is an oxygen introduction pipe, 1
7 is the vapor deposition source of Y, y~7BaLCu 0χ described above, 1
Day is filament, 19 is magnet, 2o is electron gun,
21 is an electron beam (EB), and 22 is an exhaust pipe.

この装置において、蒸着源17はEH11によって熔融
、気化され蒸発して、ヒーター14によって600℃に
加熱された基板13上にY、Ba、Cu、Box膜が成
膜される。基板には、サファイア、 MgOまたはスト
ロンチウム・チタン酸素(5rTiO3)を用いる。成
膜中十分な酸素(02)が供給されるよう、導入管16
から導入される02は酸素供給管15の孔15aから基
板13へ向けて噴射される。
In this apparatus, the vapor deposition source 17 is melted and vaporized by the EH 11, and Y, Ba, Cu, and Box films are formed on the substrate 13, which is heated to 600° C. by the heater 14. Sapphire, MgO, or strontium titanium oxygen (5rTiO3) is used for the substrate. In order to supply sufficient oxygen (02) during film formation, the introduction pipe 16
02 introduced from the oxygen supply pipe 15 is injected toward the substrate 13 from the hole 15a of the oxygen supply pipe 15.

次いで、膜をつ2中で900℃、 2hr+450 ”
C。
Then, the membrane was heated in a chamber at 900°C for 2 hours + 450 ”
C.

4hrのアニールを行ったところ、膜は液体窒素温度で
超伝導となった。
When annealing was performed for 4 hours, the film became superconductive at liquid nitrogen temperature.

本発明の第2実施例であるスパッタ法による成膜のため
のY、Ba、、Cu30x焼結体の作成においては、前
記した方法によって、 YIBaJu50χ焼結体を得
る。
In producing a Y, Ba, Cu30x sintered body for film formation by sputtering, which is the second embodiment of the present invention, a YIBaJu50x sintered body is obtained by the method described above.

次に、この焼結体を粉砕し、それにBaCO3粉(Yに
対して2の割合)とCuO粉(Yに対して2の割合)を
加え、Y、 Bat Cuの比率を1:4:5にする。
Next, this sintered body was crushed, and BaCO3 powder (ratio of 2 to Y) and CuO powder (ratio of 2 to Y) were added to it to make the ratio of Y and Bat Cu 1:4:5. Make it.

この比率はスパッタ装置に応じて適宜変更する。BaC
03粉とCuO粉とを混合し、Y、Ba lCu4=(
Ox の組成の粉体とする。
This ratio is changed as appropriate depending on the sputtering apparatus. BaC
03 powder and CuO powder were mixed, Y, Ba lCu4=(
The powder has a composition of Ox.

次いで圧粉してターゲットにし、02中で500”C+
2hr仮焼する。このターゲットよりスパッタ法で成膜
し、膜をアニール(02中で900℃、2hr+ 45
0℃、4hr)したところ、液体窒素温度で超伝導とな
った。基板には、サファイア+ MgO1SrTi03
などを用いた。
Then, it was compacted into a target and heated to 500”C+ in 02
Calculate for 2 hours. A film was formed using the sputtering method from this target, and the film was annealed (900°C in 02, 2 hr + 45
0° C. for 4 hours), it became superconductive at liquid nitrogen temperature. The substrate is sapphire + MgO1SrTi03
etc. were used.

スパッタ装置は第2図の断面図に示され、図中、31は
チャンバ、32は基板ホルダー、33は基板、34はY
、 Ba3Cu4−goxのターゲット、35は(Ar
+  Oz )の導入管、36は排気管、37はRF電
源を示し、Ar50%+0250%を導入して10− 
’ Torrの圧力を保つ。
The sputtering apparatus is shown in a sectional view in FIG. 2, in which 31 is a chamber, 32 is a substrate holder, 33 is a substrate, and 34 is a Y
, Ba3Cu4-gox target, 35 is (Ar
36 is the exhaust pipe, 37 is the RF power supply, and 50% + 0250% Ar is introduced, and 10-
' Maintain Torr pressure.

基板33は図示しないヒーターで600℃に加熱し、基
板ホルダー32は固定された構成とする。
The substrate 33 is heated to 600° C. by a heater (not shown), and the substrate holder 32 is fixed.

なお、以上ではYを例として説明したが、本発明の通用
範囲はその場合に限られるものでなく、+3価の酸化状
態をとるスカンジウム(Sc) 、ランタン(La) 
、ネオジウム(Nd) 、サマリウム(SIll)lガ
ドリニウム(Gd) 、ジスプロシウム(Dy)、ホル
ミウム(Ho) 、エルビウム(Er) 、ツリウム(
Tm) 、ルテチウム(Lu) 、プロメチウム(Pm
) 、ユーロピウム(Eu) 、イソテリビウム(Yb
)を用いる場合にも及ぶものである。
In addition, although Y was explained above as an example, the scope of the present invention is not limited to that case, and scandium (Sc), lanthanum (La), which has a +3 valence oxidation state, etc.
, neodymium (Nd), samarium (SIll), gadolinium (Gd), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (
Tm), lutetium (Lu), promethium (Pm)
), europium (Eu), isoterbium (Yb)
).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、EB蒸着またはスパッタ
で欠乏するYとCuまたはBaとCuを補償することに
より、単一プロセスで、液体窒素温度にて超伝導を示す
薄膜の形成が可能となり、この薄膜はCを含まない良質
の結晶膜であることが確認された。
As described above, according to the present invention, by compensating for the depletion of Y and Cu or Ba and Cu during EB evaporation or sputtering, it is possible to form a thin film exhibiting superconductivity at liquid nitrogen temperature in a single process. It was confirmed that this thin film was a high quality crystalline film containing no carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例断面図、 第2図は本発明第2実施例断面図 である。 。 図中、 11はチャンバ、 12は基板ホルダー、 13は基板、 14はヒーター、 15は酸素供給管、 15aは孔、 16は酸素導入管、 17は蒸着源(ソース)、 18はフィラメント、 19はマグネット、 20は電子銃、 21は電子ビーム、 22は排気管、 31はチャンバ1 32は基板ホルダー、 33は基板、 34はターゲット、 35は(Ar+ 02 )導入管、 36は排気管、 37はRPg源 を示す。 特許出願人   富士通株式会社 代理人弁理士  久木元   彰 FIG. 1 is a sectional view of the first embodiment of the present invention. Figure 2 is a sectional view of the second embodiment of the present invention. It is. . In the figure, 11 is a chamber; 12 is a board holder; 13 is a board; 14 is a heater, 15 is an oxygen supply pipe; 15a is a hole; 16 is an oxygen introduction pipe; 17 is a vapor deposition source (source); 18 is a filament, 19 is a magnet, 20 is an electron gun, 21 is an electron beam, 22 is the exhaust pipe, 31 is chamber 1 32 is a board holder; 33 is a board; 34 is the target, 35 is (Ar+02) introduction pipe, 36 is the exhaust pipe, 37 is the RPg source shows. Patent applicant: Fujitsu Limited Representative Patent Attorney Akira Kukimoto

Claims (1)

【特許請求の範囲】  蒸着法あるいはスパッタ法によりRE_1Ba_2C
u_3O_7_−_x(ただし、REは希土類元素)の
超伝導薄膜を作成するにおいて、 RE、Ba、Cuの酸化物を1:2:3の比で混合した
後に焼成し、かくして得られた焼成物を粉砕したものに
RE_2O_3とCuを粉体で加え焼成したソースを用
いることを特徴とする超伝導薄膜の形成方法。
[Claims] RE_1Ba_2C by vapor deposition method or sputtering method
To create a superconducting thin film of u_3O_7_-_x (where RE is a rare earth element), oxides of RE, Ba, and Cu are mixed in a ratio of 1:2:3 and then fired, and the fired product thus obtained is A method for forming a superconducting thin film characterized by using a source obtained by adding RE_2O_3 and Cu in the form of powder to a pulverized material and firing the mixture.
JP63014387A 1988-01-27 1988-01-27 Production of superconducting thin film Pending JPH01192720A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63014387A JPH01192720A (en) 1988-01-27 1988-01-27 Production of superconducting thin film
EP89101208A EP0326087A3 (en) 1988-01-27 1989-01-24 Method of fabricating a superconductive film
US07/300,889 US4914080A (en) 1988-01-27 1989-01-24 Method for fabricating superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014387A JPH01192720A (en) 1988-01-27 1988-01-27 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01192720A true JPH01192720A (en) 1989-08-02

Family

ID=11859648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014387A Pending JPH01192720A (en) 1988-01-27 1988-01-27 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01192720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264952A (en) * 1988-04-08 1989-10-23 Kyocera Corp Production of oxide superconductor
JP2000503351A (en) * 1996-11-01 2000-03-21 テファ デュンシヒトテヒニク ゲーエムベーハー Equipment for manufacturing thin oxide coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264952A (en) * 1988-04-08 1989-10-23 Kyocera Corp Production of oxide superconductor
JP2000503351A (en) * 1996-11-01 2000-03-21 テファ デュンシヒトテヒニク ゲーエムベーハー Equipment for manufacturing thin oxide coatings

Similar Documents

Publication Publication Date Title
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
US4900710A (en) Process of depositing an alkali metal layer onto the surface of an oxide superconductor
JPH01192720A (en) Production of superconducting thin film
JPS63270450A (en) Production of thick film oxide super conductor
JP2975608B2 (en) Insulating composition
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP3507887B2 (en) Method for forming epitaxial thin film on surface of single crystal substrate
JP2603688B2 (en) Superconducting material reforming method
JPH0556283B2 (en)
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JPH0816024B2 (en) Manufacturing method of superconducting material
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPH04160005A (en) Production of superconducting oxide
JP2525852B2 (en) Preparation method of superconducting thin film
KR20090093618A (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JP2597579B2 (en) Superconductor manufacturing method
JPH01278449A (en) Production of oxide superconductor
JPH01242477A (en) Formation of protective film on superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH01164768A (en) Production of oxide superconductor
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JPS63248019A (en) Manufacture of oxide superconductive thin film
JPH01179722A (en) Production of oxide superconductor