JPH01190920A - Twin turbo type internal combustion engine - Google Patents

Twin turbo type internal combustion engine

Info

Publication number
JPH01190920A
JPH01190920A JP63014015A JP1401588A JPH01190920A JP H01190920 A JPH01190920 A JP H01190920A JP 63014015 A JP63014015 A JP 63014015A JP 1401588 A JP1401588 A JP 1401588A JP H01190920 A JPH01190920 A JP H01190920A
Authority
JP
Japan
Prior art keywords
exhaust
pressure stage
communication pipe
exhaust passage
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63014015A
Other languages
Japanese (ja)
Other versions
JP2539655B2 (en
Inventor
Ryoichi Ohashi
大橋 良一
Hitoshi Inaba
均 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP63014015A priority Critical patent/JP2539655B2/en
Publication of JPH01190920A publication Critical patent/JPH01190920A/en
Application granted granted Critical
Publication of JP2539655B2 publication Critical patent/JP2539655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To permit the supercharge operation having high efficiency by forming a partitioning wall on the downstream side of a communication pipe for the first exhaust passage connected with a twin scroll turbine. CONSTITUTION:A plurality of cylinders are divided into two groups, and turbosuperchargers 15 and 17 are installed into each cylinder group. The first and second exhaust passages 13 and 14 connected with the turbosuperchargers 15 and 17 are allowed to communicate through a communication pipe 30. A partitioning wall 34 is formed on the downstream side from the communication pipe 30 in the first exhaust passage 13. The interference of exhaust is prevented by the partitioning wall 34 when the selector valves 31 and 32 are opened. Therefore, the supercharge having high efficiency is permitted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数気筒を2群に分割し、それぞれの気筒群
に排気ターボ過給機を備えたツインターボ式内燃機関に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a twin-turbo internal combustion engine in which a plurality of cylinders are divided into two groups and each cylinder group is provided with an exhaust turbo supercharger.

(従来技術及びその問題点) この種のツインターボ式内燃機関では、従来から2本の
排気通路の途中を連絡管で連通ずるようにした先行技術
が実開昭60−178329号で知られている。
(Prior art and its problems) In this type of twin-turbo internal combustion engine, a prior art in which two exhaust passages are connected through a connecting pipe is known from Utility Model Application No. 178329/1983. There is.

しかしながら、この先行技術では2本の排気通路を流れ
る排気ガスの脈動パルスが相互に干渉し合い、脈動パル
スが低下して過給効率の面で改善の余地がある。また、
特に低速時には排気ガス量が少なく過給効率の低下が著
しい。
However, in this prior art, the pulsating pulses of the exhaust gas flowing through the two exhaust passages interfere with each other, reducing the pulsating pulses and leaving room for improvement in terms of supercharging efficiency. Also,
Particularly at low speeds, the amount of exhaust gas is small and the supercharging efficiency is significantly reduced.

複数気筒を2群に分割して排気ターボ過給機へ排気を流
す技術が特公昭3g−1154号、特公昭59−692
号に開示しである。
The technology of dividing multiple cylinders into two groups and sending exhaust gas to an exhaust turbo supercharger was published in Tokoku Sho 3g-1154 and Sho 59-692.
This is disclosed in the issue.

(発明の目的) 本発明は、第1にツインターボ式内燃機関において、排
気干渉による過給効率の低下を防止でき、且つ中低速域
での性能を低圧段排気ターボ過給機で向上できるツイン
ターボ式内燃機関を提供することを目的としている。
(Purpose of the Invention) The present invention firstly provides a twin-turbo internal combustion engine that can prevent a decrease in supercharging efficiency due to exhaust interference and improve performance in the medium and low speed range with a low-pressure stage exhaust turbo supercharger. The purpose is to provide a turbo-type internal combustion engine.

(発明の構成) (1)技術的手段 本発明は、複数気筒を2群に分割し、それぞれの気筒群
に排気ターボ過給機を備えたツインターボ式内燃機関に
おいて、各気筒群毎に高圧段排気ターボ過給機を設け、
各高圧段排気ターボ過給機と各気筒群とを繋ぐ2本の排
気通路の間に両排気通路を連通ずる連絡管を設け、一方
の排気ターボ過給機にツインスクロールタービンを設け
、このツインスクロールタービンに繋がる第1排気通路
の前記連絡管より下流側に第1排気通路の断面積を2分
割する隔壁を形成し、前記第1排気通路と連絡管との接
続部に閉弁時には連絡管開口を閉塞し、開弁時には連絡
管を第1排気通路の一方の分割通路に連通ずるように切
換える第1切換弁を設け、他方のターボ過給機に繋がる
第2排気通路と連絡管の接続部に、閉弁時には連絡管開
口を閉塞し、開弁時には第2排気通路の排気ガスの全量
を連絡管へ導くように切換える第2切換弁を設け、前記
両高圧段排気ターボ過給機の下流側にツインスクロール
タービンを有する低圧段排気ターボ過給機を1基設け、
低圧段排気ターボ過給機のツインスクロールタービンの
各渦巻き室へ前記高圧段排気ターボ過給機からの排気ガ
スを独立して導く排気接続管を設け、低圧段排気ターボ
過給機からの過給給気を両高圧段排気ターボ過給機へ導
く給気接続管を設けたことを特徴とするツインターボ式
内燃機関である。
(Structure of the Invention) (1) Technical Means The present invention provides a twin-turbo internal combustion engine in which a plurality of cylinders are divided into two groups and each cylinder group is equipped with an exhaust turbo supercharger. A stage exhaust turbo supercharger is installed,
A communication pipe is provided between the two exhaust passages connecting each high-pressure stage exhaust turbo supercharger and each cylinder group, and a twin scroll turbine is installed in one of the exhaust turbo superchargers. A partition wall that divides the cross-sectional area of the first exhaust passage into two is formed on the downstream side of the communication pipe of the first exhaust passage connected to the scroll turbine, and a communication pipe is formed at the connection between the first exhaust passage and the communication pipe when the valve is closed. A first switching valve is provided that closes the opening and switches the connecting pipe to communicate with one of the divided passages of the first exhaust passage when the valve is opened, and connects the connecting pipe to the second exhaust passage that connects to the other turbocharger. A second switching valve is provided in the section so as to close the connecting pipe opening when the valve is closed, and to conduct the entire amount of exhaust gas in the second exhaust passage to the connecting pipe when the valve is opened, so that the two high-pressure stage exhaust turbo superchargers One low-pressure stage exhaust turbo supercharger with a twin scroll turbine is installed on the downstream side,
An exhaust connection pipe is provided to independently guide the exhaust gas from the high pressure stage exhaust turbo supercharger to each spiral chamber of the twin scroll turbine of the low pressure stage exhaust turbo supercharger, and supercharging from the low pressure stage exhaust turbo supercharger is provided. This is a twin-turbo internal combustion engine characterized by the provision of an air intake connection pipe that guides air intake to both high-pressure stage exhaust turbo superchargers.

(2)作用 両切換弁の開弁時には、隔壁およびツインスクロールタ
ービンで排気干渉を防止しながら排気ガスを高圧段排気
ターボ過給機のツインスクロールタービンへ流し、高効
率で過給する。
(2) Effect When both switching valves are opened, exhaust gas is flowed to the twin scroll turbine of the high pressure stage exhaust turbo supercharger while preventing exhaust interference with the partition wall and the twin scroll turbine, and is supercharged with high efficiency.

同時に、排気接続管の一方から低圧段排気ターボ過給機
のツインスクロールタービンへ排気ガスを流し、更に過
給する。
At the same time, exhaust gas flows from one side of the exhaust connection pipe to the twin scroll turbine of the low-pressure stage exhaust turbo supercharger for further supercharging.

両切換弁の閉弁時には、両排気通路と連絡管とを遮断し
て連絡管の影響を無くし、高圧段排気ターボ過給機の過
給効率を向上し、排気接続管から低圧段排気ターボ過給
機に独立して排気ガスを流し、低圧段排気ターボ過給機
の過給効率を向上する。
When both switching valves are closed, both exhaust passages and the communication pipe are shut off to eliminate the influence of the communication pipe, improving the supercharging efficiency of the high-pressure stage exhaust turbocharger, and connecting the low-pressure stage exhaust turbosupercharger from the exhaust connection pipe. Flows exhaust gas independently to the charger to improve the supercharging efficiency of the low-pressure stage exhaust turbo supercharger.

(実施例) 本発明を採用したツインターボ式ディーゼル機関を示す
第1図で、10は機関本体である。この機関本体10は
6気筒のシリンダ11を有しており、シリンダ11の排
気マニホールド12は3気筒分ずつ集合して第1排気通
路13と第2排気通路14に繋がっている。
(Example) In FIG. 1 showing a twin-turbo diesel engine employing the present invention, 10 is an engine body. This engine main body 10 has six cylinders 11, and the exhaust manifolds 12 of the cylinders 11 are connected to a first exhaust passage 13 and a second exhaust passage 14 in groups for three cylinders each.

第1排気通路13は高圧段排気ターボ過給機15に接続
し、高圧段排気ターボ過給機15はツインスクロールタ
ービン16に2室の渦巻き室を有している。第2排気通
路14は高圧段排気ターボ過給機17に接続し、高圧段
排気ターボ過給機17はシングルスクロールタービン1
8に単一の渦巻き室を有している。高圧段排気ターボ過
給機15.17のブロワ19.20は給気管21.22
で機関本体10の給気マニホールド23に連通し、給気
マニホールド23にはインタークーラ24が設けられて
いる。給気管21には逆止弁25を介装しである。なお
、図中27はインタークーラである。
The first exhaust passage 13 is connected to a high pressure stage exhaust turbo supercharger 15, and the high pressure stage exhaust turbo supercharger 15 has a twin scroll turbine 16 and two spiral chambers. The second exhaust passage 14 is connected to a high pressure stage exhaust turbo supercharger 17, and the high pressure stage exhaust turbo supercharger 17 is connected to the single scroll turbine 1.
8 has a single volute chamber. The blower 19.20 of the high pressure stage exhaust turbo supercharger 15.17 is connected to the air supply pipe 21.22.
The intercooler 24 is connected to the air supply manifold 23 of the engine main body 10, and the air supply manifold 23 is provided with an intercooler 24. A check valve 25 is interposed in the air supply pipe 21. Note that 27 in the figure is an intercooler.

更に、両高圧段排気ターボ過給機15.17の下流側に
は詳しくは後述する低圧段排気ターボ過給機26を1基
だけ設けである。
Furthermore, only one low pressure stage exhaust turbo supercharger 26, which will be described in detail later, is provided downstream of both high pressure stage exhaust turbo superchargers 15 and 17.

前記第1排気通路13と第2排気通路14の間には連絡
管30を架設してあり、連絡管30で第1排気通路13
と第2排気通路14を連通している。連絡管30の両端
と第1排気通路13、第2排気通路14との接続部には
、第1切換弁31、第2切換弁32が設けられており、
第1切換弁31・第2切換弁32で連絡管30を詳しく
は後述するように開閉制御する機能を果たしている。連
絡管30の中央部には伸縮継手33が設けられている。
A communication pipe 30 is installed between the first exhaust passage 13 and the second exhaust passage 14, and the communication pipe 30 connects the first exhaust passage 13 to the first exhaust passage 13.
and communicates with the second exhaust passage 14. A first switching valve 31 and a second switching valve 32 are provided at the connection parts between both ends of the communication pipe 30 and the first exhaust passage 13 and the second exhaust passage 14.
The first switching valve 31 and the second switching valve 32 function to control opening and closing of the communication pipe 30 as will be described in detail later. An expansion joint 33 is provided in the center of the communication pipe 30.

前記第1排気通路13の連絡管30より下流側には隔壁
34が形成されており、隔壁34で第1排気通路13の
断面積を略2等分するように分割している。したがって
、第1排気通路13を流れる排気ガスは隔壁34で区画
された分割通路35.36を通ってツインスクロールタ
ービン16の渦巻き室にそれぞれ独立して流れ込むよう
になっている。
A partition wall 34 is formed on the downstream side of the communication pipe 30 of the first exhaust passage 13, and the partition wall 34 divides the cross-sectional area of the first exhaust passage 13 into approximately two equal parts. Therefore, the exhaust gas flowing through the first exhaust passage 13 passes through the divided passages 35 and 36 divided by the partition wall 34 and flows into the spiral chamber of the twin scroll turbine 16 independently.

第1切換弁31は支点37で軸支されており、支点37
は連絡管30の開口の上流側近傍位置に配置しである。
The first switching valve 31 is pivoted on a fulcrum 37, and the fulcrum 37
is arranged near the upstream side of the opening of the communication pipe 30.

また、第2切換弁32の支点38は連絡管30の開口の
下流側近傍位置に配置しである。
Further, the fulcrum 38 of the second switching valve 32 is arranged near the downstream side of the opening of the communication pipe 30.

前記第1切換弁31、第2切換弁32は第1図で図示す
る中低速、高負荷時には、第1切換弁31の先端部が隔
壁34に一致するように半開状態で開弁じ、第2切換弁
32は第2排気通路14の排気ガスの全量を連絡管30
へ流すように全開状態で開弁じている。次に、高速、高
負荷時には第2図に示すように連絡管30の両端開口を
閉塞するように閉弁している。
The first switching valve 31 and the second switching valve 32 are opened in a half-open state so that the tip of the first switching valve 31 coincides with the partition wall 34, and the second switching valve 32 is opened at medium-low speed and high load as shown in FIG. The switching valve 32 transfers the entire amount of exhaust gas from the second exhaust passage 14 to the communication pipe 30.
The valve is fully open so that water flows to the tank. Next, at high speeds and high loads, the valves are closed to block both ends of the communication pipe 30, as shown in FIG.

前記ツインスクロールタービン16とシングルスクロー
ルタービン18と低圧段排気ターボ過給機26のツイン
スクロールタービン60との間は、ツインスクロールタ
ービン60の各渦巻き室へ排気ガスを流す排気接続管6
1.62で接続しである。排気接続管61.62の基端
部には自在継手63.64が介装しである。排気接続管
61.62の先端部は、タービン支え65で機関本体1
0を搭載する基台に支持しである。更に、排気接続管6
1.62の先端部は前記ツインスクロールタービン60
に連結し、両タービン16.18からの排気ガスを各々
独立してツインスクロールタービン60内の各渦巻き室
へ導くようになっている。
Between the twin scroll turbine 16, the single scroll turbine 18, and the twin scroll turbine 60 of the low-pressure stage exhaust turbo supercharger 26, there is an exhaust connecting pipe 6 that allows exhaust gas to flow into each spiral chamber of the twin scroll turbine 60.
It is connected at 1.62. Universal joints 63, 64 are interposed at the proximal ends of the exhaust connection pipes 61, 62. The tips of the exhaust connection pipes 61 and 62 are connected to the engine body 1 by the turbine support 65.
It is supported by a base on which 0 is mounted. Furthermore, the exhaust connection pipe 6
The tip of 1.62 is the twin scroll turbine 60.
The exhaust gases from both turbines 16 and 18 are each independently guided to each spiral chamber in the twin scroll turbine 60.

低圧段排気ターボ過給機26のブロワ70には給気接続
管71が接続し、給気接続管71はインジェクタークー
ラー72を介して高圧側のブロア19.20に繋がって
いる。
An air supply connection pipe 71 is connected to the blower 70 of the low pressure stage exhaust turbo supercharger 26, and the air supply connection pipe 71 is connected to the high pressure side blower 19.20 via an injector cooler 72.

以上の構成では、第1排気通路13、第2排気通路14
の排気ガス量が減って高圧段排気ターボ過給機15.1
7の過給効率が低下する場合に、第1図のように第1切
換弁31、第2切換弁32を切換えて、第1排気通路1
3を流れる排気ガスを第1切換弁31で分割通路35に
案内し、第2排気通路14を流れる排気ガスを第2切換
弁32で連絡管30に通し、連絡管30から第1切換弁
31で分割通路36に案内する。
In the above configuration, the first exhaust passage 13, the second exhaust passage 14
The amount of exhaust gas is reduced and the high pressure stage exhaust turbo supercharger 15.1
7, the first switching valve 31 and the second switching valve 32 are switched as shown in FIG.
3 is guided to the divided passage 35 by the first switching valve 31, exhaust gas flowing through the second exhaust passage 14 is guided to the communication pipe 30 by the second switching valve 32, and from the communication pipe 30 to the first switching valve 31. guide to the divided passage 36.

したがって、2群に分割したシリンダ11の排気ガスを
ツインスクロールタービン16の渦巻き室に分割して供
給し、高圧段排気ターボ過給機15に対しては相対的に
排気ガス量が増えることになり、所謂可変人口ノズル(
VGS)と同様の働きをして、少ない排気ガス量でも高
圧段排気ターボ過給機15は高い過給効率を発揮する。
Therefore, the exhaust gas of the cylinders 11 divided into two groups is divided and supplied to the spiral chamber of the twin scroll turbine 16, and the amount of exhaust gas relative to the high pressure stage exhaust turbo supercharger 15 increases. , so-called variable population nozzle (
VGS), the high-pressure stage exhaust turbo supercharger 15 exhibits high supercharging efficiency even with a small amount of exhaust gas.

また、2群に分割したシリンダ11の排気ガスを隔壁3
4でツインスクロールタービン16の渦巻き室にそれぞ
れ独立した状態で供給し、分割通路35.36を流れる
排気ガスの脈動パルスが相互に干渉せず、高い脈動パル
スで高圧段排気ターボ過給機15の過給効果を上げる。
In addition, the exhaust gas from the cylinders 11 divided into two groups is transferred to the partition wall 3.
The pulsating pulses of exhaust gas flowing through the divided passages 35 and 36 do not interfere with each other, and the high-pressure stage exhaust turbo supercharger 15 is supplied with high pulsating pulses. Increase supercharging effect.

更に、タービン16から排気接続管61を通って低圧段
排気ターボ過給機26のツインスクロールタービン60
へ供給された排気ガスは、断面積が小さ−な排気接続管
61からツインスクロールタービン60の渦巻き室の一
方へ流れ込むことになる。したがって、低圧段排気ター
ボ過給機261;対して相対的に排気ガス量が増えるこ
とになり、前述と同様に低圧段排気ターボ過給機26を
高効率で駆動し、ブロワ70から過給給気が給気接続管
71を通ってブロワ19.20に流れ込む。
Further, the twin scroll turbine 60 of the low pressure stage exhaust turbo supercharger 26 is connected from the turbine 16 through the exhaust connection pipe 61.
The exhaust gas supplied to the twin scroll turbine 60 flows into one of the spiral chambers of the twin scroll turbine 60 through the exhaust connecting pipe 61 having a small cross-sectional area. Therefore, the amount of exhaust gas increases relative to the low pressure stage exhaust turbo supercharger 261; therefore, the low pressure stage exhaust turbo supercharger 26 is driven with high efficiency as described above, and supercharging is supplied from the blower 70. Air flows through the air supply connection 71 into the blower 19.20.

この第1図の運転状態では、回転数nに対する出力Pの
グラフである第3図において、R1の範囲で特性X1を
発揮する。この特性X1は、高圧段排気ターボ過給機1
5.17だけを作動した場合の特性x2、領域W2と比
較して、高圧段排気ターボ過給機15側のみの作動によ
って領域W1分だけ中低速域の出力Pが向上する。
In the operating state shown in FIG. 1, the characteristic X1 is exhibited in the range R1 in FIG. 3, which is a graph of the output P versus the rotational speed n. This characteristic X1 is the high pressure stage exhaust turbo supercharger 1
Compared to characteristic x2 and region W2 when only 5.17 is operated, the output P in the medium and low speed range is improved by region W1 by operating only the high pressure stage exhaust turbo supercharger 15 side.

第2図の高速、高負荷時には第1切換弁31、第2切換
弁32が連絡管30の両端開口を閉塞するように閉弁し
、連絡管30は第1排気通路13、第2排気通路14か
ら完全に遮断され、第1排気通路13、第2排気通路1
4の排気ガスは直接に高圧段排気ターボ過給機15.1
7へ流れる。
At high speeds and high loads as shown in FIG. 2, the first switching valve 31 and the second switching valve 32 are closed so as to close the openings at both ends of the connecting pipe 30, and the connecting pipe 30 is connected to the first exhaust passage 13 and the second exhaust passage. 14, the first exhaust passage 13 and the second exhaust passage 1
4 exhaust gas is directly sent to the high pressure stage exhaust turbo supercharger 15.1
Flows to 7.

この高速、高負荷時には第1排気通路13、第2排気通
路14の排気ガス量が十分に増えているので、高圧段排
気ターボ過給機15.17は高い過給効率を発揮する。
At this high speed and high load, the amount of exhaust gas in the first exhaust passage 13 and second exhaust passage 14 increases sufficiently, so the high pressure stage exhaust turbo supercharger 15, 17 exhibits high supercharging efficiency.

また、連絡管30は第1切換弁31、第2切換弁32で
遮断されているので、連絡管30の容積が第1排気通路
13、第2排気通路14を流れる排気ガスの脈動パルス
を減衰することも無く、この面でも過給効率が向上する
Furthermore, since the communication pipe 30 is blocked by the first switching valve 31 and the second switching valve 32, the volume of the communication pipe 30 attenuates the pulsating pulse of the exhaust gas flowing through the first exhaust passage 13 and the second exhaust passage 14. This also improves supercharging efficiency.

更に、下流側に設けられた低圧段排気ターボ過給機26
のツインスクロールタービン60に排気接続管61.6
2を通って、各渦巻き室へ独立して両タービン16.1
8から排気ガスが流れ込み、両タービン16.18双方
からの排気ガスが排気干渉を起こさず、低圧段排気ター
ボ過給機26の過給効率が高い。
Furthermore, a low pressure stage exhaust turbo supercharger 26 provided on the downstream side
Exhaust connection pipe 61.6 to twin scroll turbine 60 of
2 to both turbines 16.1 independently to each volute chamber.
8, the exhaust gases from both turbines 16 and 18 do not cause exhaust interference, and the supercharging efficiency of the low-pressure stage exhaust turbo supercharger 26 is high.

第2図の運転状態は第3図の領域W3の範囲(回転数R
2)で実行し、特性X3を発揮する。
The operating state in Figure 2 is within the range W3 (rotational speed R) in Figure 3.
2) and exhibits characteristic X3.

次に、第4図で第1切換弁31、第2切換弁32の切換
機構を説明する。第4図中で、第1切換弁31、第2切
換弁32の基端部にはアーム40.41を第1切換弁3
1、第2切換弁32に連続して一体に支点37.38回
りに回動自在に形成しである。アーム40.41は第1
排気通路13、第2排気通路14の外方に突出している
Next, the switching mechanism of the first switching valve 31 and the second switching valve 32 will be explained with reference to FIG. In FIG. 4, an arm 40.41 is attached to the base end of the first switching valve 31 and the second switching valve 32.
1. It is formed continuously and integrally with the second switching valve 32 so as to be rotatable around fulcrums 37 and 38. Arm 40.41 is the first
It protrudes outward from the exhaust passage 13 and the second exhaust passage 14.

アーム40.41の先端部にはリンク42がピン43.
44で回動自在に連結しており、リンク42で第1切換
弁31、第2切換弁32の開閉動作を連動するようにな
っている。アーム40の中間部には、エアシリンダ45
(アクチュエーター)のロッド46が回動自在に連結し
ており、ロッド46の伸縮ストロークで第1切換弁31
、第2切換弁32を開閉する機能を発揮する。エアシリ
ンダ45は比較的小型で、1個だけ設けられている。
A link 42 is attached to a pin 43. at the tip of the arm 40.41.
The opening and closing operations of the first switching valve 31 and the second switching valve 32 are linked by a link 42. An air cylinder 45 is installed in the middle of the arm 40.
A rod 46 (actuator) is rotatably connected, and the expansion and contraction stroke of the rod 46 causes the first switching valve 31 to
, functions to open and close the second switching valve 32. The air cylinder 45 is relatively small, and only one air cylinder is provided.

第4図の状態ではエアシリンダ45のロッド46は最も
短縮した位置にある。また、アーム40.41の長さは
、この状態からストロークSだけ伸びて最も伸長した位
置で、第1切換弁31をθl″だけ回動し、同時に第2
切換弁32をθ2だけ回動して、第1切換弁31、第2
切換弁32を同時に閉弁し得るようにLL:L2の比を
設定しである。
In the state shown in FIG. 4, the rod 46 of the air cylinder 45 is at its shortest position. Further, the length of the arm 40.41 is extended from this state by a stroke S, and at the most extended position, the first switching valve 31 is rotated by θl'', and at the same time the second
By rotating the switching valve 32 by θ2, the first switching valve 31 and the second switching valve 32 are rotated by θ2.
The ratio of LL:L2 is set so that the switching valves 32 can be closed at the same time.

なお、エアシリンダ45の代わりに真空ポンプまたはス
テップモータ等の他のアクチュエーターを使用すること
もでき、リンク42、アーム40の途中に任意の長さで
固定可能な長さ調整機構48.49を設けることも可能
である。
Note that other actuators such as a vacuum pump or a step motor may be used instead of the air cylinder 45, and length adjustment mechanisms 48 and 49 are provided in the middle of the link 42 and the arm 40, which can be fixed at any length. It is also possible.

エアシリンダ45には配管47.47aを通って圧縮空
気供給機構50からの圧縮空気が流通しており、圧縮空
気供給機構50は制御装置51で制御される。更に制御
装置51には機関本体10(第1図)の回転計(図示せ
ず)からの回転数信号53や第1排気通路13、第2排
気通路14の圧力計54からの圧力信号55が入力して
おり、制御装置51は両信号53.55に基づいて機関
の運転状態を半1別し、中低速、高負荷時には第1図の
ように第1切換弁31、第2切換弁32を開弁じ、高速
、高負荷時には第1切換弁31、第2切換弁32を閉弁
するようになっている。
Compressed air from a compressed air supply mechanism 50 flows through the air cylinder 45 through a pipe 47.47a, and the compressed air supply mechanism 50 is controlled by a control device 51. Furthermore, the control device 51 receives a rotational speed signal 53 from a tachometer (not shown) in the engine body 10 (FIG. 1) and a pressure signal 55 from pressure gauges 54 in the first exhaust passage 13 and second exhaust passage 14. The control device 51 divides the operating state of the engine into half based on both signals 53 and 55, and at medium to low speeds and high loads, the first switching valve 31 and the second switching valve 32 are switched on as shown in FIG. The valve is opened, and the first switching valve 31 and the second switching valve 32 are closed at high speed and high load.

以上の構成では、第1切換弁31、第2切換弁32をリ
ンク42で連結してエアシリンダ45を設けたので、2
箇所の第1切換弁31、第2切換弁32は1個のエアシ
リンダ45だけで開閉動作する。
In the above configuration, the air cylinder 45 is provided by connecting the first switching valve 31 and the second switching valve 32 with the link 42.
The first switching valve 31 and the second switching valve 32 at the locations are opened and closed by only one air cylinder 45.

また、第1切換弁31、第2切換弁32はリンク42で
連結し、第1切換弁31が開弁している時には第2切換
弁32も開弁し、第1切換弁31が閉弁している時には
第2切換弁32も閉弁する。
Further, the first switching valve 31 and the second switching valve 32 are connected by a link 42, and when the first switching valve 31 is open, the second switching valve 32 is also opened, and the first switching valve 31 is closed. When this is the case, the second switching valve 32 is also closed.

したがって、第2切換弁32が開弁している時に第1切
換弁31が閉弁して第2排気通路14の排気ガスの流通
が阻害されることが無く、第2排気通路14の排気ガス
流通に抵抗が発生しない。
Therefore, when the second switching valve 32 is open, the first switching valve 31 is not closed and the flow of exhaust gas in the second exhaust passage 14 is not obstructed, and the exhaust gas in the second exhaust passage 14 is not obstructed. No resistance occurs in distribution.

(発明の効果) 以上説明したように本発明によるツインターボ式内燃機
関では、両高圧段排気ターボ過給機15゜17の下流側
にツインスクロールタービン60を有する低圧段排気タ
ーボ過給機26を1基設け、低圧段排気ターボ過給機2
6のツインスクロールタービン60の各渦巻き室へ前記
高圧段排気ターボ過給機15.17からの排気ガスを独
立して導く排気接続管61.62を設け、低圧段排気タ
ーボ過給機26からの過給給気を両高圧段排気ターボ過
給機15.17へ導く給気接続管71を設けたので、次
の効果を奏する。
(Effects of the Invention) As explained above, in the twin-turbo internal combustion engine according to the present invention, the low pressure stage exhaust turbo supercharger 26 which has the twin scroll turbine 60 on the downstream side of both the high pressure stage exhaust turbo superchargers 15 and 17 is installed. 1 unit installed, 2 low pressure stage exhaust turbo superchargers
Exhaust connection pipes 61 and 62 are provided to independently guide the exhaust gas from the high pressure stage exhaust turbo supercharger 15 and 17 to each spiral chamber of the twin scroll turbine 60, and the exhaust gas from the low pressure stage exhaust turbo supercharger 26 is Since the air supply connecting pipe 71 is provided to guide the supercharged air to both the high pressure stage exhaust turbo superchargers 15 and 17, the following effects are achieved.

排気ガス量が少ない中低速時に、高圧段排気ターボ過給
機15から低圧段排気ターボ過給機26へ供給される排
気ガスの運動エネルギを回収して、低圧段排気ターボ過
給機26のブロワ70からブロワ19へ過給給気を還流
でき、第3図のR1の範囲で領域W1分だけ従来より出
力Pが向上した特性Xtを発揮できる。
At medium and low speeds when the amount of exhaust gas is small, the kinetic energy of the exhaust gas supplied from the high pressure stage exhaust turbo supercharger 15 to the low pressure stage exhaust turbo supercharger 26 is recovered, and the blower of the low pressure stage exhaust turbo supercharger 26 is The supercharging air can be recirculated from 70 to the blower 19, and a characteristic Xt can be exhibited in which the output P is improved by an area W1 in the range R1 in FIG. 3 compared to the conventional one.

特に、ツインスクロールター(ン60に排気接続管61
だけから排気ガスを流すので、排気ガス量が少ない中低
速時にも低圧段排気ターボ過給機26の過給効率を上げ
ることができる。
In particular, the exhaust connection pipe 61 is connected to the twin scroll turbine 60.
Since the exhaust gas flows only from the exhaust gas, the supercharging efficiency of the low pressure stage exhaust turbo supercharger 26 can be increased even at medium and low speeds when the amount of exhaust gas is small.

低圧段排気ターボ過給機26のツインスクロールタービ
ン60には2木の排気接続管61.62から独立して排
気ガスを流すようにしたので、排気接続管61.62を
流れる排気ガスが排気干渉を起こさず、第3図のR2の
範囲でも過給効率が高い。
Since the exhaust gas is made to flow independently from the two exhaust connection pipes 61 and 62 to the twin scroll turbine 60 of the low pressure stage exhaust turbo supercharger 26, the exhaust gas flowing through the exhaust connection pipes 61 and 62 does not interfere with the exhaust. The supercharging efficiency is high even in the range of R2 shown in FIG. 3.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 複数気筒を2群に分割し、それぞれの気筒群に排気ター
ボ過給機を備えたツインターボ式内燃機関において、各
気筒群毎に高圧段排気ターボ過給機を設け、各高圧段排
気ターボ過給機と各気筒群とを繋ぐ2本の排気通路の間
に両排気通路を連通する連絡管を設け、一方の排気ター
ボ過給機にツインスクロールタービンを設け、このツイ
ンスクロールタービンに繋がる第1排気通路の前記連絡
管より下流側に第1排気通路の断面積を2分割する隔壁
を形成し、前記第1排気通路と連絡管との接続部に閉弁
時には連絡管開口を閉塞し、開弁時には連絡管を第1排
気通路の一方の分割通路に連通するように切換える第1
切換弁を設け、他方のターボ過給機に繋がる第2排気通
路と連絡管の接続部に、閉弁時には連絡管開口を閉塞し
、開弁時には第2排気通路の排気ガスの全量を連絡管へ
導くように切換える第2切換弁を設け、前記両高圧段排
気ターボ過給機の下流側にツインスクロールタービンを
有する低圧段排気ターボ過給機を1基設け、低圧段排気
ターボ過給機のツインスクロールタービンの各渦巻き室
へ前記高圧段排気ターボ過給機からの排気ガスを独立し
て導く排気接続管を設け、低圧段排気ターボ過給機から
の過給給気を両高圧段排気ターボ過給機へ導く給気接続
管を設けたことを特徴とするツインターボ式内燃機関。
In a twin-turbo internal combustion engine in which multiple cylinders are divided into two groups and each cylinder group is equipped with an exhaust turbo supercharger, a high-pressure stage exhaust turbo supercharger is provided for each cylinder group, and each high-pressure stage exhaust turbo supercharger is installed in each cylinder group. A communication pipe is provided between the two exhaust passages connecting the charger and each cylinder group, and a twin scroll turbine is provided in one exhaust turbo supercharger, and a first exhaust passage is connected to the twin scroll turbine. A partition wall dividing the cross-sectional area of the first exhaust passage into two is formed on the downstream side of the communication pipe in the exhaust passage, and a partition wall is formed at the connection portion between the first exhaust passage and the communication pipe to close the communication pipe opening when the valve is closed and to open the communication pipe. At the time of valve operation, the connecting pipe is switched to communicate with one of the divided passages of the first exhaust passage.
A switching valve is provided at the connection between the second exhaust passage and the communication pipe that connects to the other turbocharger.When the valve is closed, the communication pipe opening is closed, and when the valve is opened, the entire amount of exhaust gas in the second exhaust passage is transferred to the communication pipe. A second switching valve is provided, and one low pressure stage exhaust turbo supercharger having a twin scroll turbine is provided downstream of both the high pressure stage exhaust turbo superchargers, An exhaust connection pipe is provided to independently guide the exhaust gas from the high pressure stage exhaust turbo supercharger to each spiral chamber of the twin scroll turbine, and the supercharged air from the low pressure stage exhaust turbo supercharger is connected to both high pressure stage exhaust turbo superchargers. A twin-turbo internal combustion engine characterized by a supply air connection pipe leading to a supercharger.
JP63014015A 1988-01-25 1988-01-25 Twin turbo type internal combustion engine Expired - Fee Related JP2539655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014015A JP2539655B2 (en) 1988-01-25 1988-01-25 Twin turbo type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014015A JP2539655B2 (en) 1988-01-25 1988-01-25 Twin turbo type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01190920A true JPH01190920A (en) 1989-08-01
JP2539655B2 JP2539655B2 (en) 1996-10-02

Family

ID=11849369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014015A Expired - Fee Related JP2539655B2 (en) 1988-01-25 1988-01-25 Twin turbo type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2539655B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221546A3 (en) * 2001-01-05 2003-11-26 Caterpillar Inc. Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
DE102004035323A1 (en) * 2004-07-21 2006-02-16 Bayerische Motoren Werke Ag Sequential loader control with cylinder deactivation
DE102004035324A1 (en) * 2004-07-21 2006-02-16 Bayerische Motoren Werke Ag Circuit of register charging and sequential charging
WO2006026742A1 (en) * 2004-08-31 2006-03-09 Government Of The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Efficient bypass valve for multi-stage turbocharging system
WO2007036279A1 (en) * 2005-09-29 2007-04-05 Daimler Ag Internal combustion engine having two exhaust gas turbochargers connected in series
EP1797303A2 (en) * 2004-08-31 2007-06-20 U.S. Environmental Protection Agency Multi-stage turbocharging system with efficient bypass
WO2012093200A1 (en) * 2011-01-05 2012-07-12 Wärtsilä Finland Oy A twin-turbocharger arrangement for a large internal combustion engine
WO2013083211A1 (en) * 2011-12-06 2013-06-13 Daimler Ag Internal combustion engine, in particular for a motor vehicle
DE102005053977B4 (en) 2005-11-11 2017-03-30 Volkswagen Ag Internal combustion engine and method for operating an internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221546A3 (en) * 2001-01-05 2003-11-26 Caterpillar Inc. Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
DE102004035323A1 (en) * 2004-07-21 2006-02-16 Bayerische Motoren Werke Ag Sequential loader control with cylinder deactivation
DE102004035324A1 (en) * 2004-07-21 2006-02-16 Bayerische Motoren Werke Ag Circuit of register charging and sequential charging
EP1797303A4 (en) * 2004-08-31 2009-07-15 Us Environmental Protection Multi-stage turbocharging system with efficient bypass
EP1797303A2 (en) * 2004-08-31 2007-06-20 U.S. Environmental Protection Agency Multi-stage turbocharging system with efficient bypass
WO2006026742A1 (en) * 2004-08-31 2006-03-09 Government Of The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Efficient bypass valve for multi-stage turbocharging system
US7644585B2 (en) * 2004-08-31 2010-01-12 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Multi-stage turbocharging system with efficient bypass
US8387385B2 (en) 2004-08-31 2013-03-05 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Efficient bypass valve for multi-stage turbocharging system
WO2007036279A1 (en) * 2005-09-29 2007-04-05 Daimler Ag Internal combustion engine having two exhaust gas turbochargers connected in series
US8209982B2 (en) 2005-09-29 2012-07-03 Daimler Ag Internal combustion engine having two exhaust gas turbochargers connected in series
DE102005053977B4 (en) 2005-11-11 2017-03-30 Volkswagen Ag Internal combustion engine and method for operating an internal combustion engine
WO2012093200A1 (en) * 2011-01-05 2012-07-12 Wärtsilä Finland Oy A twin-turbocharger arrangement for a large internal combustion engine
WO2013083211A1 (en) * 2011-12-06 2013-06-13 Daimler Ag Internal combustion engine, in particular for a motor vehicle

Also Published As

Publication number Publication date
JP2539655B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JPH01318720A (en) Supercharging internal combustion engine
WO2011030739A1 (en) Internal combustion engine with supercharger
JPS5982526A (en) Supercharger for internal-combustion engine
JP2539655B2 (en) Twin turbo type internal combustion engine
JPH02112619A (en) Twin-turbo internal combustion engine
JPS63309727A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JP2539656B2 (en) Twin turbo type internal combustion engine
JP3510438B2 (en) Turbocharged engine
JPS6245056Y2 (en)
CN209990540U (en) Turbocharger with adjustable flow
JPS6120294Y2 (en)
JPS62131923A (en) Engine with exhaust turbo-supercharger
JPS60252120A (en) Twin turbo engine
JPH0232827Y2 (en)
JP2743609B2 (en) Exhaust turbocharger for multi-cylinder internal combustion engine
JPS58195023A (en) Internal-combustion engine with exhaust turbo supercharger
JPS60216030A (en) Internal-combustion engine equipped with turbochargers
JP2513525Y2 (en) Supercharged engine
JPS6042191Y2 (en) Bypass path control device for engine with exhaust turbocharger
JP2995200B2 (en) Engine air supply
JPH03138420A (en) Internal combustion engine with turbocharger
JPH09209769A (en) Intake air control mechanism for internal combustion engine
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPH04262017A (en) Exhaust manifold for engine equipped with supercharger
JPS61218720A (en) Intake device of engine with supercharger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees