JPH0119010Y2 - - Google Patents

Info

Publication number
JPH0119010Y2
JPH0119010Y2 JP1984142109U JP14210984U JPH0119010Y2 JP H0119010 Y2 JPH0119010 Y2 JP H0119010Y2 JP 1984142109 U JP1984142109 U JP 1984142109U JP 14210984 U JP14210984 U JP 14210984U JP H0119010 Y2 JPH0119010 Y2 JP H0119010Y2
Authority
JP
Japan
Prior art keywords
temperature
valve
flow path
water
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984142109U
Other languages
Japanese (ja)
Other versions
JPS6155666U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984142109U priority Critical patent/JPH0119010Y2/ja
Publication of JPS6155666U publication Critical patent/JPS6155666U/ja
Application granted granted Critical
Publication of JPH0119010Y2 publication Critical patent/JPH0119010Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【考案の詳細な説明】 この考案は、太陽熱利用のコレクターの湯温が
設定値より低温のときには加熱器へ切換えると共
に、湯温がさらに水道水の水温より低いときには
水道水を加熱器へ供給できるようにしたものであ
る。
[Detailed explanation of the device] This device switches to the heater when the hot water temperature in the solar collector is lower than the set value, and also supplies tap water to the heater when the hot water temperature is lower than the tap water temperature. This is how it was done.

従来、太陽熱温水器における自動給排水装置と
して特公昭53−20702号公報の第1図(本願図面
の第5図)のものがある。
Conventionally, as an automatic water supply and drainage device for a solar water heater, there is a device shown in FIG. 1 of Japanese Patent Publication No. 53-20702 (FIG. 5 of the drawings of the present application).

上記第5図に就いて簡単に説明すると、水源か
らの配管40を、途中からボイラー43に通じる
配管41及び太陽熱利用の温水器44に分離し、
配管40上に温水器44内の水位の増減により弁
を開閉したり、水温が所定値以上になると弁を閉
じ、または外気温の低下によつて温水管44内の
排水をし、さらに温水管44に途中まであつた水
を再注入して満水にするなど、温水管44の水の
温度に応じて使用する水を温水管44内のものに
するか、水源から直接使用するかを自動的に撰択
して必要に応じて再加熱して使用したり、凍結防
止の水抜きを自動的に行なうようにしたものであ
る。上記のものにあつては、水源側の流路にサー
モスタツトTB1が設けられていないために、水源
側の温度変化に対応できない。すなわち、TH1
は水源温度t0より僅かに高い温度(t0+Δt=t1
によつて作動するものであるから予じめt1を配置
しておかなければならない。水源温度は必ずしも
一定というわけではなく、その日の外気温とか時
間帯によつて異なることもある。
To briefly explain the above FIG. 5, a pipe 40 from a water source is separated into a pipe 41 leading to a boiler 43 and a water heater 44 using solar heat.
A valve on the piping 40 is installed to open and close a valve depending on the increase or decrease in the water level in the water heater 44, close the valve when the water temperature exceeds a predetermined value, or drain the water inside the hot water pipe 44 as the outside temperature drops, and then Depending on the temperature of the water in the hot water pipe 44, it can be automatically determined whether the water to be used is from the hot water pipe 44 or used directly from the water source. It is designed to be selectively reheated and used as necessary, and to automatically drain water to prevent freezing. In the above case, since the thermostat TB1 is not provided in the flow path on the water source side, it cannot respond to temperature changes on the water source side. i.e. TH 1
is slightly higher than the water source temperature t 0 (t 0 +Δt=t 1 )
Since it is operated by t1, t1 must be placed in advance. The temperature of the water source is not necessarily constant, and may vary depending on the outside temperature of the day or the time of day.

仮に t0=10℃ Δt=5℃ t1=15℃ に設定されていたとすると、TH1が15℃以下に
さらされたときにTH1は作動することとなる。
しかしながら、水源温度は変化するものであり、
温水管内の温度が16℃〜17℃、水源の温度が20℃
前後あつてもTH1は作動しない。よつて温水器
側の温度よりも水源側の温度の方が高くても、
TH1は作動せず、ボイラーへは低温側の流体が
供給されるために熱量の損失が大きい。これは、
ボイラーへ実際に供給される流体の温度を比較す
る手段が設けられていないからに他ならない。
Assuming that t 0 = 10°C, Δt = 5°C, and t 1 = 15°C, TH 1 will be activated when TH 1 is exposed to a temperature below 15°C.
However, the water source temperature changes;
The temperature inside the hot water pipe is 16℃~17℃, the temperature of the water source is 20℃
TH 1 does not operate even if there is a difference between the front and back. Therefore, even if the temperature on the water source side is higher than the temperature on the water heater side,
TH 1 does not operate and low temperature fluid is supplied to the boiler, resulting in a large loss of heat. this is,
This is because there is no means for comparing the temperature of the fluid actually supplied to the boiler.

この考案は、上記の問題を解決し、太陽熱利用
コレクター側の湯温が設定値以下のとき、これを
加熱器側へ切換えると共にこの流体の湯温がさら
に水道水の温度と比較し、その温度差により電磁
弁を切換えて高い温度の流体を加熱器へ供給する
ことにより熱エネルギーの節減を計ることを目的
とする。
This idea solves the above problem, and when the hot water temperature on the solar collector side is below the set value, it is switched to the heater side, and the hot water temperature of this fluid is further compared with the tap water temperature, and the temperature is The purpose is to save thermal energy by switching the solenoid valve based on the difference and supplying high temperature fluid to the heater.

この考案の基本的な構成は、太陽熱を利用した
コレクターと屋内に設けた混合水栓とを分岐弁を
有する直通流路によつて接続し、分岐弁の温度撰
択によつて設定値以下の流体を受入れる加熱器と
の間を電磁弁及び流体の温度に感応して電磁弁を
切換える感温体を配した分岐流路により接続し、
水源に直通すると共に同じく感温体を有する給水
路を前記電磁弁に通じさせ、この両感温体が互い
に感知した水温を比較して低温側の流体を遮断す
ると共に、高温側の流体を加熱器へ供給する撰択
を制御回路によつて自動的に行なうようにしたも
のである。
The basic structure of this device is to connect a collector using solar heat to a mixing faucet installed indoors through a direct flow path with a branch valve, and to adjust the temperature below the set value by selecting the temperature of the branch valve. The fluid is connected to the heater that receives the fluid by a branch flow path equipped with a solenoid valve and a temperature sensing element that switches the solenoid valve in response to the temperature of the fluid.
A water supply channel that connects directly to the water source and also has a temperature sensing element is connected to the electromagnetic valve, and the water temperatures sensed by both temperature sensing elements are compared to shut off the fluid on the low temperature side and heat the fluid on the high temperature side. The selection of the supply to the container is automatically made by a control circuit.

以下、この考案の実施例を図に基づいて詳細に
説明する。
Hereinafter, embodiments of this invention will be described in detail based on the drawings.

この考案の実施例は、第1図及至第4図に示す
自動給湯システムの直通流路1は、屋外に設けた
太陽熱利用のコレクターAと屋内の混合水栓Bの
間を接続しており、この直通流路1の途中には湯
の入口10及び出口11,11aを有する分岐弁
3を配置し、該分岐弁3の螺口12には弁棒13
を支承すると共に周面に、前記出口11aと通じ
る弁口14及び弁座15を備えた保持筒16をね
じ送り自在に支承する。切換弁17は、ほぼ円筒
状を呈して一端面に前記弁座15と接離して弁口
14を開閉させる弁口14aを有し、この切換弁
17の内部中央に軸方向の螺口12a及びその周
囲に前記弁口14aと通じる通口18の複数個を
設け、この切換弁17の他の周面には前記出口1
1と、後記の感温体19の作動によつて通じるよ
うにした弁口14bを有する。前記感温体19は
一端の螺合部20を介して前記切換弁17の螺口
12aに取付けられており、螺合部20の端面に
設けて感温により軸方向に出入りする作用端21
を前記弁棒13にスプリング22を介して弾力的
に内装した当板23と突合せ方向に対応させてあ
り、このスプリング22と前記切換弁17を弁座
15側に弾装しているスプリング22aとの弾力
的なバランスは、切換弁17の弁口14aと前記
弁座15との間に所定の間隔を維持するように均
衡させてある。
In the embodiment of this invention, the direct flow path 1 of the automatic hot water supply system shown in FIGS. 1 to 4 connects between a solar heat collector A installed outdoors and a mixing faucet B indoors. A branch valve 3 having an inlet 10 and outlets 11, 11a for hot water is arranged in the middle of the direct flow path 1, and a valve stem 13 is provided in the threaded opening 12 of the branch valve 3.
A holding cylinder 16, which is provided with a valve port 14 and a valve seat 15 communicating with the outlet 11a, is supported on its peripheral surface so as to be freely screwable. The switching valve 17 has a substantially cylindrical shape and has a valve port 14a on one end surface that opens and closes the valve port 14 by moving into and out of contact with the valve seat 15.The switching valve 17 has an axial screw hole 12a and A plurality of ports 18 communicating with the valve port 14a are provided around the switching valve 17, and the outlet 18 is provided on the other circumferential surface of the switching valve 17.
1, and a valve port 14b that communicates with the temperature sensor 19 by the operation of a temperature sensing element 19, which will be described later. The temperature sensing element 19 is attached to the threaded port 12a of the switching valve 17 via a threaded part 20 at one end, and an active end 21 is provided on the end face of the threaded part 20 and moves in and out in the axial direction by temperature sensing.
is made to correspond in the abutting direction to a contact plate 23 elastically installed on the valve stem 13 via a spring 22, and this spring 22 and a spring 22a elastically loading the switching valve 17 on the valve seat 15 side. The elastic balance is such that a predetermined distance is maintained between the valve port 14a of the switching valve 17 and the valve seat 15.

前記感温体19は、入口10から導入される湯
温が予じめ設定された温度値か、それ以上の許容
値である場合に限つて前記切換弁17を入口10
側へ変位させて弁口14bを閉じると共に弁口1
4aを弁座15から引離した位置関係にされてお
り、その設定温度値は、前記弁棒13の螺合部2
0aに取付けた温度値設定用のハンドル24の左
右への操作によつて行なうように連携している。
The temperature sensor 19 switches the switching valve 17 to the inlet 10 only when the temperature of the hot water introduced from the inlet 10 is at a preset temperature value or a higher allowable value.
side to close the valve port 14b and close the valve port 1.
4a is separated from the valve seat 15, and the set temperature value is set at the threaded portion 2 of the valve stem 13.
The temperature value setting is performed by operating the temperature value setting handle 24 attached to the temperature value setting left and right.

分岐流路2は、一端を前記分岐弁3の出口11
aに接続すると共に他端をボイラー、湯沸器など
火力をもつて湯を沸す加熱器27に接続されてお
り、この分岐流路2の中間には前記分岐弁3から
の流体と、後記の給水管5側から送られる水道水
を切換えて加熱器27に供給する電磁弁4が配置
されている。感温体6,6aは温度センサー又は
サーミスタなどによるもので、その感温体6は前
記給水管5の途中に設けて該給水管5内を流れる
水道水の温度に感応して後記の制御回路7に温度
値を伝達し、他方の感温体6aは前記分岐流路2
の途中に設けてあつて、同じく該分岐流路2内を
移動する流体の温度値を制御回路7に伝達するよ
うに連繁的に配置されている。前記制御回路7
は、機筐25に収納されていて前記感温体6,6
aは、機筐25から延長した電線28,29に接
続されており、感温体6は前記分岐流路2内に、
感温体6aは前記給水管5内にそれぞれ配設され
ていて流体に直接触れることにより、それぞれの
流体温度に等しく、かつその温度特有の抵抗値を
備えると共に感温体6,6aは、その表面温度に
より抵抗値が変化するように構成されており、前
記分岐流路2側に流体温度がT2℃で、給水管5
側の流体温度がT2℃のとき、感温体6の抵抗を
R1に、感温体6aの抵抗をR2とすればR1<R2
あり、感温体6に感応する流体温度が徐々に低下
して感温体6a側の流体温度に近づくにつれて感
温体6の抵抗は増大し、感温体6aの流体温度よ
りもさらに低下すると、感温体6の抵抗は
R1′(R1′>R2)となるように連繁している。上記
感応の動作により、オペアンプ9(差動増幅器)
が作動し、リレー26(Ry)の一端がアースさ
れて電流が流れ、リレー26はONとなり、上記
作動によつてリレー26の内部接点がメイクし、
第2図に示すNOとCが通じて電磁弁4をONに
することにより、分岐流路2側の流路を遮断し、
給水管5側と加熱器27が通じるように連繁して
おり、コレクターAに太陽熱が加えられ直通流路
1の流体温度が高くなり、感温体6の抵抗が感温
体6aの抵抗よりも低くなると、オペアンプ9が
OFFになつて電磁弁4をOFFにするように連繁
されて自動給湯システムDを構成する。
The branch flow path 2 has one end connected to the outlet 11 of the branch valve 3.
a, and the other end is connected to a heater 27, such as a boiler or water heater, which uses thermal power to boil water, and in the middle of this branch flow path 2, there is a fluid from the branch valve 3, and a heater 27, which will be described later. A solenoid valve 4 is arranged to switch the tap water sent from the water supply pipe 5 side and supply it to the heater 27. The temperature sensing elements 6 and 6a are temperature sensors or thermistors, and the temperature sensing element 6 is installed in the middle of the water supply pipe 5 and responds to the temperature of the tap water flowing inside the water supply pipe 5 to control the control circuit described later. 7, and the other temperature sensing element 6a is connected to the branch flow path 2.
The control circuit 7 is provided in the middle of the branch flow path 2, and is successively arranged so as to transmit the temperature value of the fluid moving within the branch flow path 2 to the control circuit 7. The control circuit 7
is housed in the machine casing 25 and the temperature sensing elements 6, 6
a is connected to electric wires 28 and 29 extending from the machine casing 25, and the temperature sensing element 6 is in the branch flow path 2.
The temperature sensing elements 6a are respectively disposed in the water supply pipe 5 and come into direct contact with the fluid, so that the temperature sensing elements 6, 6a have a resistance value equal to the temperature of each fluid and unique to that temperature. It is configured such that the resistance value changes depending on the surface temperature, and when the fluid temperature is T 2 °C on the branch flow path 2 side,
When the fluid temperature on the side is T 2 °C, the resistance of the temperature sensing element 6 is
If R 1 is the resistance of the temperature sensor 6a, R 1 <R 2 , and as the fluid temperature sensitive to the temperature sensor 6 gradually decreases and approaches the fluid temperature on the temperature sensor 6a side. The resistance of the temperature sensor 6 increases, and when the fluid temperature of the temperature sensor 6a decreases further, the resistance of the temperature sensor 6 increases.
They are repeated so that R 1 ′ (R 1 ′ > R 2 ). Due to the above-mentioned operation, operational amplifier 9 (differential amplifier)
is activated, one end of the relay 26 (Ry) is grounded, current flows, the relay 26 is turned on, and the internal contact of the relay 26 is made due to the above operation.
By connecting NO and C shown in FIG. 2 and turning on the solenoid valve 4, the flow path on the branch flow path 2 side is shut off,
The water supply pipe 5 side and the heater 27 are connected in series so that they communicate with each other, solar heat is applied to the collector A, the fluid temperature in the direct flow path 1 becomes high, and the resistance of the temperature sensor 6 becomes higher than the resistance of the temperature sensor 6a. When also becomes low, op amp 9 becomes
OFF, and the solenoid valve 4 is repeatedly turned OFF to form an automatic hot water supply system D.

いま、第1図に示すコレクターAから直通流路
1を経て導入される流体が分岐弁3に達し、該分
岐弁3内の感温体19の表面に接しながら通過す
ると、その流体温度が感温体19の許容設定値内
及びそれ以上である場合この流体は、第4図に示
す弁口14aと弁座15の間及び弁口14を通り
抜けて直通流路1の末端に接続する混合水栓Bへ
連続的に給湯を行なう。この間にコレクターAか
ら供給される流体温度が前記感温体19の許容値
を下回ると、作用端21が収縮するのと同時にス
プリング22、同22aとがアンバランスとな
り、切換弁17を弁座15に押付けて弁口14a
を閉じると共に弁口14bと出口11とを連通す
るので、低温度の流体は分岐流路2内を第1図に
示す電磁弁4側へ移動し、その途中に設けてある
感温体6に接触しながら移動を続ける。この場
合、感温体6の感応値がT1℃で、感温体6aの
感応値がT2℃に設定されているとき、感温体6
の抵抗はR1で感温体6aの抵抗はR2であつて対
応関係はR1<R2を維持しているので、流体は開
放中の電磁弁4を通つて加熱器27へ導入され、
適温に加熱される。その後、外気温の低下によつ
て分岐流路2を流れる流体温度が感温体6の許容
値を下回つて感温体6aの許容値に近ずくにつ
れ、感温体6の抵抗が増大して感温体6aの設定
値よりもさらに低下すると、感温体6の抵抗は
R1′となり、対応関係がR1′>R2となるからオペア
ンプ9が作動し、リレー26の一端をアースして
電流を流しリレー26をONにするので、リレー
26の内部接点がメイクして第2図のONとCを
通じさせ電磁弁をONにすることにより、第1図
の分岐流路2と同2aを遮断し同時に分岐流路2
aを給水管5にスイツチするので、該給水管5の
水道水を連続的に加熱器27へ供給し、適温にさ
れた湯を給湯管8を経て混合水栓Bに供給する。
次に外気温の上昇に伴ない太陽光線をコレクター
Aに受けてコレクターAからの流体温度が上昇す
ると、感温体6の抵抗が感温体6aの抵抗よりも
低くなると、オペアンプ9がOFFして電磁弁4
をOFFにするので、分岐流路2と同2aとが通
じて加熱器27へ温湯を供給し、さらに湯温が上
昇すると分岐弁3の感温体19が作動して弁口1
4aを開き、同時に弁口14bを閉じる。従つて
直通流路1を経て混合水栓Bへ直接に湯温を供給
する。
Now, when the fluid introduced from the collector A shown in FIG. If the temperature is within or above the permissible setting value of the hot body 19, this fluid passes between the valve port 14a and the valve seat 15 and through the valve port 14 as shown in FIG. Hot water is continuously supplied to tap B. During this period, if the temperature of the fluid supplied from the collector A falls below the allowable value of the temperature sensing element 19, the working end 21 contracts and at the same time the springs 22 and 22a become unbalanced, causing the switching valve 17 to close to the valve seat 15. Press it against the valve port 14a.
is closed, and the valve port 14b and the outlet 11 are communicated with each other, so that the low-temperature fluid moves within the branch flow path 2 toward the solenoid valve 4 shown in FIG. Continue moving while making contact. In this case, when the sensitive value of the temperature sensitive element 6 is set to T 1 °C and the sensitive value of the temperature sensitive body 6a is set to T 2 °C, the temperature sensitive body 6
The resistance of the temperature sensing element 6a is R 1 and the resistance of the temperature sensing element 6a is R 2 , and the relationship maintains R 1 < R 2 , so the fluid is introduced into the heater 27 through the solenoid valve 4 which is open. ,
Heated to the appropriate temperature. Thereafter, as the temperature of the fluid flowing through the branch flow path 2 falls below the allowable value of the temperature sensor 6 and approaches the allowable value of the temperature sensor 6a due to a decrease in the outside temperature, the resistance of the temperature sensor 6 increases. When the resistance of the temperature sensor 6 becomes lower than the set value of the temperature sensor 6a, the resistance of the temperature sensor 6 becomes
R 1 ′, and the correspondence relationship is R 1 ′>R 2 , so the operational amplifier 9 operates, and one end of the relay 26 is grounded, current flows, and the relay 26 is turned on, so the internal contact of the relay 26 is closed. By connecting ON and C in Fig. 2 and turning on the solenoid valve, branch flow path 2 and 2a in Fig. 1 are shut off, and at the same time, branch flow path 2
A is switched to the water supply pipe 5, so tap water from the water supply pipe 5 is continuously supplied to the heater 27, and hot water at an appropriate temperature is supplied to the mixing faucet B via the hot water supply pipe 8.
Next, when the temperature of the fluid from the collector A rises due to the solar radiation being received by the collector A as the outside temperature rises, the operational amplifier 9 turns OFF when the resistance of the temperature sensor 6 becomes lower than the resistance of the temperature sensor 6a. solenoid valve 4
is turned off, the branch flow path 2 and the flow path 2a are connected to supply hot water to the heater 27, and when the water temperature further rises, the temperature sensing element 19 of the branch valve 3 is activated and the valve port 1 is turned off.
4a and close the valve port 14b at the same time. Therefore, the hot water temperature is directly supplied to the mixing faucet B via the direct flow path 1.

この考案は、上記の構成であるから、次の利点
を有する。
Since this invention has the above configuration, it has the following advantages.

(1) コレクターと混合水栓を結ぶ直通流路上に、
湯温に感応して流路の切換えを行なう分岐弁を
設けたので、該分岐弁を通る湯温が設定値以下
のときこの流体を分岐流路に自動的に切換える
ことができる。
(1) On the direct flow path connecting the collector and mixer faucet,
Since a branch valve is provided that switches the flow path in response to the water temperature, the fluid can be automatically switched to the branch flow path when the temperature of the water passing through the branch valve is below a set value.

(2) 上記分岐弁と加熱器との間を電磁弁及び感温
体を有する分岐流路によつて接続すると共に電
磁弁に、別の感温体を備えた給水管を接続した
ので、分岐栓により撰択されて分岐流路に切換
えられた流体を直線的に加熱器へ供給すると共
にこの流体の温度が、給水管を経て供給される
水道水の温度より低い場合には、電磁弁の切換
えによつて水道水を加熱器へ供給することがで
きる。
(2) Since the branch valve and the heater are connected by a branch channel having a solenoid valve and a temperature sensing element, and a water supply pipe equipped with another temperature sensing element is connected to the solenoid valve, the branch valve is connected to the heater. The fluid selected by the plug and switched to the branch flow path is linearly supplied to the heater, and if the temperature of this fluid is lower than the temperature of tap water supplied via the water supply pipe, the solenoid valve is Tap water can be supplied to the heater by switching.

(3) 従来のものと比較してコレクターの湯温が設
定温度値より低ければ、これを加熱器に送ると
共に、この流体の温度が水道水より低いときは
水道水を加熱器に供給するので、熱エネルギー
の無駄を省くと同時に省エネルギーを果す効果
は極めて大きい。
(3) Compared to conventional systems, if the water temperature in the collector is lower than the set temperature value, it is sent to the heater, and if the temperature of this fluid is lower than the tap water, tap water is supplied to the heater. , the effect of saving energy while eliminating waste of thermal energy is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本案装置の全体的配置を示す説明
図、第2図は、制御回路の説明図、第3図は、制
御回路を内装した機筐の正面図、第4図は、分岐
弁の拡大正断面図、第5図は従来技術の説明図で
ある。 主要部分の符号の説明、1……直通流路、2,
2a……分岐流路、3……分岐弁、4……電磁
弁、5……給水管、6,6a……感温体、7……
制御回路、8……給湯管、27……加熱器、A…
…コレクター、B……混合水栓。
Fig. 1 is an explanatory diagram showing the overall arrangement of the proposed device, Fig. 2 is an explanatory diagram of the control circuit, Fig. 3 is a front view of the machine housing containing the control circuit, and Fig. 4 is the branch valve. FIG. 5 is an explanatory diagram of the prior art. Explanation of symbols of main parts, 1... Direct flow path, 2,
2a... Branch flow path, 3... Branch valve, 4... Solenoid valve, 5... Water supply pipe, 6, 6a... Temperature sensing element, 7...
Control circuit, 8... Hot water pipe, 27... Heater, A...
...Collector, B...Mixing faucet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 太陽熱利用のコレクターAと混合水栓Bとを結
ぶ直通流路1上に、湯温を感知撰別して流路を分
岐流路2に自動的に切替える分岐弁3を配置する
と共に、前記分岐流路2上に、開弁の状態で分岐
弁3と加熱器27とを連通するようにした電磁弁
4を配置し、該電磁弁4に、給水源に通じる給水
管5を接続すると共に、該給水管5の途中に設け
た感温体6aと、前記分岐流路2上に設けた感温
体6とを別に設けた制御回路7にそれぞれ電気的
に接続すると共に、前記加熱器27と混合水栓B
とを給湯管8により連通させることにより、コレ
クターA側の流体と水道水との温度を比較し、そ
の温度差により電磁弁4を切換えるように流体を
自動的に撰択することを特徴とする自動給湯シス
テムに於ける流路切換装置。
A branch valve 3 that senses and selects the water temperature and automatically switches the flow path to the branch flow path 2 is disposed on the direct flow path 1 that connects the collector A using solar heat and the mixing faucet B. A solenoid valve 4 is disposed on the valve 2 so that the branch valve 3 and the heater 27 communicate with each other when the valve is open, and a water supply pipe 5 leading to a water supply source is connected to the solenoid valve 4. The temperature sensor 6a provided in the middle of the pipe 5 and the temperature sensor 6 provided on the branch flow path 2 are electrically connected to a separately provided control circuit 7, and the heater 27 and the mixed water are connected electrically. Stopper B
The temperature of the fluid on the collector A side is compared with the tap water by communicating with the water supply pipe 8, and the fluid is automatically selected by switching the solenoid valve 4 based on the temperature difference. Flow path switching device in automatic hot water supply system.
JP1984142109U 1984-09-18 1984-09-18 Expired JPH0119010Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984142109U JPH0119010Y2 (en) 1984-09-18 1984-09-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984142109U JPH0119010Y2 (en) 1984-09-18 1984-09-18

Publications (2)

Publication Number Publication Date
JPS6155666U JPS6155666U (en) 1986-04-14
JPH0119010Y2 true JPH0119010Y2 (en) 1989-06-02

Family

ID=30700440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984142109U Expired JPH0119010Y2 (en) 1984-09-18 1984-09-18

Country Status (1)

Country Link
JP (1) JPH0119010Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242306A (en) * 1986-04-14 1987-10-22 松下電器産業株式会社 Voltage nonlinear device

Also Published As

Publication number Publication date
JPS6155666U (en) 1986-04-14

Similar Documents

Publication Publication Date Title
US5701387A (en) Storage tank water heater tempering system
US4535931A (en) Energy conserving water heater control system
US4412648A (en) Control valve assembly for steam radiators
US20090301576A1 (en) Water Saving Mechanism For Hot Water Supply Apparatus
JPH0119010Y2 (en)
JPS5941481Y2 (en) hot water boiler
KR102236716B1 (en) Water heater
JPS60259856A (en) Device both for supplying hot water to bathtub and for heating bathtub water additionally
JPH0585815B2 (en)
GB2301430A (en) Central heating control system
GB1387571A (en) Fluid heating system
EP0220268B1 (en) An arrangement for controlling and regulating the supply of energy to a heat exchanger
GB1526378A (en) Central heating and water heating system
JPH0119006Y2 (en)
JPH0615260Y2 (en) Antifreeze device for water heater
JPH0136019Y2 (en)
JPS6124827Y2 (en)
JPS6124828Y2 (en)
JPH029259B2 (en)
GB2342429A (en) Flow control for boiler of central heating/hot water system
JPS6123252Y2 (en)
JPH0218430Y2 (en)
JPS5918216Y2 (en) gas pressure proportional control valve
GB2172379A (en) Tap or faucet
JPS6231815Y2 (en)