JPH01189598A - Tritium recovery - Google Patents

Tritium recovery

Info

Publication number
JPH01189598A
JPH01189598A JP1269588A JP1269588A JPH01189598A JP H01189598 A JPH01189598 A JP H01189598A JP 1269588 A JP1269588 A JP 1269588A JP 1269588 A JP1269588 A JP 1269588A JP H01189598 A JPH01189598 A JP H01189598A
Authority
JP
Japan
Prior art keywords
tritium
tube
metal
gas
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1269588A
Other languages
Japanese (ja)
Inventor
Atsushi Obara
敦 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1269588A priority Critical patent/JPH01189598A/en
Publication of JPH01189598A publication Critical patent/JPH01189598A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get the same effect as a tritium venting by a vacuum pump, by placing a hydrogen-occluding metal in an insulated range by a Pd membrane, where a tritium is permeated to. CONSTITUTION:A gas to be treated is fed to a diffuser via a piping 4. In a diffuser jacket 1, a Pd tube 2 being formed as a tubular shape is placed, and a tritium permeating through the Pd tube 2 is occluded by a metal 3 housed in the Pd tube 2, therefore, a partial pressure of a tritium in the Pd tube 2 is kept low and the same effect as an inside of the Pd tube 2 is vented by a vacuum pump, is gotten. As for the metal 3, the tritium is discharged by heating the metal and its equilibrium pressure depends on its temperature so that, by controlling the temperature at a regeneration of the metal, tritium gas of a constant pressure can be fed to an isotope separation system.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、トリチウムガスを含んだ混合ガスからトリチ
ウムを回収するためのトリチウム回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a tritium recovery device for recovering tritium from a mixed gas containing tritium gas.

(従来の技術) 核融合炉においては、水素同位体を核融合反応させ、そ
の際放出されるエネルギーを利用して発電が行なわれる
が、目下この熱料として、重水素及びトリチウムの組合
せが有望視されている。
(Conventional technology) In a nuclear fusion reactor, hydrogen isotopes undergo a nuclear fusion reaction, and the energy released during this process is used to generate electricity.Currently, a combination of deuterium and tritium is promising as a heating material. being watched.

トカマク型の核融合炉においては、炉心に注入されたト
リチウムのたかだか数チしか核熱焼せずに排出されるた
め、トリチウムの回収をはかる必要がある。核融合炉の
炉心から排出されるガス中の不純物組成は現在のところ
、ヘリウム、炭素、窒素、酸素等が主成分になっている
と考えられており、トリチウムおよび重水素の分離をす
るため曵とくに深冷蒸留法によって定常的に同位体分離
を行おうとすると、前述の不純物を除去して、不純物の
トータル’zlppm以下にすることが必要となる。
In tokamak-type fusion reactors, at most only a few inches of tritium injected into the core are ejected without being burned out, so it is necessary to recover the tritium. The impurity composition of the gas exhausted from the core of a fusion reactor is currently thought to be mainly composed of helium, carbon, nitrogen, oxygen, etc. In particular, if isotope separation is to be carried out regularly by cryogenic distillation, it is necessary to remove the above-mentioned impurities to reduce the total amount of impurities to 'zl ppm or less.

ところで、トリチウムは水素同位体であることから、軽
水素回収に用いられる方法を、トリチウムの回収に利用
することができる。軽水素の回収法は種々あるが、その
うちの一つとして、パラジウムおよびパラジウム系合金
(以下Pd(!−総称する。)に対する水素同位体分子
の透過性を利用した拡散機がある。水素同位体は金属表
面において分子から原子状水素に解離して金属内部に溶
解し、拡散する性質があり、金属両側でのトリチウム分
圧に差がある場合には、トリチウムが壁を透過するif
i次式で示される。
By the way, since tritium is a hydrogen isotope, the method used for recovering light hydrogen can be used for recovering tritium. There are various methods for recovering light hydrogen, one of which is a diffuser that utilizes the permeability of hydrogen isotope molecules to palladium and palladium-based alloys (hereinafter referred to as Pd (!)).Hydrogen isotope has the property of dissociating from molecules into atomic hydrogen on the metal surface, dissolving inside the metal, and diffusing, and if there is a difference in the partial pressure of tritium on both sides of the metal, tritium will penetrate the wall.
It is expressed by the i-th equation.

P=(A/d ) Φ(%i)B・exp(−Q/RT
) (1)ここで、Aは、金属表面の面積、dは、金属
壁の厚さ、 PLは、透過側のトリチウムガス分圧。
P=(A/d) Φ(%i)B・exp(-Q/RT
) (1) Here, A is the area of the metal surface, d is the thickness of the metal wall, and PL is the tritium gas partial pressure on the permeation side.

P2は%M!過側のトリチウムガス分圧、Bは。P2 is %M! The tritium gas partial pressure on the over side, B is.

5ieverts定数、Qは活性化エネルギー、Rは、
ガス定数、Tは絶対温度である。
5ieverts constant, Q is activation energy, R is
The gas constant, T, is the absolute temperature.

第3図は核融合炉に用いられるトリチウム回収装置の一
般的な概略の構成を示す。非処理ガスは配管24から拡
散機へ供給される。拡散器ジャケット21内には、図示
されていないヒーターによって200 ’C〜300°
Cに加熱された試験管状のPd管22が収められておシ
、Pd管22を透過して来るトリチウムは、上記管内を
配管26を介して常時真空に排気している真空ポンプ2
3によって。
FIG. 3 shows a general schematic configuration of a tritium recovery device used in a nuclear fusion reactor. Untreated gas is supplied to the diffuser via piping 24. Inside the diffuser jacket 21, a temperature of 200' to 300° is heated by a heater (not shown).
A test-tube-shaped Pd tube 22 heated to C is housed, and the tritium that permeates through the Pd tube 22 is pumped to a vacuum pump 2 that constantly evacuates the inside of the tube to a vacuum via piping 26.
By 3.

配管27を介して同位体分離系へ供給される。また、ト
リチウムの透過によって、トリチウムガスが劣化したガ
スは配管25から廃ガス処理系へ送られる。
It is supplied to the isotope separation system via piping 27. Moreover, the gas whose tritium gas has deteriorated due to the permeation of tritium is sent from the pipe 25 to the waste gas treatment system.

しかしながら、この様な構成であると、用いる真空ポン
プには格別の性態を払わなければならない、すなわち、
ポンプオイルを必要とする真空ポンプの場合、その排気
経路においてポンプオイルとトリチウムが接触し、トリ
チウムが汚染してしまい、同位体分離系に供給できる不
純物濃度の基準をうわまわってしまう恐れが生じ、また
ポンプオイル自体にもトリチウムが溶解するため、メン
テナンスの際の安全性に問題がある。また、何種類かの
オイルフリーなトリチウム用の真空ポンプも開発されて
いるが、いずれも高価で、かつ透過側のトリチウム分圧
が低い場合には、被透過側を高真空にしなければならず
、拡散器で必要とする真空度を得るためには、低真空用
から高真空用まで数種類の何台もの真空ポンプを組合せ
た複雑な構成となってしまう。
However, with such a configuration, special characteristics must be paid to the vacuum pump used, that is,
In the case of a vacuum pump that requires pump oil, there is a risk that the pump oil and tritium will come into contact with each other in the exhaust route, contaminating the tritium and exceeding the impurity concentration standards that can be supplied to the isotope separation system. Additionally, since tritium dissolves in the pump oil itself, there is a safety issue during maintenance. In addition, several types of oil-free vacuum pumps for tritium have been developed, but they are all expensive, and if the partial pressure of tritium on the permeate side is low, the permeate side must be under high vacuum. In order to obtain the degree of vacuum required by the diffuser, a complicated configuration is required that combines several types of vacuum pumps, from low vacuum to high vacuum.

(発明が解決しようとする課題) 上述したように従来のトリチウム回収の構成にあっ℃は
、真空ポンプオイルによる回収トリチウムの汚染、逆に
トリチウムによる真空ポンプオイルの汚染、あるいはト
リチウム用真空ポンプのコストの高さや真空排気系の構
成の複雑さといった問題が発生する。
(Problems to be Solved by the Invention) As mentioned above, problems with the conventional tritium recovery configuration include contamination of recovered tritium by vacuum pump oil, contamination of vacuum pump oil by tritium, or cost of the tritium vacuum pump. Problems arise such as the height of the vacuum pump and the complexity of the vacuum pumping system configuration.

そこで、本発明は、この様な事情に鑑みて成されたもの
で、以上の問題の原因であるメカニカルな真空ポンプを
使用しないトリチウム回収装置を提供することを目的と
している。
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tritium recovery device that does not use a mechanical vacuum pump, which is the cause of the above problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明のトリチウム回収装置においては、Pd膜によっ
τ隔てられたトリチウム被透過側の領域に水素吸蔵金属
を具備する。
(Means for Solving the Problems) In the tritium recovery device of the present invention, a hydrogen storage metal is provided in a region on the side where tritium permeates and is separated by τ by a Pd film.

(作 用) 本発明によれば、トリチウム被透過側に透過してくるト
リチウムを水素吸蔵金属に吸蔵させ、トリチウム分圧を
下げる事によシ、結果的に真空ポンプでトリチウム被透
過側を排気しているのと同じ効果が得られる。
(Function) According to the present invention, the tritium that permeates into the tritium permeate side is occluded in the hydrogen storage metal, and the partial pressure of tritium is lowered.As a result, the tritium permeate side is evacuated using a vacuum pump. You can get the same effect as you do.

゛(実施例) 第1図は1本発明の一実施例に係わる。トリチウム回収
装置の概略の構成図である。本トリチウム回収装置にお
いて、被処理ガスは配管4を介して拡散器へ供給され゛
る。拡散器ジャケラ)l内には、管状に形成されたPd
管2が収められており、Pd管2を透過して来るトリチ
ウムは、上記管内に収められた水素吸蔵金属3によって
吸蔵され、 Pd管内部のトリチウム分圧は低く保たれ
、真空ポンプによってPd管内部を排気しているのと同
じ効果が得られ、常にトリチウムが透過してくる。また
、水素吸蔵金属については、加熱することによって、ト
リチウムを再放出し、その平衡圧力は温度に依存するた
め、再生時の温度を制御することによって、配管5を介
して、一定圧力のトリチウムガスを同位体分離系へ供給
することができる。
(Embodiment) FIG. 1 relates to an embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a tritium recovery device. In this tritium recovery apparatus, the gas to be treated is supplied to the diffuser via the pipe 4. Inside the diffuser jacket, there is a Pd tube shaped like a tube.
A tube 2 is housed in the tube 2, and the tritium that passes through the Pd tube 2 is absorbed by the hydrogen storage metal 3 housed in the tube.The tritium partial pressure inside the Pd tube is kept low, and the Pd tube The same effect as evacuating the interior is achieved, and tritium always passes through. In addition, when hydrogen storage metals are heated, tritium is released again, and the equilibrium pressure depends on the temperature. Therefore, by controlling the temperature during regeneration, tritium gas at a constant pressure can be can be supplied to the isotope separation system.

また、水素吸蔵金属のみで被処理ガス中からのトリチウ
ム回収をはかることも考えられるが、その場合、前述の
不純物も同時に回収してしまい、さらに不純物を吸蔵し
た金属に関しては、その再生がほとんどの場合不可能で
あり、水素吸蔵金属の水素吸蔵能力を著しく損い、短期
間でトリチウム回収が不可能になる恐れがある。このた
め、水素同位体のみを透過するPd膜を用い、被処理ガ
スと水素吸蔵金属を隔てることが、特に必要となる。
It is also possible to try to recover tritium from the gas to be treated using only hydrogen-absorbing metals, but in that case, the impurities mentioned above would also be recovered at the same time, and most of the metals that have occluded impurities cannot be regenerated. If this is not possible, the hydrogen storage capacity of the hydrogen storage metal will be significantly impaired, and tritium recovery may become impossible in a short period of time. For this reason, it is particularly necessary to separate the gas to be treated from the hydrogen storage metal by using a Pd film that transmits only hydrogen isotopes.

なお、上述の実施例では、拡散器を一基のみ設けである
が、連続して被処理ガスからトリチウムを回収し、トリ
チウムガスを得る場合には、第2図に示すように2基あ
るいはそれ以上を並列に設置し、順次、吸蔵、再生を行
−うことによって可能となる。また図中の数字は第1図
と同じであシ、添字a、bはそれぞれの拡散器に対応し
た各部を示す。
In the above embodiment, only one diffuser is provided, but when tritium is continuously recovered from the gas to be treated and tritium gas is obtained, two or more diffusers are provided as shown in FIG. This is possible by installing the above in parallel and performing storage and regeneration in sequence. Further, the numbers in the figure are the same as in FIG. 1, and the subscripts a and b indicate each part corresponding to each diffuser.

〔発明の効果〕〔Effect of the invention〕

本発明は以上に説明したように、Pd膜によって隔てら
れたトリチウム被透過側の領域に水素吸蔵金属を設置す
ることによって、真空ポンプでトリチウムを排気するの
と同じ効果が得られる。
As described above, the present invention provides the same effect as evacuating tritium with a vacuum pump by installing a hydrogen storage metal in a region on the side where tritium permeates and is separated by a Pd film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係わるトリチウトリチウ
ム回収装置の構成図である。 1・・・拡散器ジャケット 2・・・Pd管 3・・・水素吸蔵金属 代理人弁理士  則 近 憲 佑 同  松山光速 第  1  図 第2図
FIG. 1 is a block diagram of a tritium lithium recovery apparatus according to an embodiment of the present invention. 1...Diffuser jacket 2...Pd tube 3...Hydrogen storage metal representative patent attorney Noriyuki Ken Yudo Matsuyama Kosoku 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] パラジウムおよびパラジウム系合金の水素透過性を利用
したトリチウム回収装置において、前記パラジウムおよ
びパラジウム系合金の膜によって隔てられたトリチウム
被透過側の領域に水素吸蔵金属を具備することを特徴と
するトリチウム回収装置。
A tritium recovery device that utilizes the hydrogen permeability of palladium and palladium-based alloys, characterized in that a hydrogen storage metal is provided in a region on the side where tritium permeates and is separated by a membrane of palladium and palladium-based alloys. .
JP1269588A 1988-01-25 1988-01-25 Tritium recovery Pending JPH01189598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269588A JPH01189598A (en) 1988-01-25 1988-01-25 Tritium recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269588A JPH01189598A (en) 1988-01-25 1988-01-25 Tritium recovery

Publications (1)

Publication Number Publication Date
JPH01189598A true JPH01189598A (en) 1989-07-28

Family

ID=11812516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269588A Pending JPH01189598A (en) 1988-01-25 1988-01-25 Tritium recovery

Country Status (1)

Country Link
JP (1) JPH01189598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455397A2 (en) * 1990-04-30 1991-11-06 Ontario Hydro Process and apparatus for tritium recovery
JP2013536404A (en) * 2010-06-16 2013-09-19 エネア − エイジェンジア ナチオナル ペル レ ヌオベ テクノロジー,レネルジア エ ロ スヴィルッポ エコノミコ ソステニビル Membrane reactor for treating tritium-containing gases
CN112999869A (en) * 2021-03-04 2021-06-22 中国人民解放军陆军炮兵防空兵学院 Device and method for continuously extracting tritium from fusion reactor liquid metal lithium-lead alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455397A2 (en) * 1990-04-30 1991-11-06 Ontario Hydro Process and apparatus for tritium recovery
JP2013536404A (en) * 2010-06-16 2013-09-19 エネア − エイジェンジア ナチオナル ペル レ ヌオベ テクノロジー,レネルジア エ ロ スヴィルッポ エコノミコ ソステニビル Membrane reactor for treating tritium-containing gases
CN112999869A (en) * 2021-03-04 2021-06-22 中国人民解放军陆军炮兵防空兵学院 Device and method for continuously extracting tritium from fusion reactor liquid metal lithium-lead alloy

Similar Documents

Publication Publication Date Title
US4774065A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle of exhaust gas components containing chemically bonded tritium and/or deuterium
US4476105A (en) Process for photosynthetically splitting water
US3963460A (en) Method and apparatus for treating waste gases containing radioactive impurities, particularly krypton and xenon nuclides
CN104176717B (en) A kind of helium recovery method of purification and device
RU2568184C2 (en) Method for detritiation of soft household wastes and apparatus therefore
CN106283101A (en) A kind of preparation method of ultra-pure hydrogen
US4867762A (en) Method and a device for purifying a gas containing hydrogen isotopes
JPH01189598A (en) Tritium recovery
US4331522A (en) Reprocessing of spent plasma
EP3742456B1 (en) Apparatus and method for helium-3 separation and enrichment
JPH0833490B2 (en) Method and apparatus for decontaminating waste gas from a fusion reactor fuel cycle
JPS6359728B2 (en)
Hayashi et al. Gas separation performance of a hollow-filament type polyimide membrane module for a compact tritium removal system
JPS63175627A (en) Tritium recovery apparatus
Slansky Separation processes for noble gas fission products from the off-gas of fuel-reprocessing plants
JP2585327B2 (en) Tritium separation and recovery device and multifunctional separation membrane for tritium separation and recovery
JPS5838207B2 (en) Method for removing impurities such as helium from a mixture containing deuterium and tritium
Hirata et al. Experimental and analytical study on membrane detritiation process
JPH0293399A (en) Tritium remover
JPH0377626A (en) Device for refining hydrogen isotope
Labrune et al. Separation of hydrogen isotopes from nitrogen with polyimide membrane
US4021234A (en) Method for removing impurities in liquid metal
EP0032827B1 (en) Process for removing helium and other impurities from a mixture containing deuterium and tritium especially from a fusion reactor
Sze et al. Combined gettering and molten salt process for tritium recovery from lithium
Rozenkevich et al. Concept of tritium processing and confinement in fuel cycle of Ignitor