JPH01187435A - Method and device for time-resolved spectroscopy - Google Patents

Method and device for time-resolved spectroscopy

Info

Publication number
JPH01187435A
JPH01187435A JP63201611A JP20161188A JPH01187435A JP H01187435 A JPH01187435 A JP H01187435A JP 63201611 A JP63201611 A JP 63201611A JP 20161188 A JP20161188 A JP 20161188A JP H01187435 A JPH01187435 A JP H01187435A
Authority
JP
Japan
Prior art keywords
sample
time
fluorescence
semiconductor laser
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63201611A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yokoyama
弘之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63201611A priority Critical patent/JPH01187435A/en
Publication of JPH01187435A publication Critical patent/JPH01187435A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To simplify the whole system greatly by exciting a sample with light pulses generated by a semiconductor laser which is driven with a pulse current or high-frequency current. CONSTITUTION:A diode laser 11 is driven with the pulse current from a pulse driver 12 to generate light pulses 21. The light pulses 21 after passing through a collimator lens 13 and a mask 14 illuminate the sample 16 in a similar shape of the mask 14 through an image forming lens 15. Consequently, the fluorescent light 22 emitted by the sample 16 passes through a condenser lens 17 and its component of a certain specific wavelength range is selected by a spectroscope 18 and then converged on a photodetector 31 through a condenser lens 19. Then electric signal from a detector (e.g. fast electric sweep streak camera with 100ps time resolution) 31 is integrated and averaged by a signal processor 32 and then displayed on a display device 33 as time variation of the fluorescent light. The gate operation of the signal processor 32 is performed with the trigger signal from a pulse driver 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、種々の物質の性質を知る上で重要な高速の光
学過程について分光計測を行うための方法および装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for performing spectroscopic measurements of high-speed optical processes that are important for understanding the properties of various substances.

(従来の技術) In5(10−9秒)以下の時間幅を有する光パルスを
用いた高速の発光過程の計測測定は、種々のデバイス材
料の品質の評価や未知の性質について知見を得る上で非
常に有用であり、近年急速に普及しつつある。このよう
な測定においては、高速の微弱光検出系を用いるととも
に、材料の励起光であるIns以下の時間幅の光パルス
を得るために通常、モード同期発振する固体レーザや気
体レーザ、また色素レーザを光源に用いてる。
(Prior art) Measurement of high-speed light emission processes using light pulses with a time width of In5 (10-9 seconds) or less is useful for evaluating the quality of various device materials and gaining knowledge about unknown properties. It is extremely useful and has become rapidly popular in recent years. In such measurements, a high-speed weak light detection system is used, and in order to obtain a light pulse with a time width of Ins or less, which is the excitation light of the material, a mode-locked solid-state laser, a gas laser, or a dye laser is usually used. is used as a light source.

(発明が解決しようとする問題点) 上述したモード同期発振レーザは、長年にわたり技術改
良が続けられた結果、信頼性も高まり汎用装置として広
く使用されるようになったが、なおいくつかの問題点が
ある。1つには、複雑で精密な装置構成となるために装
置コストが非常に高くなることである。また、モード同
期発振では、光パルスはレーザ共振器内を光が往復する
時間間隔でくり返されるパルス列として得られるので、
−膜内な計測システムで要求されるもっとゆっくりした
くり返しの光パルスに切り出すために、さらに高価な装
置と高度な技術が必要となる。
(Problems to be Solved by the Invention) As a result of continued technological improvements over the years, the mode-locked oscillation laser described above has become more reliable and is now widely used as a general-purpose device, but there are still some problems. There is a point. One is that the equipment cost is extremely high due to the complicated and precise equipment configuration. In addition, in mode-locked oscillation, the optical pulse is obtained as a pulse train that is repeated at the time interval when the light travels back and forth within the laser resonator.
- Requires more expensive equipment and advanced technology to cut into the slower, repetitive light pulses required for intra-membrane measurement systems.

このモード同期発振レーザを利用した高速の発光計測シ
ステムおよび発光計測の具体的方法については、例えば
、フォークエト(Fouquet)、バーンハム(Bu
rnham)によるアイトリプルイー、ジャーナル、オ
ブ・カンタム、エレクトロニクス(IEEE、 J。
For a high-speed luminescence measurement system using this mode-locked oscillation laser and a specific method of luminescence measurement, see, for example, Fouquet and Burnham.
iTripleE, Journal of Quantum, Electronics (IEEE, J.

Quantum Electronics)誌の198
6年QE−22巻、9号の1799頁〜1810頁にわ
たって掲載された論文の中に詳しい記述がある。この論
文の中ではモード同期したクリプトンイオンレーザと音
響光学シャッターの組み合せによって820kHzで繰
り返される約250psの光パルスを用いてGaAs/
AlGaAs量子井戸の試料を励起し、この試料からの
発光を高速の光子計数値を用いて時間分解測定を行って
いる。
198 of Quantum Electronics) magazine
A detailed description can be found in the paper published on pages 1799 to 1810 of QE-22, No. 9, 2006. In this paper, GaAs/
An AlGaAs quantum well sample is excited, and the light emitted from this sample is time-resolved measured using high-speed photon counts.

本発明の目的は、上述した従来の計測方法や計測装置の
欠点を除去した、簡便な時間分解の発光計測方法および
発光計測装置を提供することにある。
An object of the present invention is to provide a simple time-resolved luminescence measurement method and luminescence measurement device that eliminates the drawbacks of the conventional measurement methods and measurement devices described above.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する時間分
解分光方法は、直流電流にパルス電流または高周波電流
を重畳した電流、もしくはパルス電流または高周波電流
のみによって駆動された半導体レーザから発生する光パ
ルスで試料を励起し、これによって該試料から発せられ
る蛍光を、前記の光パルスの時間幅の100倍よりも短
い時間分解能を有する光検出系によって計測することを
特徴としている。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the time-resolved spectroscopy method provided by the present invention uses a current obtained by superimposing a pulse current or a high-frequency current on a DC current, or only a pulse current or a high-frequency current. A sample is excited with a light pulse generated from a semiconductor laser driven by a semiconductor laser, and the fluorescence emitted from the sample is measured by a photodetection system having a time resolution shorter than 100 times the time width of the light pulse. It is characterized by

さらに、本発明が提供する時間分解分光装置は、試料を
固定する手段と、半導体レーザと、この半導体レーザを
駆動して光パルス出力を発生させるためのドライバと、
該半導体レーザからの光パルス出力を前記試料に照射す
るための光学系と、該試料から発せられる蛍光の集光光
学系と、該蛍光を分光するための分光器と、該蛍光を前
記光パルスの時間幅の100倍よりも短い時間分解能で
検出できる光検出器と、この光検出器からの信号を計測
・処理する信号処理器と、該信号処理器からの処理され
た信号を表示するための表示器および記録するための記
録器とを備えたことを特徴としている。
Further, the time-resolved spectrometer provided by the present invention includes means for fixing a sample, a semiconductor laser, and a driver for driving the semiconductor laser to generate an optical pulse output.
an optical system for irradiating the sample with a light pulse output from the semiconductor laser; an optical system for focusing fluorescence emitted from the sample; a spectroscope for separating the fluorescence; A photodetector capable of detecting with a time resolution shorter than 100 times the time width of It is characterized by having a display and a recorder for recording.

また、本発明による時間分解分光装置の光学系は半導体
レーザからのレーザビームと、このレーザビームが照射
される試料からの蛍光が集光光学系によりコリメートさ
れた後同軸の光路をとり、かつ前記半導体レーザと前記
試料の光路間に挿入されたビームスプリッタを介して前
記試料からの蛍光が分光器に導かれることを特徴として
いる。
Further, in the optical system of the time-resolved spectrometer according to the present invention, a laser beam from a semiconductor laser and fluorescence from a sample irradiated with this laser beam are collimated by a condensing optical system, and then take coaxial optical paths, and It is characterized in that fluorescence from the sample is guided to a spectrometer via a beam splitter inserted between the semiconductor laser and the optical path of the sample.

(作用) 本発明では、電流注入型の半導体ダイオードレーザに対
して数ns以下程度の短パルス電流による励起や、数百
MHz以上での深い高周波電流変調を行うと、緩和発振
によって100ps程度かそれ以下の光パルスレーザ光
を発生できるという特長を利用している。このような方
法で発生する光パルスのエネルギーは通常数pJ〜10
pJであるが、高出力タイプのダイオードレーザを用い
た場合には100pJ以上のエネルギーを得ることも可
能である。これらの光パルスエネルギーは先述したモー
ド同期発振する固体レーザや気体レーザ、色素レーザか
らの光パルスのエネルギーと比較すると2桁から4桁も
小さい。このために、一般にはダイオードレーザからの
光パルスは物質の時間分解分光を行う際の励起には適さ
ないと考えられてきた。しかしながら、光検出技術の進
歩により現在では極めて微弱な光をins以下の時間分
解能で測定することが可能になっている。実際に試算し
てみると、−例として、励起光パルスのエネルギーが1
pJ以下であっても物質の蛍光への変換量子効率が1%
、蛍光の光検出器への集光効率が1%程度あれば光子計
数法等の利用により蛍光を100ps程度の時間分解能
で測定し得ることが明らかとなった。残る問題は物質を
励起するための光パルスの波長であるが、これについて
も近年の半導体ダイオードレーザ技術の目覚しい進歩に
より、約630nmの橙色から約1.6pmの近赤外に
わたる波長域では室温で安定に動作するダイオードレー
ザが得られている。従って、現在のところ実用上の短波
長限界は630nm近傍ということになるが、これより
長波長に吸収端を有するような固体、液体材料について
はダイオードレーザの種類を適切に選ぶことによって高
効率の励起を行うことが可能である。また、物質が気体
であってもその吸収線が半導体ダイオードレーザのカバ
ーする発振波長域内にあれば同様に高効率の励起を行う
ことは可能である。
(Function) In the present invention, when a current injection type semiconductor diode laser is excited with a short pulse current of several nanoseconds or less or deep high-frequency current modulation is performed at several hundred MHz or more, relaxation oscillation causes a pulse of about 100 ps or more. It takes advantage of the ability to generate the following optical pulse laser beams. The energy of the optical pulse generated by this method is usually several pJ to 10
pJ, but if a high output type diode laser is used, it is possible to obtain energy of 100 pJ or more. The energy of these optical pulses is two to four orders of magnitude smaller than the energy of the optical pulses from the solid-state laser, gas laser, or dye laser that performs mode-locked oscillation. For this reason, it has generally been thought that optical pulses from diode lasers are not suitable for excitation when performing time-resolved spectroscopy of substances. However, advances in photodetection technology have now made it possible to measure extremely weak light with a time resolution of less than ins. An actual trial calculation shows that - for example, the energy of the excitation light pulse is 1
The quantum efficiency of converting substances to fluorescence is 1% even at pJ or less.
It has become clear that if the efficiency of collecting fluorescence onto a photodetector is about 1%, fluorescence can be measured with a time resolution of about 100 ps by using a photon counting method or the like. The remaining issue is the wavelength of the light pulse used to excite the material, but thanks to recent remarkable advances in semiconductor diode laser technology, wavelengths ranging from about 630 nm (orange) to about 1.6 pm (near infrared) can be used at room temperature. A diode laser that operates stably has been obtained. Therefore, at present, the practical short wavelength limit is around 630 nm, but for solid and liquid materials that have an absorption edge at longer wavelengths, high efficiency can be achieved by appropriately selecting the type of diode laser. It is possible to perform excitation. Furthermore, even if the substance is a gas, highly efficient excitation can be similarly achieved if its absorption line is within the oscillation wavelength range covered by the semiconductor diode laser.

以上に述べたことからダイオードレーザから発生する光
パルスを物質の励起に用いることにより、従来のように
モード同期発振する固体レーザ、気体レーザ、また色素
レーザを用いることなく種々の物質の蛍光の時間分解計
測を行うことができる。
From the above, by using optical pulses generated from a diode laser to excite substances, the fluorescence time of various substances can be changed without using conventional mode-locked oscillation solid-state lasers, gas lasers, or dye lasers. Decomposition measurements can be performed.

前記のように半導体ダイオードレーザから発生する光パ
ルスの幅は100ps程度かそれより短いから光検出系
の時間分解能がその100倍であってもIons程度か
それより短いので十分に高速の光学過程を分光計測でき
る。もちろん光検出器の時間分解能は高い方がよく、前
記半導体ダイオードレーザの光パルス幅の10倍より短
いことが望ましい。
As mentioned above, the width of the optical pulse generated from a semiconductor diode laser is about 100 ps or shorter, so even if the time resolution of the photodetection system is 100 times that, it is about Ions or shorter, so it is sufficient to perform a sufficiently high-speed optical process. Can perform spectroscopic measurements. Of course, the higher the time resolution of the photodetector, the better, and it is desirable that it be shorter than 10 times the optical pulse width of the semiconductor diode laser.

これによって規則システム全体を大幅に簡略化すること
ができ、従ってシステムのコストも従来よりはるかに低
くすることができるようになる。
This makes it possible to greatly simplify the overall rule system and thus also to make the system cost much lower than before.

また、本発明の光学系では、レーザビームと蛍光に光路
を同軸にすることにより、測定の際の光路の調整を極め
て容易に行うことが可能になる。
Furthermore, in the optical system of the present invention, by making the optical paths of the laser beam and the fluorescence coaxial, it is possible to extremely easily adjust the optical path during measurement.

さらにマスクの開口を等倍以下、実用的には1110〜
1/100の比率で縮小して試料表面上に結像させるこ
とにより照射する単位面積あたりの光エネルギー密度を
高くするとともに、試料表面上の光エネルギー密度を正
確に把握し得るという利点がある。
Furthermore, the aperture of the mask should be smaller than the same size, practically 1110~
By reducing the size to 1/100 and forming an image on the sample surface, there is an advantage that the light energy density per unit area to be irradiated can be increased and the light energy density on the sample surface can be accurately grasped.

(実施例) この発明の実施例について図面を参照しながら詳細な説
明を行う。
(Example) An example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明を適用した時間分解分光装置の一実施
例の模式的構成を示すものである。ダイオードレーザ1
1をパルスドライバ12がらのパルス電流で駆動するこ
とによって光パルス2oが発生する。光パルス21はコ
リメートレンズ13でコリメートされマスク14を通っ
た後結像レンズ15によって試料16上にマスク14の
相似形上に照射される。試料16からの蛍光22は集光
レンズ17で集光され、分光器18によっである特定の
波長域のみが選択された後第2の集光レンズ19によっ
て光検出器31の光入射口に集光入射させられる。光検
出器31からの電気信号は信号処理器32によって積算
、平均化等の処理された後表示器33によって蛍光の時
間変化として表示され、また記録器34によってそのデ
ータが紙上およびディスク上に記録される。なお信号処
理器32のゲート動作はパルスドライバ12からのトリ
ガ信号によって行われる。
FIG. 1 shows a schematic configuration of an embodiment of a time-resolved spectrometer to which the present invention is applied. diode laser 1
1 with a pulse current from a pulse driver 12, an optical pulse 2o is generated. The light pulse 21 is collimated by a collimating lens 13, passes through a mask 14, and is then irradiated onto a sample 16 onto a similar shape of the mask 14 by an imaging lens 15. Fluorescence 22 from the sample 16 is focused by a condensing lens 17, and only a specific wavelength range is selected by a spectroscope 18, and then a second condensing lens 19 directs it to the light entrance of a photodetector 31. The light is focused and incident. The electrical signal from the photodetector 31 is integrated and averaged by a signal processor 32, and then displayed as a time change of fluorescence by a display 33, and the data is recorded on paper and disk by a recorder 34. be done. Note that the gate operation of the signal processor 32 is performed by a trigger signal from the pulse driver 12.

本実施例では、ダイオードレーザ11としてダブルへテ
ロ構造のAIGaInPストライプレーザを用いた。こ
のダイオードレーザ11をパルス幅が500psでピー
ク値がIAの電流パルスで励起することにより中心発振
波長が557nm、半値時間幅が約30ps、パルスエ
ネルギーが約15pJの光パルス21が得られた。試料
16には分子線エピタキシャル成長法を用いて製作した
井戸厚が10nmのGaAs/AlGaAs単一量子井
戸を用いた。前述した構成によって試料16上での光パ
ルスエネルギー密度が10pJ/cm2となるようにし
た。光パルス21の繰り返し周波数は単一パルスから数
GHzまで任意に選択できるが、本実施例では10MH
zとした。また、分光器18には回折格子分光器を用い
た。光検出器31としては時間分解能が100psの高
速電気掃引ストリークカメラを用いた。
In this embodiment, a double heterostructure AIGaInP stripe laser is used as the diode laser 11. By exciting this diode laser 11 with a current pulse having a pulse width of 500 ps and a peak value of IA, an optical pulse 21 having a center oscillation wavelength of 557 nm, a half-value time width of about 30 ps, and a pulse energy of about 15 pJ was obtained. For sample 16, a GaAs/AlGaAs single quantum well with a well thickness of 10 nm manufactured using a molecular beam epitaxial growth method was used. With the above-described configuration, the optical pulse energy density on the sample 16 was set to 10 pJ/cm2. The repetition frequency of the optical pulse 21 can be arbitrarily selected from a single pulse to several GHz, but in this example, it is 10 MHz.
I made it z. Furthermore, a diffraction grating spectrometer was used as the spectrometer 18. As the photodetector 31, a high-speed electric sweep streak camera with a time resolution of 100 ps was used.

第2図は、表示器33として用いたオシロスコープ上で
観測された先述のGaAs/AlGaAs単一量子井戸
からの蛍光の時間変化を示している。この図において蛍
光時間変化曲線41は信号処理器32によって20回積
算した後平均化を行い、さらに蛍光強度を対数で表示し
たものである。この図に見るように、ダイオードレーザ
11を光パルスの光源として用いた時間分解分光測定系
によっても高時間分解能で極めて明瞭に蛍光強度の時間
変化を観測することができた。
FIG. 2 shows the temporal change in fluorescence from the GaAs/AlGaAs single quantum well as observed on the oscilloscope used as the display 33. In this figure, a fluorescence time change curve 41 is obtained by integrating 20 times by the signal processor 32 and then averaging the results, and further displays the fluorescence intensity in logarithm. As seen in this figure, even with the time-resolved spectrometry system using the diode laser 11 as a light pulse light source, it was possible to very clearly observe the temporal change in fluorescence intensity with high temporal resolution.

さらに第3図は、本発明による時間分解分光装置の他の
実施例の模式的構成を示している。この構成では第1図
と異なり試料16への光パルス21の照射の光路と試料
16からの蛍光22の光路が同軸となっている。レーザ
ビームにより、マスク14の開口が結像レンズ15で1
110の比率で試料16の表面上に結像されるとともに
、この結像レンズ15により蛍光22が平行に近い光線
としてコリメートされビームスプリッタ20によって反
則され分光器18に導入される。この構成では第1図に
比べると、試料16の位置ずれに対する蛍光22の光路
の調整の必要がほとんどなく再現性・信頼性にすぐれた
測定を行うことが可能になる。また、マスク14の開口
の像が試料16表面上において適当な比率で縮小されて
結像されるため、ダイオードレーザ11からの比較的エ
ネルギーの小さい光パルス21を用いても照射エネルギ
ー密度を高くすることができる上、この照射エネルギー
密度を正確に知ることが可能になる。それ故照射エネル
ギー密度に対する蛍光の時間的減衰特性の変化等に関し
定量的な測定を行うことができる。
Furthermore, FIG. 3 shows a schematic configuration of another embodiment of the time-resolved spectroscopy apparatus according to the present invention. In this configuration, unlike FIG. 1, the optical path of the irradiation of the optical pulse 21 onto the sample 16 and the optical path of the fluorescence 22 from the sample 16 are coaxial. The aperture of the mask 14 is opened by the imaging lens 15 by the laser beam.
An image is formed on the surface of the sample 16 at a ratio of 110, and the fluorescence 22 is collimated by the imaging lens 15 as a nearly parallel beam, reflected by the beam splitter 20, and introduced into the spectrometer 18. With this configuration, compared to FIG. 1, there is almost no need to adjust the optical path of the fluorescent light 22 due to positional deviation of the sample 16, making it possible to perform measurements with excellent reproducibility and reliability. In addition, since the image of the aperture of the mask 14 is reduced at an appropriate ratio and formed on the surface of the sample 16, the irradiation energy density can be increased even if the light pulse 21 with relatively low energy from the diode laser 11 is used. In addition, it becomes possible to accurately know this irradiation energy density. Therefore, it is possible to quantitatively measure changes in the temporal decay characteristics of fluorescence with respect to irradiation energy density.

(実施例の変形) (1り 本実施例ではダイオードレーザとして発振波長が可視域
にあるAIGaInPダイオードレーザを使用したが、
これは被測定試料であるGaAs/AlGaAs量子井
戸の効率良い励起を行うためである。吸収波長端もっと
長波長にある試料であれば発振波長が近赤外域にあるA
lGaAsダイオードレーザやInGaAsPダイオー
ドレーザを光源として用いることはもちろん可能である
。また、ダイオードレーザの励起源としても単にパルス
ドライバだけでなく、直流電源を併用したり、またパル
スドライバをマイクロ波帯の高周波電源に置き代えるこ
とができる。さらに、もっと短い時間幅の光パルスが必
要である場合には、外部共振器を有するダイオードレー
ザを用いる方法が有効である。
(Modification of the embodiment) (1) In this embodiment, an AIGaInP diode laser whose oscillation wavelength is in the visible range was used as the diode laser.
This is to efficiently excite the GaAs/AlGaAs quantum well that is the sample to be measured. If the absorption wavelength edge of the sample is at a longer wavelength, the oscillation wavelength will be in the near-infrared region A.
It is of course possible to use an lGaAs diode laser or an InGaAsP diode laser as the light source. Furthermore, as the excitation source for the diode laser, not only a pulse driver but also a DC power source can be used, or the pulse driver can be replaced with a high frequency power source in the microwave band. Furthermore, if a light pulse with a shorter time width is required, a method using a diode laser having an external cavity is effective.

また、本実施例では時間分解能をできるだけ高くするた
めに、光検出器に高速電気掃引のストリークカメラを用
い信号処理器もストリークカメラからの電気信号を処理
するのに適したものを選んだ。しかしこれらの光検出系
として光子計数測定系を用いることもできる。この場合
測定系全体(縁) の時間分解能は数百ps程度となるが蛍光の検出感度は
さらに2桁程度良くすることができる。
Furthermore, in this example, in order to make the time resolution as high as possible, a high-speed electrical sweep streak camera was used as the photodetector, and a signal processor suitable for processing the electrical signals from the streak camera was selected. However, a photon counting measurement system can also be used as these photodetection systems. In this case, the time resolution of the entire measurement system (edge) is about several hundred ps, but the fluorescence detection sensitivity can be improved by about two orders of magnitude.

(発明の効果) 以上に述べたように、本発明を用いれば複雑で高価なモ
ード同期発振する固体レーザ、気体レーザ、または色素
レーザを用いない簡便な構成の時間分解分光方法と装置
を得ることができる。
(Effects of the Invention) As described above, by using the present invention, it is possible to obtain a time-resolved spectroscopy method and apparatus with a simple configuration that does not use complicated and expensive mode-locked oscillation solid-state lasers, gas lasers, or dye lasers. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による時間分解分光装置の一実施例の
模式的構成を示す図、第2図は、第1図の構成を用いて
得られたGaAs/AlGaAs単一量子井戸からの蛍
光の時間変化の測定結果を示す図、第3図は、本発明に
よる時間分解分光装置の光学系において、レーザビーム
と蛍光とが同軸の光路をとるようにした実施例の模式的
構成を示す図である。 11・・・ダイオードレーザ 12・・・パルスドライ
バ13・・・コリメートレンズ 14・・・マスク15
・・・結像レンズ    16・・・試料17・・・集
光レンズ    18・・・分光器19・・・第2の集
光レンズ  20・・・ビームスプリッタ21・・・光
パルス     22・・・蛍光31・・・光検出器 
    32・・・信号処理器33・・・表示器   
   34・・・記録器41・・・蛍光時間変化曲線
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a time-resolved spectrometer according to the present invention, and FIG. 2 is a diagram showing fluorescence from a GaAs/AlGaAs single quantum well obtained using the configuration of FIG. 1. FIG. 3 is a diagram showing the schematic configuration of an embodiment in which the laser beam and fluorescence take coaxial optical paths in the optical system of the time-resolved spectrometer according to the present invention. It is. 11... Diode laser 12... Pulse driver 13... Collimator lens 14... Mask 15
...Imaging lens 16...Sample 17...Condensing lens 18...Spectroscope 19...Second condensing lens 20...Beam splitter 21...Light pulse 22... Fluorescence 31...photodetector
32...Signal processor 33...Display device
34...Recorder 41...Fluorescence time change curve

Claims (3)

【特許請求の範囲】[Claims] (1)直流電流にパルス電流または高周波電流を重畳し
た電流もしくはパルス電流または高周波電流のみによっ
て駆動された半導体レーザから発生する光パルスで試料
を励起し、これによって該試料から発せられる蛍光を、
前記の光パルスの時間幅の100倍よりも短い時間分解
能を有する光検出系によって計測することを特徴とする
時間分解分光方法。
(1) A sample is excited with a current obtained by superimposing a pulsed current or a high-frequency current on a direct current, or a light pulse generated from a semiconductor laser driven only by a pulsed current or a high-frequency current, and thereby the fluorescence emitted from the sample is
A time-resolved spectroscopy method characterized in that measurement is performed using a photodetection system having a time resolution shorter than 100 times the time width of the light pulse.
(2)試料を固定する手段と、半導体レーザと、この半
導体レーザを駆動して光パルス出力を発生させるための
ドライバと、該半導体レーザからの光パルス出力を前記
試料に照射するための光学系と、該試料から発せられる
蛍光の集光光学系と、該蛍光を分光するための分光器と
、該蛍光を前記光パルスの時間幅の100倍よりも短い
時間分解能で検出できる光検出器と、この光検出器から
の信号を計測処理する信号処理器と、該信号処理器から
の処理された信号を表示するための表示器および記録す
るための記録器とを備えたことを特徴とする時間分解分
光装置。
(2) A means for fixing a sample, a semiconductor laser, a driver for driving the semiconductor laser to generate a light pulse output, and an optical system for irradiating the sample with the light pulse output from the semiconductor laser. , a condensing optical system for fluorescence emitted from the sample, a spectrometer for spectrally dispersing the fluorescence, and a photodetector capable of detecting the fluorescence with a time resolution shorter than 100 times the time width of the light pulse. , comprising a signal processor that measures and processes the signal from the photodetector, a display for displaying the processed signal from the signal processor, and a recorder for recording the processed signal from the signal processor. Time-resolved spectrometer.
(3)特許請求の範囲第2項記載の時間分解分光装置に
おいて試料から発せられる蛍光が集光光学系によりコリ
メートされた後、半導体からのレーザビームと同軸の光
路をとれるように半導体レーザ、集光光学系及び試料台
が配置されてあり、かつ前記蛍光を光検出系に導くため
のビームスプリッタが前記半導体レーザと前記試料間の
光路上に配置されてあることを特徴とする時間分解分光
装置。
(3) In the time-resolved spectrometer according to claim 2, after the fluorescence emitted from the sample is collimated by the condensing optical system, the semiconductor laser is used to converge the fluorescence so that it takes an optical path coaxial with the laser beam from the semiconductor. A time-resolved spectroscopy device, characterized in that an optical optical system and a sample stage are arranged, and a beam splitter for guiding the fluorescence to a photodetection system is arranged on an optical path between the semiconductor laser and the sample. .
JP63201611A 1987-08-18 1988-08-11 Method and device for time-resolved spectroscopy Pending JPH01187435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201611A JPH01187435A (en) 1987-08-18 1988-08-11 Method and device for time-resolved spectroscopy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20549287 1987-08-18
JP62-205492 1987-08-18
JP63201611A JPH01187435A (en) 1987-08-18 1988-08-11 Method and device for time-resolved spectroscopy

Publications (1)

Publication Number Publication Date
JPH01187435A true JPH01187435A (en) 1989-07-26

Family

ID=26512888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201611A Pending JPH01187435A (en) 1987-08-18 1988-08-11 Method and device for time-resolved spectroscopy

Country Status (1)

Country Link
JP (1) JPH01187435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457777B1 (en) * 2002-04-11 2004-11-17 주식회사 마크로젠 Micro Measurement System for Bio Fluorescence Measurement
JP2006177943A (en) * 2004-12-22 2006-07-06 Agilent Technol Inc Integral type optoelectronics system for measuring attenuation of fluorescence or luminescence emission
CN100392366C (en) * 2004-09-06 2008-06-04 北京交通大学 Measuring method and measuring device for time resolution spectrum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102218A (en) * 2004-10-06 2006-04-20 Alps Electric Co Ltd Accessory apparatus for game machine
JP2010057862A (en) * 2008-09-08 2010-03-18 Toyomaru Industry Co Ltd Game member, and game machine including the same
JP2011229628A (en) * 2010-04-26 2011-11-17 Daito Giken:Kk Game machine
JP2015043811A (en) * 2013-08-27 2015-03-12 株式会社サンセイアールアンドディ Game machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102218A (en) * 2004-10-06 2006-04-20 Alps Electric Co Ltd Accessory apparatus for game machine
JP2010057862A (en) * 2008-09-08 2010-03-18 Toyomaru Industry Co Ltd Game member, and game machine including the same
JP2011229628A (en) * 2010-04-26 2011-11-17 Daito Giken:Kk Game machine
JP2015043811A (en) * 2013-08-27 2015-03-12 株式会社サンセイアールアンドディ Game machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457777B1 (en) * 2002-04-11 2004-11-17 주식회사 마크로젠 Micro Measurement System for Bio Fluorescence Measurement
CN100392366C (en) * 2004-09-06 2008-06-04 北京交通大学 Measuring method and measuring device for time resolution spectrum
JP2006177943A (en) * 2004-12-22 2006-07-06 Agilent Technol Inc Integral type optoelectronics system for measuring attenuation of fluorescence or luminescence emission

Similar Documents

Publication Publication Date Title
James et al. Excitation pulse‐shape mimic technique for improving picosecond‐laser‐excited time‐correlated single‐photon counting deconvolutions
Hansen et al. Electro‐optical multichannel spectrometer for transient resonance Raman and absorption spectroscopy
DE3690149C2 (en) Double modulation spectroscopy appts.
Kinoshita et al. Subnanosecond fluorescence‐lifetime measuring system using single photon counting method with mode‐locked laser excitation
JP2012237714A (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
Pirotta et al. Single molecule spectroscopy. Fluorescence-lifetime measurements of pentacene in p-terphenyl
Rentzepis Picosecond chemical and biological events
Kinoshita et al. Picosecond fluorescence spectroscopy by time-correlated single-photon counting
Levin et al. Wavelength‐modulation Raman spectroscopy
Omenetto et al. Pulsed source atomic fluorescence spectrometry
JPH01187435A (en) Method and device for time-resolved spectroscopy
Zhang et al. Simple near-infrared time-correlated single photon counting instrument with a pulsed diode laser and avalanche photodiode for time-resolved measurements in scanning applications
JPH0222334B2 (en)
Srinivasan et al. Investigations of a coherently driven semiconductor optical cavity QED system
Henderson Optical spectrometers
JPS63308543A (en) Scattered light measuring apparatus
Campani et al. A pulsed dye laser raman spectrometer employing a new type of gated analogue detection
CN113092072B (en) Single-mode terahertz quantum cascade laser tuning characteristic characterization device
JP3556402B2 (en) Method and apparatus for measuring trace element content and isotope ratio
Rulliere et al. Spectroscopic Methods for Analysis of Sample Dynamics
WO2022248894A1 (en) Apparatus and method for a measurement of a spectral response of a sample, including a quantum-cascade-laser-based light amplification
JP2015222276A (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
Fujimoto et al. Picosecond spectroscopy of bound excitons in CuCl using a synchronously operating streak camera
JPH0694526A (en) Method and apparatus for generating light pulse and time-resolved spectroscope
JPS5845522A (en) Method and device for time-resolved spectroscopy by single photon counting method