JPH01186673A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01186673A
JPH01186673A JP63006481A JP648188A JPH01186673A JP H01186673 A JPH01186673 A JP H01186673A JP 63006481 A JP63006481 A JP 63006481A JP 648188 A JP648188 A JP 648188A JP H01186673 A JPH01186673 A JP H01186673A
Authority
JP
Japan
Prior art keywords
bipolar transistor
collector
region
operates
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006481A
Other languages
Japanese (ja)
Inventor
Akihiro Tanba
昭浩 丹波
Yutaka Kobayashi
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63006481A priority Critical patent/JPH01186673A/en
Priority to US07/253,666 priority patent/US5121185A/en
Priority to KR1019880013159A priority patent/KR970006220B1/en
Publication of JPH01186673A publication Critical patent/JPH01186673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve operation speed by making impurity density of a collector region of a bipolar transistor higher in a collector region which operates in a small signal region than in a collector region which operates in a large signal region. CONSTITUTION:A collector density of a bipolar transistor 51 which operates in a small signal region and a collector density of a bipolar transistor 52 which operates in a large signal region are separately specified making the collector density of the bipolar transistor 51 higher than that of the bipolar transistor 52. In this way, operation speed can be improved without lowering the breakdown strength between collector emitters.

Description

【発明の詳細な説明】 第6図は、本発明の一実施例のB t CMO5LSI
の製造方法を説明するための断面図であり、5゛1は小
信号領域で動作するバイポーラトランジスタが形成され
る領域、52は大信号領域で動作するバイポーラトラン
ジスタが形成される領域、53はPMO3が形成される
領域を表している。
DETAILED DESCRIPTION OF THE INVENTION FIG. 6 shows a B t CMO5LSI according to an embodiment of the present invention.
5 is a cross-sectional view for explaining the manufacturing method of the PMO3. represents the area where is formed.

同図において、P型の半導体基板6の表面には、N+埋
込層7が形成され、その上には、シリコン単結晶がエピ
タキシャル成長され、膜厚1.7μmのエピタキシャル
層54が形成されている。
In the figure, an N+ buried layer 7 is formed on the surface of a P-type semiconductor substrate 6, and a silicon single crystal is epitaxially grown thereon to form an epitaxial layer 54 with a thickness of 1.7 μm. .

つぎに、バイポーラトランジスタのコレクタ領域および
PMO8のチャネル層となるNウェルを形成するために
、エピタキシャル層54に125K e V、  2 
X 1012/cm2のリンイオン打込みをし、バイポ
ーラトランジスタのコレクタ領域となるNウェル8−3
、およびPMO8のチャネル層となるNウェル8−4を
形成する[同図(a)]。
Next, the epitaxial layer 54 was heated at 125 K e V, 2 to form an N-well that would become the collector region of the bipolar transistor and the channel layer of the PMO 8.
Phosphorus ions are implanted at a density of
, and an N well 8-4 which becomes a channel layer of PMO 8 [FIG. 2(a)].

その後、小信号領域で動作するバイポーラトランジスタ
51のコレクタ濃度のみを高くするために、大信号領域
で動作するバイポーラトランジスタ52およびPMO3
53をホトレジスト55でカバーした後、125KeV
、1.8x1013/cm2のリンイオン打込みをし、
高不純物濃度のNウェル8−5を形成する[同図(b)
]。
Thereafter, in order to increase only the collector concentration of the bipolar transistor 51 that operates in the small signal region, the bipolar transistor 52 and PMO3 that operate in the large signal region
After covering 53 with photoresist 55, 125KeV
, 1.8x1013/cm2 phosphorus ion implantation,
An N well 8-5 with a high impurity concentration is formed [FIG. (b)
].

以上が、コレクタ濃度を決定するNウェルのイオン打ち
込み条件である。
The above are the ion implantation conditions for the N well that determine the collector concentration.

その後、1000℃、90分の水蒸気酸化でフィールド
酸化膜31を5000人の厚さに形成して素子分離を行
ない、ベース領域63は、30Ke V、  1 、 
5 X 1014/cd(D;hつ素イ;lr’打込ミ
で形成した。
Thereafter, a field oxide film 31 is formed to a thickness of 5,000 wafers by steam oxidation at 1,000° C. for 90 minutes to perform element isolation.
5 x 1014/cd (D; h element a; lr' implantation).

エミッタ領域62は、エミッタ開口部形成後、80Ke
V、5X1015/c−のヒ素イオン打込みで形成した
。ベース63を形成するイオン打込み工程の後の不純物
分布を調整する熱処理は、950℃、40分の条件で行
なった[同図(C)]。
The emitter region 62 is made of 80Ke after forming the emitter opening.
It was formed by arsenic ion implantation of V, 5X1015/c-. The heat treatment for adjusting the impurity distribution after the ion implantation step for forming the base 63 was performed at 950° C. for 40 minutes [FIG. 6(C)].

このように、従来同一の条件で形成されていた、バイポ
ーラトランジスタ51のコレクタ領域と、MOSトラン
ジスタ53のうち、チャネル層の導電型が、前記バイポ
ーラトランジスタのコレクタ領域の導電型と同一である
MOSトランジスタ53のチャネル層とを別々に形成し
、前記コレク夕領域の不純物濃度を、チ♀ネル層の不純
物濃度よりも高くすれば、BiCMO3LSIの動作速
度を向上させることができる。
In this way, among the collector region of the bipolar transistor 51 and the MOS transistor 53, which were conventionally formed under the same conditions, the conductivity type of the channel layer is the same as the conductivity type of the collector region of the bipolar transistor. The operation speed of the BiCMO3LSI can be improved by forming the channel layer 53 separately and making the impurity concentration of the collector region higher than the impurity concentration of the channel layer.

さらに、バイポーラトランジスタ同士であっても、小信
号領域で動作するバイポーラトランジスタ51のコレク
タ濃度と、大信号領域で動作するバイポーラトランジス
タ52のコレクタ濃度とを別々に設定し、前記小信号領
域で動作するバイポーラトランジスタ51のコレクタ濃
度を、大信号領域で動作するバイポーラトランジスタ5
2のコレクタ濃度よりも高くすれば、コレクタ・エミッ
タ間の耐圧を低下させること無<BiCMO3LSIの
動作速度を向上させることができる。
Furthermore, even if bipolar transistors are used, the collector concentration of the bipolar transistor 51 that operates in a small signal region and the collector concentration of the bipolar transistor 52 that operates in a large signal region are set separately, and the collector concentration of the bipolar transistor 52 that operates in the small signal region is set separately. The collector concentration of the bipolar transistor 51 is set to
If the collector concentration is higher than No. 2, the operating speed of the BiCMO3LSI can be improved without lowering the breakdown voltage between the collector and emitter.

第1図は、上記した製造条件で製造したバイポーラトラ
ンジスタの不純物分布を表した図である。
FIG. 1 is a diagram showing the impurity distribution of a bipolar transistor manufactured under the above manufacturing conditions.

同図において、点線はコレクタ濃度を高くしたバイポー
ラトランジスタの不純物分布、実線は通常のコレクタ濃
度を有するバイポーラトランジスタの不純物分布をそれ
ぞれ表し、とくに、41はエミッタ領域、42はベース
領域、43はコレクタ濃度を高くしたバイポーラトラン
ジスタのコレクタ領域、44はMOSトランジスタのチ
ャネル層および通常のコレクタ濃度を有するバイポーラ
トランジスタのコレクタ領域の不純物分布を表している
In the figure, the dotted line represents the impurity distribution of a bipolar transistor with a high collector concentration, and the solid line represents the impurity distribution of a bipolar transistor with a normal collector concentration. In particular, 41 is the emitter region, 42 is the base region, and 43 is the collector concentration. 44 represents the impurity distribution in the channel layer of a MOS transistor and the collector region of a bipolar transistor having a normal collector concentration.

同図より分るように、小信号領域で動作するバイポーラ
トランジスタのコレクタ濃度は約1×1017/cIf
3であり、大信号領域で動作するバイポーラトランジス
タのコレクタおよびMOSトランジスタのチャンネル層
濃度は約I X 1016/cm−3であった。
As can be seen from the figure, the collector concentration of a bipolar transistor operating in the small signal region is approximately 1×1017/cIf.
3, and the concentration of the collector of the bipolar transistor operating in the large signal region and the channel layer of the MOS transistor was about I x 1016/cm-3.

さらに、このような製造条件によって形成されたバイポ
ーラトランジスタの遮断周波数Ftは、大信号領域で動
作するバイポーラトランジスタが5GHzであったのに
対して、コレクタ濃度を高くした小信号領域で動作する
バイポーラトランジスタでは8GHzとなり、約60%
向上した。
Furthermore, the cutoff frequency Ft of a bipolar transistor formed under such manufacturing conditions is 5 GHz for a bipolar transistor that operates in a large signal region, whereas it is 5 GHz for a bipolar transistor that operates in a small signal region with a high collector concentration. Then it becomes 8GHz, which is about 60%
Improved.

さらに、このトランジスタをDRAM  LSIに適用
した場合、DRAMの遅延時間を35nsから′28n
sへと短縮することができた。
Furthermore, when this transistor is applied to a DRAM LSI, the delay time of the DRAM increases from 35ns to '28nS.
It was possible to shorten it to s.

(発明の効果) 上記したように、BiCMO5LSIにおいて、バイポ
ーラトランジスタのコレクタ領域の不純物濃度を、MO
Sトランジスタのチャネル層の不純物濃度より高くすれ
ば、その動作速度を速くすることができる。
(Effects of the Invention) As described above, in BiCMO5LSI, the impurity concentration of the collector region of the bipolar transistor is
If the impurity concentration is higher than that of the channel layer of the S transistor, its operating speed can be increased.

さらに、小信号領域で動作するバイポーラトランジスタ
と、大信号領域で動作するバイポーラトランジスタとが
同一基板上に形成されたICにおいて、小信号領域で動
作するバイポーラトランジスタのコレクタ濃度のみを高
くすれば、コレクタ・エミッタ間の耐圧を低下させるこ
と無く、その動作速度を向上させることができる。
Furthermore, in an IC in which a bipolar transistor that operates in a small signal region and a bipolar transistor that operates in a large signal region are formed on the same substrate, if only the collector concentration of the bipolar transistor that operates in the small signal region is increased, the collector - The operating speed can be improved without reducing the withstand voltage between emitters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したBiCMO3LSIの不純物
分布を示した図である。 第2図は本発明が適用されるBiCMO8LSIの断面
図である。 第3図は、バイポーラトランジスタの、遮断周波数とコ
レコタ濃度との関係を示した図である。 第4図は本発明が適用されるDRAMの構造を示した模
式図である。 第5図はコレコタ濃度の増大によって中性ベース幅が減
少する様子を示した模式図である。 第6図は本発明を適用したBiCMO3LSIの製造方
法を示した断面図である。 1・・・エミッタ、2・・・ベース、3・・・コレクタ
、15・・・入力回路、16・・・デコーダ、17・・
・ワード線ドライバ、18・・・メモリセル、19・・
・センスアンプ、20・・・出力回路、41・・・エミ
ッタ領域の不純物分布、42・・・ベース領域の不純物
分布、43゜44・・・コレクタ領域の不純物分布
FIG. 1 is a diagram showing the impurity distribution of BiCMO3LSI to which the present invention is applied. FIG. 2 is a cross-sectional view of a BiCMO8LSI to which the present invention is applied. FIG. 3 is a diagram showing the relationship between cutoff frequency and collector concentration of a bipolar transistor. FIG. 4 is a schematic diagram showing the structure of a DRAM to which the present invention is applied. FIG. 5 is a schematic diagram showing how the neutral base width decreases as the concentration of Correcota increases. FIG. 6 is a sectional view showing a method of manufacturing BiCMO3LSI to which the present invention is applied. 1... Emitter, 2... Base, 3... Collector, 15... Input circuit, 16... Decoder, 17...
・Word line driver, 18...Memory cell, 19...
・Sense amplifier, 20... Output circuit, 41... Impurity distribution in emitter region, 42... Impurity distribution in base region, 43° 44... Impurity distribution in collector region

Claims (4)

【特許請求の範囲】[Claims] (1)同一基板上に、複数のバイポーラトランジスタを
有する半導体装置において、 前記バイポーラトランジスタのコレクタ領域の不純物濃
度は、小信号領域で動作するバイポーラトランジスタの
コレクタ領域の方が、大信号領域で動作するバイポーラ
トランジスタのコレクタ領域よりも高いことを特徴とす
る半導体装置。
(1) In a semiconductor device having a plurality of bipolar transistors on the same substrate, the impurity concentration of the collector region of the bipolar transistor is such that the collector region of the bipolar transistor that operates in a small signal region operates in a large signal region. A semiconductor device characterized by having a collector region higher than that of a bipolar transistor.
(2)同一基板上に、バイポーラトランジスタとMOS
トランジスタとを有する半導体装置において、 前記バイポーラトランジスタのコレクタ領域の不純物濃
度と前記MOSトランジスタのチャネル層の不純物濃度
とが、相異なることを特徴とする半導体装置。
(2) Bipolar transistor and MOS on the same substrate
A semiconductor device comprising a transistor, wherein an impurity concentration in a collector region of the bipolar transistor and an impurity concentration in a channel layer of the MOS transistor are different from each other.
(3)前記バイポーラトランジスタのコレクタ領域の不
純物濃度が、前記MOSトランジスタのチャネル層の不
純物濃度より高いことを特徴とする特許請求の範囲第2
項記載の半導体装置。
(3) The impurity concentration of the collector region of the bipolar transistor is higher than the impurity concentration of the channel layer of the MOS transistor.
1. Semiconductor device described in Section 1.
(4)前記MOSトランジスタは、そのチャネル層の導
電型が、前記バイポーラトランジスタのコレクタ領域の
導電型と同一であることを特徴とする特許請求の範囲第
2項または第3項記載の半導体装置。
(4) The semiconductor device according to claim 2 or 3, wherein the conductivity type of the channel layer of the MOS transistor is the same as the conductivity type of the collector region of the bipolar transistor.
JP63006481A 1987-10-09 1988-01-14 Semiconductor device Pending JPH01186673A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63006481A JPH01186673A (en) 1988-01-14 1988-01-14 Semiconductor device
US07/253,666 US5121185A (en) 1987-10-09 1988-10-05 Monolithic semiconductor IC device including blocks having different functions with different breakdown voltages
KR1019880013159A KR970006220B1 (en) 1987-10-09 1988-10-08 Monolithic semiconductor ic device including blocks having different functions wiht different breakdown voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006481A JPH01186673A (en) 1988-01-14 1988-01-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01186673A true JPH01186673A (en) 1989-07-26

Family

ID=11639666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006481A Pending JPH01186673A (en) 1987-10-09 1988-01-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01186673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566217B1 (en) 1996-01-16 2003-05-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing process for semiconductor device
JP2006196914A (en) * 1993-09-27 2006-07-27 Sgs Thomson Microelettronica Spa Manufacturing method for integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852382A (en) * 1971-11-01 1973-07-23
JPS4979479A (en) * 1972-12-06 1974-07-31
JPS58212159A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS59177960A (en) * 1983-03-28 1984-10-08 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852382A (en) * 1971-11-01 1973-07-23
JPS4979479A (en) * 1972-12-06 1974-07-31
JPS58212159A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS59177960A (en) * 1983-03-28 1984-10-08 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196914A (en) * 1993-09-27 2006-07-27 Sgs Thomson Microelettronica Spa Manufacturing method for integrated circuit
US6566217B1 (en) 1996-01-16 2003-05-20 Mitsubishi Denki Kabushiki Kaisha Manufacturing process for semiconductor device

Similar Documents

Publication Publication Date Title
JPS59177960A (en) Semiconductor device and manufacture thereof
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
JP3186043B2 (en) Method for manufacturing semiconductor device
JPH01186673A (en) Semiconductor device
JPS6081864A (en) Lateral type transistor
JPS5830742B2 (en) Junction field effect semiconductor device
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JP2864863B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS59124157A (en) Complementary type semiconductor integrated circuit
JPH03222357A (en) Semiconductor device and manufacture thereof
JP3231284B2 (en) Method for manufacturing semiconductor device
JPH045851A (en) Manufacture of semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPS6014512B2 (en) Insulated gate field effect transistor
JPH03270271A (en) Semiconductor device and its manufacture
JPH027462A (en) Complementary bi-cmos process having isolated vertical p-n-p transistor
JPS60154656A (en) Semiconductor device and manufacture thereof
JPH0411767A (en) Semiconductor device and manufacture thereof
JPS63144567A (en) Manufacture of semiconductor device
JPH0575033A (en) Semiconductor integrated circuit device and manufacture thereof
JPH02226759A (en) Manufacture of bicmos type semiconductor integrated circuit
JPH04159721A (en) Semiconductor device
JPH0252423B2 (en)