JPH01186627A - Preparation of passivation film of semiconductor device - Google Patents

Preparation of passivation film of semiconductor device

Info

Publication number
JPH01186627A
JPH01186627A JP624488A JP624488A JPH01186627A JP H01186627 A JPH01186627 A JP H01186627A JP 624488 A JP624488 A JP 624488A JP 624488 A JP624488 A JP 624488A JP H01186627 A JPH01186627 A JP H01186627A
Authority
JP
Japan
Prior art keywords
passivation film
plasma cvd
film
plasma
mosic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP624488A
Other languages
Japanese (ja)
Inventor
Takaaki Negoro
宝昭 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP624488A priority Critical patent/JPH01186627A/en
Publication of JPH01186627A publication Critical patent/JPH01186627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent fluctuation of a threshold voltage of a MOSIC after plasma CVD treatment, by forming a passivation film of a plasma SiO2 on a surface, by performing plasma CVD treatment on a semiconductor element surface under a specific condition. CONSTITUTION:When a passivation film (insulating protective film) is formed on a surface of a semiconductor of a MOSIC and the like, plasma CVD treatment is performed on a surface of a semiconductor element to form a passivation film of a plasma SiO2 film on the surface under a condition that a deposition pressure is above 1.30Torr and a used gas is N2O/SiH4 of a flow rate of 10 or less. As a result, it is possible to prevent a threshold voltage from fluctuating after the plasma CVD treatment of the semiconductor element such as a MOSIC.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MOSIC等の半導体素子の表面にパシベー
ション膜(絶縁保護膜)を作成する半導体素子のパシベ
ーション膜作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a passivation film for a semiconductor element, which forms a passivation film (insulating protective film) on the surface of a semiconductor element such as a MOSIC.

(従来の技術) 半導体素子、例えばMOSICの表面にパシベーション
膜を作成する従来技術には、1.20Torrの真空度
のデポジション圧力で、かつ、流量比20程度のN、O
/SiH,の使用ガス条件下で半導体素子表面にプラズ
マCVD処理を施して該表面にプラズマ5ins膜のパ
シベーション膜を作成するものがある。
(Prior art) The conventional technology for forming a passivation film on the surface of a semiconductor device, for example, a MOSIC, involves using N, O, and O at a deposition pressure of 1.20 Torr vacuum and a flow rate ratio of about 20.
There is a method in which a plasma CVD process is performed on the surface of a semiconductor element under the gas conditions of /SiH, to form a passivation film of plasma 5ins on the surface.

(発明が解決しようとする問題点) 上記の従来技術では、プラズマCVD処理後のMOSI
Cのしきい電圧(スレッショルド電圧:Vth)が激し
く変動する問題と、そのパシベーション膜の膜質が良く
ないためにエッチレイトが遅く後工程での時間が長くか
かる問題と、ウェハに対するストレスが大きくかかって
そのウェハが大きく反る問題とがある。
(Problems to be Solved by the Invention) In the above conventional technology, MOSI after plasma CVD treatment
The problem is that the threshold voltage of C (threshold voltage: Vth) fluctuates rapidly, the quality of the passivation film is poor, resulting in a slow etch rate, which takes a long time in post-processing, and the stress on the wafer. There is a problem that the wafer is greatly warped.

(問題点を解決するための手段) 本発明は、このような問題点を解決するためにデポジシ
ョン圧力が1,30Torr以上の真空度、使用ガスが
流量比10以下のN、O/S、i H4の条件下で半導
体素子表面にプラズマCVD処理を施して該表面にプラ
ズマSt Ox膜のパシベーション膜を作成するもので
ある。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a vacuum with a deposition pressure of 1.30 Torr or more, and gases used such as N, O/S, and O/S with a flow rate ratio of 10 or less. A plasma CVD process is performed on the surface of a semiconductor element under iH4 conditions to form a passivation film of plasma St Ox film on the surface.

(実施例) 以下、本発明の実施例に係るパシベーション膜作成方法
を図面を参照して詳細に説明する。本実施例では1.3
5Torrの真空度のデポジション圧力、流量比的7,
8のS i H4/ N 2O(N 2O: 3500
cc、5iHa: 450cc)(7)ガス条件下で半
導体素子表面にプラズマCVD処理を施して該表面にプ
ラズマ5iOy膜のパシベーション膜を作成している。
(Example) Hereinafter, a passivation film manufacturing method according to an example of the present invention will be described in detail with reference to the drawings. In this example, 1.3
Deposition pressure of 5 Torr vacuum, flow rate ratio 7,
8 S i H4/N2O (N2O: 3500
cc, 5iHa: 450cc) (7) Plasma CVD treatment is performed on the surface of the semiconductor element under gas conditions to form a passivation film of plasma 5iOy film on the surface.

第1図は縦軸に屈折率、横軸にN、o/Si H4のガ
ス流量比をとってプラズマ電力80W1周波数400k
Hz、炉温380℃、デポジション圧力が実施例で1.
35Torr、従来例で1.2o’rorrの条件下で
、実施例と従来例との実験結果を対比して示す図である
。第1図から明らかなように、従来例によりパシベーシ
ョン膜を形成した場合の屈折率は流量比を変化させても
ほぼ1゜5付近と余り変化しないのに対して、本実施例
の場合の屈折率は流量比が20〜40では従来例と大き
な差がないが、流量比が20以下からはその屈折率に差
が出てきて流量比が10以下ではその屈折率に大きな差
(従来例で約1.50、実施例で約1.70)が生じて
いる。
Figure 1 shows the refractive index on the vertical axis and the gas flow rate ratio of N and o/Si H4 on the horizontal axis.
Hz, furnace temperature of 380°C, and deposition pressure of 1.
FIG. 3 is a diagram showing a comparison of experimental results between the embodiment and the conventional example under conditions of 35 Torr and 1.2 o'rorr in the conventional example. As is clear from FIG. 1, the refractive index when a passivation film is formed according to the conventional example does not change much, staying around 1°5 even when the flow rate ratio is changed, whereas the refractive index in the case of this embodiment does not change much. There is no big difference in refractive index from the conventional example when the flow rate ratio is 20 to 40, but when the flow rate ratio is less than 20, there is a difference in the refractive index. approximately 1.50, approximately 1.70 in the example).

なお、実施例での1.70という屈折率は、本実施例に
よるパシベーション膜がSt ON膜が作成されている
と予想され、これはSi ON膜を作るのに通常は5i
Ha、NH3、N2Oの3成分系が必要であるために、
各成分をコントロールして膜質管理することがむつかし
かったのが、本実施例では2成分系でのコントロールで
あるから膜質管理が容易となる。
Note that the refractive index of 1.70 in this example is expected to be due to the fact that the passivation film in this example is a St ON film, which is different from the 5i
Since a three-component system of Ha, NH3, and N2O is required,
It was difficult to manage film quality by controlling each component, but in this embodiment, control is performed using a two-component system, making film quality management easy.

第2図は縦軸に等方性のドライエッチレイト(単位:オ
ングストローム7分)、横軸にN、O/SiH,のガス
流量比にとって、プラズマ電力80W1周波数400k
Hz、炉温380℃で、本実施例では真空度1.35T
orrのデポジション圧力、従来例では真空度1.20
のデポジション圧力の成長条件下で実施例と従来例との
実験結果を対比して示す図である。第2図から明らかな
ように、流量比がIOでは、従来例のドライエッチレイ
トは430オングストロ一ム/分であるのに対して、本
実施例のそれは820オンダストロ一ム/分となり、本
実施例の方はパシベーション膜のエッチレイトで従来例
のほぼ2倍となる。
Figure 2 shows the isotropic dry etch rate (unit: 7 angstroms) on the vertical axis and the gas flow rate ratio of N, O/SiH on the horizontal axis, plasma power of 80W, frequency of 400k.
Hz, furnace temperature 380°C, vacuum degree 1.35T in this example.
orr deposition pressure, conventional example vacuum degree 1.20
FIG. 3 is a diagram showing a comparison of experimental results between the example and the conventional example under growth conditions of deposition pressures of . As is clear from FIG. 2, when the flow rate ratio is IO, the dry etch rate of the conventional example is 430 angstroms/min, while that of the present example is 820 angstroms/min, and the dry etch rate of the present example is 820 angstroms/min. In the example, the etch rate of the passivation film is approximately twice that of the conventional example.

第3図は縦軸の上側にNc h (チャンネル)のMO
SIC,下側にPchのMOSICのしきい電圧(vt
 h > 、横軸にMOSICへの配線後、プラズマC
VD処理後、熱処理後にとって実施例と従来例との実験
結果を対比して示す図である。
In Figure 3, the MO of Nch (channel) is shown above the vertical axis.
SIC, Pch MOSIC threshold voltage (vt
h >, the horizontal axis shows plasma C after wiring to MOSIC
FIG. 4 is a diagram showing a comparison of experimental results between an example and a conventional example after VD treatment and heat treatment.

第3図から明らかなように、NchのMOSICの配線
後では従来例と実施例とではしきい電圧がほぼ同一であ
るが、プラズマCVD処理後では大きな差が生じ、熱処
理後でも大きな差がある。また、PchのMOSICの
配線後では従来例と実施例とはしきい電圧がほぼ同一で
あるが、プラズマCVD処理後では大きな差が生じ、熱
処理後ではその差は縮まるがやはり大きな差力(生じて
いる。
As is clear from FIG. 3, the threshold voltages are almost the same between the conventional example and the example after Nch MOSIC wiring, but there is a large difference after plasma CVD treatment, and there is also a large difference after heat treatment. . In addition, after wiring the Pch MOSIC, the threshold voltages of the conventional example and the example are almost the same, but after plasma CVD treatment, a large difference occurs, and after heat treatment, the difference decreases, but there is still a large difference in voltage. ing.

また、従来例と本実施例とをウェハの反りで対比すると
、干渉顕微鏡で調べた結果、従来例では100μmとい
う大きな反りがあったのが、本実施例では60μmの小
さな反りに止どまった。
Also, when comparing the conventional example and this example in terms of wafer warpage, as a result of examining it with an interference microscope, the conventional example had a large warp of 100 μm, but the present example had a small warp of 60 μm. .

(効果) 以上説明したことから明らかなように本発明によれば、
デポジション圧力が1.30Torr以上の真空度、使
用ガスが流量比10以下のN、0/SiH,の条件下で
半導体素子表面にプラズマCVD処理を施して該表面に
プラズマStow膜のパシベーション膜を作成するよう
にしたから、MOSIGのような半導体素子のプラズマ
CVD処理後でのしきい電圧の変動が抑えられるととも
に、作成したパシベーション膜のエッチレイトは従来例
のそれのほぼ2倍となり、またウェハの反りも従来例よ
り小さくな−った。
(Effects) As is clear from the above explanation, according to the present invention,
Plasma CVD treatment is performed on the surface of the semiconductor element under the conditions of a vacuum with a deposition pressure of 1.30 Torr or more and a gas used of N, 0/SiH with a flow rate ratio of 10 or less to form a passivation film such as a plasma Stow film on the surface. This method suppresses fluctuations in threshold voltage after plasma CVD processing of semiconductor devices such as MOSIG, and the etch rate of the created passivation film is almost twice that of the conventional method. The warpage was also smaller than that of the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に係り、第1図は従来例と実施例と
のパシベーション膜に関する屈折率を対比して示す図、
第2図は従来例と実施例とのパシベーション膜に対する
エッチレイトを対比して示す図(第3図は従来例と実施
例とのMO8I’Cのしきい電圧を対比して示す図であ
る。
The figure relates to an embodiment of the present invention, and FIG. 1 is a diagram showing a comparison of refractive index regarding the passivation film of the conventional example and the embodiment,
FIG. 2 is a diagram showing a comparison of etch rates for passivation films in a conventional example and an example (FIG. 3 is a diagram showing a comparison of threshold voltages of MO8I'C in a conventional example and an example).

Claims (1)

【特許請求の範囲】[Claims] (1)デポジション圧力が1.30Torr以上の真空
度、使用ガスが流量比10以下のN_2O/SiH_4
の条件下で半導体素子表面にプラズマCVD処理を施し
、該表面にプラズマSiO_2膜のパシベーション膜を
作成することを特徴とする半導体素子のパシベーション
膜作成方法。
(1) Vacuum degree with deposition pressure of 1.30 Torr or more, and N_2O/SiH_4 gas used with a flow rate ratio of 10 or less
1. A method for forming a passivation film for a semiconductor device, comprising performing plasma CVD treatment on the surface of the semiconductor device under the following conditions to form a passivation film of a plasma SiO_2 film on the surface.
JP624488A 1988-01-14 1988-01-14 Preparation of passivation film of semiconductor device Pending JPH01186627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP624488A JPH01186627A (en) 1988-01-14 1988-01-14 Preparation of passivation film of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP624488A JPH01186627A (en) 1988-01-14 1988-01-14 Preparation of passivation film of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01186627A true JPH01186627A (en) 1989-07-26

Family

ID=11633087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP624488A Pending JPH01186627A (en) 1988-01-14 1988-01-14 Preparation of passivation film of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01186627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219630A (en) * 1990-01-25 1991-09-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2018508980A (en) * 2015-01-09 2018-03-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Gate stack materials for semiconductor applications to improve lithography overlay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143362A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Passivation film
JPS6236280A (en) * 1985-08-08 1987-02-17 Ueno Kikai Kogyo Kk Cheese bobbin
JPS62291913A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Formation of thin film
JPS6441244A (en) * 1987-08-07 1989-02-13 Nec Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143362A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Passivation film
JPS6236280A (en) * 1985-08-08 1987-02-17 Ueno Kikai Kogyo Kk Cheese bobbin
JPS62291913A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Formation of thin film
JPS6441244A (en) * 1987-08-07 1989-02-13 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219630A (en) * 1990-01-25 1991-09-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2018508980A (en) * 2015-01-09 2018-03-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Gate stack materials for semiconductor applications to improve lithography overlay

Similar Documents

Publication Publication Date Title
JP2708533B2 (en) Method for removing residual gas from CVD apparatus
JPS5845177B2 (en) Method for forming semiconductor surface insulating film
JPH03198340A (en) Manufacture of semiconductor device
JPH01186627A (en) Preparation of passivation film of semiconductor device
US7737048B2 (en) Method for controlling thickness distribution of a film
JPH03237715A (en) Etching method
JPS612317A (en) Manufacture of semiconductor device
JPH01238126A (en) Manufacture of semiconductor device
JP3570354B2 (en) Method for forming film on semiconductor wafer and semiconductor wafer
JPH02218131A (en) Semiconductor device and manufacture thereof
JP2581281B2 (en) Method for manufacturing compound semiconductor device
JP2003243360A (en) Manufacturing method of semiconductor device
JPH06232116A (en) Formation of silicon oxide film
JPH04192566A (en) Semiconductor device and its manufacture
JPH0474426A (en) Manufacture of semiconductor device
JP3036185B2 (en) Method for manufacturing semiconductor device
JPH02148843A (en) Manufacture of semiconductor device
JP2844734B2 (en) Thin film manufacturing method
JPH10176273A (en) Cvd film forming method and cvd film forming device
JP3060468B2 (en) Method for manufacturing semiconductor device
JPS63248137A (en) Manufacture of semiconductor device
KR100199347B1 (en) Method of fabrication silicon film of semiconductor device
JPS61210638A (en) Manufacture of semiconductor device
TW499490B (en) A method of growing ultra-thin oxide layer at low temperature by carbon tetrafluoride plasma and nitrogen dioxide plasma
JPH04286332A (en) Thin film formation method