JPH01184276A - Method and device for sputtering - Google Patents

Method and device for sputtering

Info

Publication number
JPH01184276A
JPH01184276A JP830588A JP830588A JPH01184276A JP H01184276 A JPH01184276 A JP H01184276A JP 830588 A JP830588 A JP 830588A JP 830588 A JP830588 A JP 830588A JP H01184276 A JPH01184276 A JP H01184276A
Authority
JP
Japan
Prior art keywords
substrate
filter
sputtering
power supply
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP830588A
Other languages
Japanese (ja)
Other versions
JP2607582B2 (en
Inventor
Hide Kobayashi
秀 小林
Masao Sakata
坂田 正雄
Hideaki Shimamura
島村 英昭
Michiyoshi Kawahito
川人 道善
Masahiro Fujita
藤田 昌洋
Yuji Yoneoka
米岡 雄二
Tsuneaki Kamei
亀井 常彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63008305A priority Critical patent/JP2607582B2/en
Publication of JPH01184276A publication Critical patent/JPH01184276A/en
Application granted granted Critical
Publication of JP2607582B2 publication Critical patent/JP2607582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To assure a large bias sputtering effect while decreasing the electrical input to a filter by giving directivity to a flying direction by filter to sputtering particles and imparting a substrate bias intermittently to a substrate. CONSTITUTION:A negative voltage is impressed by a DC substrate bias power supply 7 to a substrate electrode 5. A pulse power supply 12 is connected to the DC bias power supply 7 and the mutual voltages are superposed and are impressed to the substrate electrode 5. A filter power supply 13 impressed electric power via a matching box to a filter 3. The sputtering particles are released by impressing a high voltage to a sputtering power supply 1. The directivity of the flying direction of the sputtering particles is given by utilizing the cylindrical shape of the filter 3. Large substrate inflow current is obtd. when a PO cathode discharge is generated in said cylinder and a negative voltage is impressed to the substrate electrode 5. The sputtered film having a good throwing power is thus formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスパッタ成膜にかかわシ、特に多層配線構造を
持つ集積回路における配線用導体膜の好適なスパッタ膜
を形成できるスパッタ方法及びその装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to sputter film formation, and in particular to a sputtering method and apparatus for forming a sputter film suitable for a conductor film for wiring in an integrated circuit having a multilayer wiring structure. It is related to.

〔従来の技術〕[Conventional technology]

従来技術としては、特開昭61−117273号に記載
されたものが知られていた。
As a prior art, the one described in Japanese Patent Application Laid-open No. 117273/1983 was known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においてはフィルタに電気的入力があるの
で常に大きな基板流入電流を確保しようとすると、フィ
ルタが過熱されるという課題があった。
In the above-mentioned conventional technology, since there is an electrical input to the filter, there is a problem in that the filter becomes overheated when trying to always ensure a large current flowing into the substrate.

本発明の目的は実効的なフィルタへの電気的入力を低減
しながら、且つ大きなバイアススパッタ効果を確保でき
るようにしたスパッタ方法及びその装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sputtering method and apparatus that can ensure a large bias sputtering effect while effectively reducing the electrical input to the filter.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、基板及びフィル
タに付与する電位を共に周期性を有するようにしたので
同期して増減させることが可能となった。即ち本発明は
大きな基板流入電流が必要な時にのみ、フィルタを強く
電気的に励起することにある。そこで基板電極印加電源
のパルス的な増減に同期して、フィルタ電源の出力もパ
ルス的に増減する。このようなパルス的信号を発生する
電源をつくシ、これKよってフィルタ用の高周波電源も
制御されるようにする。
In order to achieve the above object, the present invention makes it possible to increase and decrease the potentials in synchronization because the potentials applied to the substrate and the filter both have periodicity. That is, the present invention is to strongly electrically excite the filter only when a large current flowing into the substrate is required. Therefore, in synchronization with the pulse-like increase and decrease of the power supply applied to the substrate electrode, the output of the filter power supply also increases and decreases in a pulse-like manner. When the power source that generates such a pulsed signal is turned on, the high frequency power source for the filter is also controlled by this.

〔作用〕[Effect]

このように基板及びフィルタに同期させて電位を付与し
たことによシ基板バイアス電力(流入電流)を増加させ
てもフィルタの変形はみうけられず、安定した付き廻シ
性の良好なスパッタ成膜を行うことができる。
By applying a potential to the substrate and filter in synchronization in this way, the filter does not deform even when the substrate bias power (inflow current) is increased, resulting in stable sputtering film formation with good adhesion. It can be performed.

〔実施例〕〔Example〕

第1図は本発明に係るスパッタ方法を実施するスパッタ
装置の一実施例を示したものである。1は特開昭61−
117273〜117275号公報に記載されているよ
うに、周知のプレーナマグネトロンスパッタ電極である
。2はターゲート、3はフィルタ、4は防着シールド板
、5は基板電極、6は基板(ウェハ)、7は基板バイア
ス用直流電源、8は電圧計、9は基板流入電流計である
FIG. 1 shows an embodiment of a sputtering apparatus for carrying out the sputtering method according to the present invention. 1 is JP-A-61-
This is a well-known planar magnetron sputtering electrode, as described in Japanese Patent Nos. 117273 to 117275. 2 is a target gate, 3 is a filter, 4 is an anti-adhesion shield plate, 5 is a substrate electrode, 6 is a substrate (wafer), 7 is a DC power supply for substrate bias, 8 is a voltmeter, and 9 is a substrate inflow current meter.

10はブロッキングコンデンサ、11は通過型電力計、
12はパルス電源、13は1A56MHz等の高周波電
源であシ、変調入力としてパルス電源12の信号を用い
ることができる。
10 is a blocking capacitor, 11 is a pass-through wattmeter,
12 is a pulse power source, 13 is a high frequency power source such as 1A56 MHz, and the signal from the pulse power source 12 can be used as a modulation input.

基板電極5には、直流基板バイアス電源7によシ負の電
圧が印加されておシ、その電圧と電流は、それぞれ電圧
計8及び電流計9にて監視される。
A negative voltage is applied to the substrate electrode 5 by a DC substrate bias power supply 7, and the voltage and current are monitored by a voltmeter 8 and an ammeter 9, respectively.

直流基板バイアス電源7にはパルス電源12が接続され
ておル、お互いの電圧が重畳されて、基板電極5に印加
される。これから説明する実験条件では、直流基板バイ
アス電源7の出力は常時−70Vとした。パルス電源1
2の出力は、−110Vビークであり、両軍源の合成出
力は第2図に示す如・ 3 ・ き波形をしておシ、繰シ返し周波数50KHz、パルス
印加のデユーティ(第2図中のt、/12)はほぼ50
チ程度で使用する。
A pulse power supply 12 is connected to the DC substrate bias power supply 7, and the voltages are superimposed on each other and applied to the substrate electrode 5. Under the experimental conditions described below, the output of the DC substrate bias power supply 7 was always -70V. Pulse power supply 1
The output of 2 is -110V peak, and the combined output of both sources has a waveform as shown in Figure 2.The repetition frequency is 50KHz, and the duty of pulse application (in Figure 2) t, /12) is approximately 50
Use it at around 100 degrees.

基板電極5の上に基板6を固定する。基板6は直径10
0φ冒のシリコンウェハである。基板6は基板電極5か
らの爪の如き金具によって固定され、アルミ成膜中には
、アルミ膜と電気的接触を確保している。
A substrate 6 is fixed onto the substrate electrode 5. The substrate 6 has a diameter of 10
It is a silicon wafer with a diameter of 0φ. The substrate 6 is fixed by a metal fitting such as a claw from the substrate electrode 5 to ensure electrical contact with the aluminum film during aluminum film formation.

フィルタ電源15は、IA56MHzのものであシ、マ
ツチングボックス(図示せず)を介し印加する。
The filter power supply 15 is of IA 56 MHz, and is applied through a matching box (not shown).

フィルタ3への印加電力は通過型電力計11にて監視す
る。
The power applied to the filter 3 is monitored by a pass-through wattmeter 11.

フィルタ3には第3図の模式図に示すごとく井桁状の薄
板(厚さ1 m )を用いた。井桁の大きさは約9−×
約9wmの正方形の開口を持ち、スパッタ粒子の進行方
向への長さは約10m1とした。フィルタ全体の直径は
φ160鱈である。
As shown in the schematic diagram of FIG. 3, the filter 3 was a cross-shaped thin plate (thickness: 1 m). The size of the grid is approximately 9-×
It had a square opening of about 9 wm, and the length in the direction of propagation of sputtered particles was about 10 m1. The diameter of the entire filter is φ160.

基板6は直径100+a+のシリコンウェハ1であシ本
発明に係わる成膜方法の付き廻シ性の調査のためには多
層配線構造にある配線層間の接続孔(以下スルーホール
)を模したテスト形状を持つサンプルウェハを用いた。
The substrate 6 is a silicon wafer 1 with a diameter of 100+a+.In order to investigate the adhesion of the film forming method according to the present invention, a test shape is used that simulates a connection hole (hereinafter referred to as a "through hole") between wiring layers in a multilayer wiring structure. A sample wafer with a

基板6は基板電極5上に金属性のツメのごとき金具(図
示せず)で固定されA1成膜中には基板6上のA1膜は
基板電極5と電気的な接触を保つ。
The substrate 6 is fixed onto the substrate electrode 5 with a metal fitting (not shown) such as a metal claw, and the A1 film on the substrate 6 maintains electrical contact with the substrate electrode 5 during the formation of the A1 film.

基板6とフィルタ3の基板側端面との距離及びターゲッ
ト2とフィルタ6のスパッタ電極側端面との距離はとも
に約301とじた。ターゲット2には直接8インチ(約
φ200■)のAl−1,5チS1をもちいた。
The distance between the substrate 6 and the end surface of the filter 3 on the substrate side and the distance between the target 2 and the end surface of the filter 6 on the sputtering electrode side were both approximately 301 cm. As the target 2, an 8-inch (about φ200 mm) Al-1.5-chi S1 was directly used.

スパッタ装置として動作させるKは真空槽(図示せず)
を適当な真空ポンプによって高真空(1o−’〜10=
 ’Forr台)にまで排気する。その後アルゴンガス
を導入し、約A5m’Forrの圧力とした。
K is a vacuum chamber (not shown) operated as a sputtering device.
to a high vacuum (1o-'~10=
'Forr level). Thereafter, argon gas was introduced to create a pressure of about A5 m'Forr.

一方1五56MHzの高周波電源13は整合回路(図示
せず)とブロッキングキャパシタ10とを介してフィル
タ3に接続されておシ、通過型電力計11によシフィル
タ3に印加されている電力をモニタすることができる。
On the other hand, a high frequency power source 13 of 1556 MHz is connected to the filter 3 via a matching circuit (not shown) and a blocking capacitor 10, and the power applied to the filter 3 is monitored by a pass-through wattmeter 11. can do.

スパッタ電源には負の高圧を印加しく図示せず)スパッ
タ電圧約500V、スパッタ電流10Aで放電を行なっ
た。このときのスパッタガス圧力(アルゴンガス圧力)
は約15 m torrである。
A negative high voltage was applied to the sputtering power source (not shown), and discharge was performed at a sputtering voltage of about 500 V and a sputtering current of 10 A. Sputtering gas pressure at this time (argon gas pressure)
is approximately 15 m torr.

最初に基板電極5の電位をパルス的に駆動したときの実
験について説明する。このときフィルタ用の高周波電源
13は50wの出力に固定した。
First, an experiment in which the potential of the substrate electrode 5 was driven in a pulsed manner will be described. At this time, the high frequency power supply 13 for the filter was fixed at an output of 50W.

基板電極5に印加される電圧波形を第2図に示す。基板
直流電源の出力は常時−70Vであp、パルス電源の出
力は波高値−110vである。従って第2図に示す如く
尖頭値は一180vのパルス列的波形となる。
The voltage waveform applied to the substrate electrode 5 is shown in FIG. The output of the substrate DC power supply is always -70V p, and the output of the pulse power supply has a peak value of -110V. Therefore, as shown in FIG. 2, the peak value becomes a pulse train-like waveform of -180V.

パルスの繰シ返し周期は第2図に示す如<52秒でib
、その52秒のうちt4秒だけ基板バイアス電圧は一1
80vとなる。基板バイアス電圧が最大値となっている
時間の比、1.、/1.2をデユーティ7アクタと呼ぶ
ことにする。デユーティ7アクタが0チから100チへ
と増すにつれ、基板バイアス電圧の最大値が印加されて
いる時間が長くなる。
The pulse repetition period is <52 seconds as shown in Figure 2.
, the substrate bias voltage is -1 for t4 seconds out of the 52 seconds.
It becomes 80v. Ratio of time during which the substrate bias voltage is at its maximum value, 1. , /1.2 will be called the duty 7 actor. As the duty 7 actor increases from 0 to 100, the time during which the maximum value of the substrate bias voltage is applied becomes longer.

このデユーティファクタをパラメータとしてスルーホー
ルへの付き廻漫性を評価した結果、一定の一180vの
基板バイアスではスルーホール中ニボイドが残シ、埋め
込むことができないが、間欠的にこの電圧を加えるので
あれば、0〜20%のデユーティファクタでもボイドの
発生はなく、30〜60%のデユーティでは完全に埋め
込むことができる。デユーティ7アクタを7094以上
にしてゆ、ぐと、逆にボイドが発生し、一定の一180
Vの状態と等価となる。
As a result of evaluating the pervasiveness of through holes using this duty factor as a parameter, it was found that with a constant substrate bias of 180 V, nivoids remain in the through holes and cannot be buried, but if this voltage is applied intermittently, If there is, voids will not occur even with a duty factor of 0 to 20%, and complete filling can be achieved with a duty of 30 to 60%. If you increase the duty 7 actor to 7094 or more, voids will occur and the constant 1180
This is equivalent to the state of V.

以上の如く、確実に埋め込むためにやや過剰な基板バイ
アス電圧を印加し、デユーティファクタの制御で巾広く
適正な条件を設定することができる。更にパルス電源1
2の出力はフィルタ用高周波電源131C供給されてお
シ、パルス電源12の出力が負で大きくなると、高周波
電源13の出方も増大する。
As described above, it is possible to apply a slightly excessive substrate bias voltage to ensure embedding, and to set a wide range of appropriate conditions by controlling the duty factor. Furthermore, pulse power supply 1
The output of the pulse power source 12 is supplied to the filter high frequency power source 131C, and as the output of the pulse power source 12 becomes negative and large, the output of the high frequency power source 13 also increases.

パルス電源12の繰シ返えし周波数50KHz 。The repetition frequency of the pulse power supply 12 is 50KHz.

デユーティファクタ50%、スパッタ電力10AX50
0V、アルゴン圧力&5nTorr 、フィルタ3には
、開口9 X 9 rrJ 、深さ10mm、フィルタ
内の板厚1瓢で実験を行った。フィルタ用高周波電源1
3の出力を常に100Wとしていた場合にはフィルタ3
の変形が認められたが、上記条件での使用では変形は発
生しなかった。
Duty factor 50%, sputtering power 10AX50
Experiments were conducted at 0 V, argon pressure &5 nTorr, and filter 3 had an opening of 9 x 9 rrJ, a depth of 10 mm, and a plate thickness of 1 mm inside the filter. High frequency power supply for filter 1
If the output of filter 3 is always 100W, filter 3
deformation was observed, but no deformation occurred when used under the above conditions.

第4図はフィルタ3に印加する1&56MHzの電力と
基板流入電流との関係を示したもので、10Wでは曲線
Cl0W、20Wでは曲線C20W、50Wでは曲線c
sow、 1oowでは曲線C100Wとなる。従って
スルホールにAt膜を埋め込みができるように大きな基
板流入電流(例えば1oow)を与えてもフィルタ3の
変形は発生しない。
Figure 4 shows the relationship between the 1 and 56 MHz power applied to the filter 3 and the substrate inflow current, with curve Cl0W for 10W, curve C20W for 20W, and curve c for 50W.
At sow and 1oow, the curve becomes C100W. Therefore, even if a large substrate inflow current (for example, 10OW) is applied so that the At film can be buried in the through holes, the filter 3 will not be deformed.

このように本実施例では、出来るだけA/、粒子の透過
率を低下させないように薄い板によシ組み立てられたフ
ィルタ3の筒状の形を利用し、スパッタ粒子の飛行方向
の指向性を与えるとともに、その筒の中でボーカソード
放電を発生させ、基板電極5に負の電圧を印加した時に
、大きな基板流入電流を得、良好な付き廻シ性のスパッ
タ成膜を行う。基板印加電圧波形はパルス状にして基板
6の過熱を防ぐ。この場合ターゲット2の材料(スパッ
タ材料)は、比較的融点の低い金属材料(具体的にはア
ルミ、アルミ合金が適している。)そとで第4図に示す
ように大きな基板流入電流を得るには、フィルタ3にそ
れに比例して大きな電力印加をおこなわなければならな
い。通常の使用状態では数101〜200W程度である
。しかし基板バイアス直流電圧に同期させてフィルタ3
に印加する負の電位を増減させているので、大きな基板
流入電流が得られるようにしてもフィルタ3が昇温によ
って変形されることはなく、安定してスルホールへの付
き廻p性をよくして成膜することができる。
In this way, in this embodiment, the cylindrical shape of the filter 3, which is assembled with a thin plate, is utilized to avoid reducing the transmittance of particles as much as possible, and to improve the directivity of the sputtered particles in the flight direction. At the same time, when a void cathode discharge is generated in the tube and a negative voltage is applied to the substrate electrode 5, a large substrate inflow current is obtained, and a sputtering film with good adhesion is formed. The voltage waveform applied to the substrate is pulsed to prevent the substrate 6 from overheating. In this case, the target 2 material (sputtering material) is a metal material with a relatively low melting point (specifically, aluminum and aluminum alloys are suitable) to obtain a large substrate inflow current as shown in Figure 4. For this reason, a proportionately large amount of power must be applied to the filter 3. Under normal usage conditions, it is approximately several 101 to 200 W. However, the filter 3 is synchronized with the substrate bias DC voltage.
Since the negative potential applied to the filter 3 is increased or decreased, even if a large substrate inflow current is obtained, the filter 3 will not be deformed due to temperature rise, and the filter 3 will stably adhere to the through-holes and improve its stability. The film can be formed by

またブレーナマグネトロンバイアススパッタにおいてフ
ィルタ3に電気的な励起を与えることによシ、系内に新
たにフィルタ3を第3の電極とした第2の放電を発生さ
せる事によって果たすことができる。この時フィルタ材
料のスパッタリングの発生を抑止するためにできるだけ
低い電圧にて放電が発生するように、フィルタ3に筒状
の形状を持たさせ、フィルタ内でのホローカソード放電
を利用する。
In addition, this can be achieved by applying electrical excitation to the filter 3 in Brehner magnetron bias sputtering to generate a second discharge in the system using the filter 3 as the third electrode. At this time, in order to suppress the occurrence of sputtering of the filter material, the filter 3 is made to have a cylindrical shape, and hollow cathode discharge within the filter is utilized so that discharge occurs at as low a voltage as possible.

また増大させ得るようKなった基板流入電流すなわちア
ルゴンイオン電流によってアルミ原子の移動が活性化さ
れるようにイオンによる成膜中のアルミ膜の衝撃を有効
に行うことであるが、本発明に係るスパッタ装置では常
時基板電位を十分に大きな電流密度を得るように印加す
る必要はなく、たとえば間欠的に印加すれば良い。具体
的には間欠的に大きな負の電位になるように基板電極に
電圧を印加してやれば良い。基板の温度が徒に高いとア
ルミのフローはスルーホールの中に有効に入っていかな
い。スルーホールへの付き廻シ性を向上させるにはスル
ーホール周縁にスルーホールを塞ぐごとく成長するオー
バハングを抑制することが大切であり、本発明に係る技
術であればオーバハングが少し成長した時点で瞬間的に
基板バイアスを印加し、オーバハング部分のアルミ膜を
70−させることで足シる。このような間欠的な基板電
圧の印加による付き廻シ性の改善はフィルタによる指向
性の付与によってもともとオーバハングの成長が遅いと
いうことを前提として、その上で本発明によって初めて
大きな効果を実現することができる。これにより必要以
上のアルゴンイオンの流入が無く、徒に基板温度を上昇
させることがない。
Another object of the present invention is to effectively impact the aluminum film during film formation with ions so that the movement of aluminum atoms is activated by the substrate inflow current, that is, the argon ion current, which can be increased. In a sputtering device, it is not necessary to constantly apply a substrate potential to obtain a sufficiently large current density; for example, it may be applied intermittently. Specifically, a voltage may be applied to the substrate electrode intermittently so as to have a large negative potential. If the temperature of the board is unnecessarily high, the aluminum flow will not effectively enter the through hole. In order to improve the adhesion to the through hole, it is important to suppress the overhang that grows around the through hole so as to block the through hole. By applying a substrate bias and setting the aluminum film in the overhang part to 70°, the pressure is reduced. Improving the coverage by intermittent application of substrate voltage is based on the premise that overhang growth is originally slow due to directivity provided by the filter, and the present invention achieves a significant effect for the first time on that premise. Can be done. As a result, argon ions do not flow in more than necessary, and the substrate temperature does not increase unnecessarily.

また基板上に均一なアルゴンイオン電流密度を保つこと
は基板に対するプラズマの発生位置を相対的に移動せし
め、アルゴンイオンの流入を時間平均として基板上で均
一化することによシ達成できる。ウェハの中心と同軸状
に配置した電磁石散のマグネトロンスパッタ電極であ多
発生するプラズマリングの径を変化させうる本のでは、
プラズマリング径が小さい時にはウェハ基板の中心部分
で高いイオン電流密度が得られ、逆にプラズマリング径
が大きい時にはウェハ基板の外周部分で高いイオン電流
密度が得られる。これら2つの電流密度とその時に同時
に得られるそれぞれに対応した成膜速度の比は必ずしも
よく一致しない。即ちイオン電流密度が一様となるよう
にスパッタ電力をプラズマリングの移動に伴って変化さ
せると、今度は平坦な成膜速度分布が得られないという
結果になる。このとき本発明に係る技術ではフィルタの
電位を同時に制御することで、成膜速度分布とイオン電
流密度分布とを適切に設定することができる。
Furthermore, maintaining a uniform argon ion current density on the substrate can be achieved by moving the plasma generation position relative to the substrate and making the inflow of argon ions uniform over the substrate on a time average basis. In the book, it is possible to change the diameter of the plasma ring that is often generated in a magnetron sputtering electrode with an electromagnetic scattering placed coaxially with the center of the wafer.
When the plasma ring diameter is small, a high ion current density is obtained at the center of the wafer substrate, and conversely, when the plasma ring diameter is large, a high ion current density is obtained at the outer periphery of the wafer substrate. The ratios of these two current densities and the corresponding film forming speeds obtained simultaneously do not necessarily match well. That is, if the sputtering power is changed along with the movement of the plasma ring so that the ion current density becomes uniform, a flat deposition rate distribution will not be obtained. At this time, with the technology according to the present invention, by simultaneously controlling the potential of the filter, it is possible to appropriately set the deposition rate distribution and the ion current density distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、フィルタでの電力
損失が低減できるので、フィルタの大樹シな水冷を必要
とせず、安定したスルホールへの付き廻シ性をよくした
スパッタ成膜を行うことができる効果を奏する。
As explained above, according to the present invention, power loss in the filter can be reduced, so that extensive water cooling of the filter is not required, and sputtering film formation can be performed with stable adhesion to through-holes. It produces the effect that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は基板バイ
アス印加電圧波形の一例を示す図、第6図はフィルタの
構造を示す図、第4図はフィルタの励振高周波電力と基
板流入電流との関係を示す図である。 1・・・マグネトロンスパッタ電極 2・・・ターゲット 3・・・フィルタ 5・・・基板電極 6・・・基板 7・・・基板バイアス用直流電源 10・・・ブロッキングコンデンサ 12・・・基板パルスバイアス電源 13・・・高周波電源。 協農ト仝べ一項
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of the substrate bias applied voltage waveform, Fig. 6 is a diagram showing the structure of the filter, and Fig. 4 is a diagram showing the excitation high frequency power of the filter. FIG. 3 is a diagram showing the relationship with substrate inflow current. 1... Magnetron sputtering electrode 2... Target 3... Filter 5... Substrate electrode 6... Substrate 7... DC power supply for substrate bias 10... Blocking capacitor 12... Substrate pulse bias Power supply 13...High frequency power supply. Section 1 of cooperative farming

Claims (1)

【特許請求の範囲】 1、スパッタ電極から出たスパッタ粒子に対してフィル
タによって飛行方向に指向性を与え、基板に間欠的に基
板バイアスを付与して基板に成膜を行うことを特徴とす
るスパッタ方法。 2、上記フィルタに間欠的に、更に基板バイアスを同期
させてフィルタ電圧を印加させることを特徴とする請求
項1記載のスパッタ方法。 3、スパッタ電源を成膜対象である基板に電位を付与す
るための基板電極を、該基板電極に周期性の電位を付与
するための基板電極電源と、上記スパッタ電極から出て
スパッタ粒子が基板に付着するまでの飛行空間に設けら
れ、スパッタ粒子の飛行方向に指向性を付与するフィル
タと、該フィルタに周期性の電位を付与するためのフィ
ルタ電源とを備えたことを特徴とするスパッタ装置。 4、上記基板電極電源と上記フィルタ電源とが各々出力
を同期して増減すべく構成したことを特徴とする請求項
3記載のスパッタ装置。
[Claims] 1. A film is formed on the substrate by imparting directivity in the flight direction to the sputtered particles emitted from the sputtering electrode using a filter and intermittently applying a substrate bias to the substrate. sputtering method. 2. The sputtering method according to claim 1, further comprising applying a filter voltage to the filter intermittently and in synchronization with a substrate bias. 3. A sputtering power source for applying a potential to the substrate on which a film is to be formed; a substrate electrode power source for applying a periodic potential to the substrate electrode; A sputtering apparatus comprising: a filter provided in a flight space until the sputtered particles adhere to the sputtered particles and imparting directivity to the flight direction of the sputtered particles; and a filter power source for imparting a periodic electric potential to the filter. . 4. The sputtering apparatus according to claim 3, wherein the substrate electrode power source and the filter power source are configured to increase and decrease their respective outputs in synchronization.
JP63008305A 1988-01-20 1988-01-20 Method and apparatus for film formation by sputtering Expired - Fee Related JP2607582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008305A JP2607582B2 (en) 1988-01-20 1988-01-20 Method and apparatus for film formation by sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008305A JP2607582B2 (en) 1988-01-20 1988-01-20 Method and apparatus for film formation by sputtering

Publications (2)

Publication Number Publication Date
JPH01184276A true JPH01184276A (en) 1989-07-21
JP2607582B2 JP2607582B2 (en) 1997-05-07

Family

ID=11689440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008305A Expired - Fee Related JP2607582B2 (en) 1988-01-20 1988-01-20 Method and apparatus for film formation by sputtering

Country Status (1)

Country Link
JP (1) JP2607582B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643422A (en) * 1994-12-29 1997-07-01 Nec Corporation Reactive sputtering system for depositing titanium nitride without formation of titanium nitride on titanium target and process of depositing titanium nitride layer
US5744016A (en) * 1994-10-20 1998-04-28 Nec Corporation Sputtering apparatus
WO1998020184A1 (en) * 1996-11-04 1998-05-14 Sola International Holdings Ltd. Sputter coating apparatus
US6348238B1 (en) 1999-03-12 2002-02-19 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176668A (en) * 1984-09-20 1986-04-19 Fujitsu General Ltd Sputtering device
JPS61156804A (en) * 1984-12-28 1986-07-16 Fujitsu Ltd Formation of thin film
JPS61264174A (en) * 1985-05-20 1986-11-22 Ulvac Corp Dc bias sputtering method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176668A (en) * 1984-09-20 1986-04-19 Fujitsu General Ltd Sputtering device
JPS61156804A (en) * 1984-12-28 1986-07-16 Fujitsu Ltd Formation of thin film
JPS61264174A (en) * 1985-05-20 1986-11-22 Ulvac Corp Dc bias sputtering method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744016A (en) * 1994-10-20 1998-04-28 Nec Corporation Sputtering apparatus
US5643422A (en) * 1994-12-29 1997-07-01 Nec Corporation Reactive sputtering system for depositing titanium nitride without formation of titanium nitride on titanium target and process of depositing titanium nitride layer
WO1998020184A1 (en) * 1996-11-04 1998-05-14 Sola International Holdings Ltd. Sputter coating apparatus
US6348238B1 (en) 1999-03-12 2002-02-19 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus
US6872289B2 (en) 1999-03-12 2005-03-29 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus

Also Published As

Publication number Publication date
JP2607582B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US20210050181A1 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
JP3424182B2 (en) Surface treatment equipment
KR20070040747A (en) Deposition by magnetron cathodic pulverization in a pulsed mode with preionization
JP2000156370A (en) Method of plasma processing
JP2000311890A (en) Plasma etching method and device
JPH01184276A (en) Method and device for sputtering
JP5324744B2 (en) Adhesion apparatus and method
JP2020017565A (en) Plasma processing device
JPS62170475A (en) Plasma treatment device
JPS6372875A (en) Sputtering device
JPS63103088A (en) Plasma treating device
JP2002012969A (en) Method for controlling sputtering apparatus
JPH0699799B2 (en) Vacuum deposition method
JPH01301856A (en) Sputtering device
JP2002053950A (en) Method and apparatus for depositing film on insulating substrate
JP2000012529A (en) Surface machining apparatus
Abrahamyan et al. Cleaning and sputtering using planar acoustoplasma magnetron
JP3026447B2 (en) Bias sputter deposition method and apparatus
JPS61177367A (en) Method and device for sputtering
JP2985230B2 (en) Plasma equipment
JPS62263966A (en) Magnetron sputtering method
JPH06158301A (en) Sputtering device
JPS58157966A (en) Ion plating device
JPH0428867A (en) Method and device for bias sputtering
JPH02310367A (en) Magnetron sputtering device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees