JPH01184238A - Method for recovering noble metal - Google Patents

Method for recovering noble metal

Info

Publication number
JPH01184238A
JPH01184238A JP63006236A JP623688A JPH01184238A JP H01184238 A JPH01184238 A JP H01184238A JP 63006236 A JP63006236 A JP 63006236A JP 623688 A JP623688 A JP 623688A JP H01184238 A JPH01184238 A JP H01184238A
Authority
JP
Japan
Prior art keywords
solution
noble metals
iodine
recovered
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63006236A
Other languages
Japanese (ja)
Other versions
JP2571591B2 (en
Inventor
Mamoru Hirako
平子 衛
Nobuyasu Ezawa
江沢 信泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP623688A priority Critical patent/JP2571591B2/en
Publication of JPH01184238A publication Critical patent/JPH01184238A/en
Application granted granted Critical
Publication of JP2571591B2 publication Critical patent/JP2571591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover noble metals such as gold by a pollution-free method at a high yield by treating a recovered material contg. said noble metals with an iodine-contg. anolyte from an electrolytic cell to dissolve and extract the noble metals and subjecting the liquid to alkaline neutralization in a reaction vessel to deposit the noble metals. CONSTITUTION:An electrolyte which consists essentially of KI, contains KIO3 and is adjusted to 13.2pH by KOH is put into the electrolytic cell 4 segmented to a anode chamber 2 and a cathode chamber 3 by a cation exchange membrane 1. An anode and cathode are then electrolyzed. I is formed in the anode chamber and K ions pass the diaphragm and enter the cathode chamber 3 where KOH is formed. The anolyte is sent by a pipe 5 into an extraction cell 6 contg. the recovered material contg. the noble metals such as Au, where the noble metals are dissolved and extracted. The extraction residues are filtered by a filter. The anolyte in which the noble metals are dissolved are sent by a pipe 8 to the reaction vessel 9 and the KOH-contg. catholyte of the electrolytic cell 4 is sent by a pipe 10 to the reaction vessel 9 to deposit the noble metals dissolved in the anolyte. The noble metals are filtered and recovered by a filter 12. The residual liquid is sent into the electrolytic cell 14 and is energized to deposit the residual noble metals on the cathode; thereafter, the noble metals are scraped and are filtered and recovered by a filter 16. Since cyanide, etc., are not used, this method is non-pollutant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は貴金属を含む回収物から貴金属を回収する方法
に関するもので、更に詳しくはヨウ素化合物含有溶液に
より貴金属を含む回収物から金を溶解、抽出し、貴金属
を含むヨウ素化合物含有溶液から貴金属を分離回収し、
貴金属を回収した後のヨウ素化合物含有溶液を再び貴金
属の溶解、抽出液として再利用する貴金属の回収方法に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for recovering precious metals from recovered materials containing precious metals, and more specifically, a method for dissolving gold from recovered materials containing precious metals with a solution containing an iodine compound. Extract, separate and recover precious metals from a solution containing iodine compounds containing precious metals,
The present invention relates to a method for recovering precious metals, in which an iodine compound-containing solution after recovering precious metals is reused as a solution for dissolving and extracting noble metals.

(従来の技術とその問題点) 従来から貴金属を含む回収物から貴金属を回収する方法
として、酸又はシアン化アルカリにより溶解又は抽出し
、こうした貴金属の溶解抽出液に、各種還元剤などを作
用させて貴金属を還元回収する方法が一般的であるが、
溶解や抽出の際に有害なガスを発生したり、毒物を使用
するなどの問題があり、又貴金属を還元回収した後の溶
液には、こうした有害物質が含まれているので無害化処
理をする必要があった。
(Prior art and its problems) Conventional methods for recovering precious metals from recovered materials containing precious metals include dissolving or extracting them with acid or alkali cyanide, and applying various reducing agents to the dissolved extract of precious metals. The most common method is to reduce and recover precious metals.
There are problems such as the generation of harmful gases and the use of poisonous substances during dissolution and extraction, and the solution after reducing and recovering precious metals contains such harmful substances, so they must be detoxified. There was a need.

その改良方法として米国等でヨウ素とヨウ素化合物溶液
で、金含有回収物より金を抽出し、その後ヒドラジンや
水素化ホウ素ナトリウム等の還元剤を加えて、金を還元
回収する方法が知られているが、この方法に於いても全
還元後のヨウ素とヨウ素化合物溶液は、無害化処理やヨ
ウ素回収等の必要があった。
As an improvement method, it is known in the United States and other countries to extract gold from gold-containing recovered materials using iodine and an iodine compound solution, and then add a reducing agent such as hydrazine or sodium borohydride to reduce and recover the gold. However, even in this method, the iodine and iodine compound solution after total reduction required detoxification treatment and iodine recovery.

また近年の電子工業の発達に伴い、金の他に銀やパラジ
ウムを複合使用した貴金属回収物が増加しており、こう
した回収物の良い回収方法が望まれている。
Furthermore, with the recent development of the electronics industry, the number of recovered precious metals that use a combination of silver and palladium in addition to gold is increasing, and a good method for recovering such recovered items is desired.

(発明の目的) 本発明者は、これら従来技術の欠点と工業発展の動向を
考慮し鋭意追求した結果、本発明を提供するに到った。
(Objective of the Invention) The present inventor took into consideration the shortcomings of these conventional techniques and the trends of industrial development, and as a result of diligent pursuit, he was able to provide the present invention.

本発明はヨウ素とヨウ素化合物溶液により金を回収する
方法を改良発展させたもので、簡便でしかも従来技術の
欠点を補い、かつ現状に促した貴金属の回収方法を提供
することを目的とする。
The present invention is an improvement and development of a method for recovering gold using iodine and an iodine compound solution, and aims to provide a method for recovering precious metals that is simple, compensates for the shortcomings of the prior art, and improves on the current state of the art.

(問題点を解決するための手段) 本発明は、隔膜により陽極室と陰極室に分離された隔膜
電解槽において、陽極室のヨウ素化合物含有電解液を電
解して陽極側にヨウ素を生成させ、生成した該ヨウ素を
含むヨウ素化合物含有液により貴金属を含む回収物から
貴金属を溶解抽出し、該貴金属を抽出したヨウ素化合物
含有液に水酸化アルカリを加えてpHを12以上の強ア
ルカリ性とすることにより前記貴金属のうちの金を選択
的に還元析出させ、該金属金は還元後の溶液から金を分
離することにより回収し、金分離後の該溶液を電解及び
/又は還元して残る貴金属を析出させ、該貴金属を析出
後の溶液から貴金属を分離することにより回収するとと
もに、該貴金属を分離後の溶液はヨウ素化合物含有電解
液として再利用することを特徴とする貴金属の回収方法
である。
(Means for Solving the Problems) The present invention is a diaphragm electrolytic cell separated into an anode chamber and a cathode chamber by a diaphragm, in which an iodine compound-containing electrolyte in the anode chamber is electrolyzed to generate iodine on the anode side. By dissolving and extracting precious metals from the recovered material containing precious metals using the generated iodine compound-containing liquid containing iodine, and adding alkali hydroxide to the iodine compound-containing liquid from which the precious metals have been extracted to make the pH strongly alkaline to 12 or more. Selectively reducing and depositing gold among the precious metals, recovering the metal gold by separating the gold from the solution after the reduction, and precipitating the remaining precious metal by electrolyzing and/or reducing the solution after the gold separation. This is a method for recovering noble metals, which is characterized in that the noble metals are recovered by separating the noble metals from the solution after precipitation, and the solution after separating the noble metals is reused as an iodine compound-containing electrolyte solution.

(作用) 以下本発明をより詳細に説明する。(effect) The present invention will be explained in more detail below.

本発明方法は、(、I)ヨウ素化合物含有電解液の隔膜
電解によりヨウ素を生成させる工程、(II)該ヨウ素
を含むヨウ素化合物含有液により貴金属の回収物から貴
金属を溶解抽出する工程、(I)貴金属を溶解抽出した
溶液を強アルカリ性にして溶液中の金を金属金として回
収する工程、(IV)金属金を回収した後の溶液から残
る貴金属を回収する工程、(V)貴金属回収後の溶液を
前記工程(I)へ循環させ再使用する工程から成り、以
下各工程ごとに説明する。
The method of the present invention includes (I) a step of producing iodine by diaphragm electrolysis of an electrolytic solution containing an iodine compound; (II) a step of dissolving and extracting a precious metal from a recovered precious metal with a solution containing an iodine compound containing the iodine; ) A step in which the solution in which the precious metal has been dissolved and extracted is made strongly alkaline and the gold in the solution is recovered as metal gold, (IV) A step in which the remaining precious metal is recovered from the solution after recovering the metal gold, (V) After recovery of the precious metal. It consists of a step of circulating the solution to the step (I) and reusing it, and each step will be explained below.

■ ヨウ、ヒ人 A ′7″ の? ””によ本工程t
は、ヨウ素化合物を含む電解液を隔膜電解して陽極にヨ
ウ素を生成させ、貴金属を溶かすために必要なヨウ素を
含むヨウ素化合物含有溶液を製造する。
■ You, Hi person A '7''?
produces iodine at the anode by diaphragm electrolysis of an electrolytic solution containing an iodine compound, thereby producing an iodine compound-containing solution containing the iodine necessary for dissolving noble metals.

隔膜電解は次のような種々のヨウ素を組み合わせて実施
することができる。なお、本隔膜電解法を採用すると陽
極室でヨウ素(rz、l3−)が生成すると同時に陰極
室で水酸化アルカリが副成し、該水酸化アルカリを後述
する金属金の析出の際のアルカリ源として使用できると
いう効果がある。
Diaphragm electrolysis can be carried out using a combination of various iodines as follows. In addition, when this diaphragm electrolysis method is adopted, iodine (rz, l3-) is generated in the anode chamber, and at the same time, alkali hydroxide is produced as a by-product in the cathode chamber, and the alkali hydroxide is used as an alkali source during the precipitation of metallic gold, which will be described later. It has the effect of being able to be used as

(i)電解液組成 陽極液の液組成は、ヨウ素化合物としてヨウ化カリウム
やヨウ化ナトリウムなどのヨウ化アルカリ金属塩を主成
分とするものであるが、この他にpH調整のための酸や
アルカリや塩類、導電性塩などを加えても良く、ヨウ素
酸塩を含んでいても良い。陰極液は上述の液の他、水酸
化アルカリや導電性塩からなるものでも良く水のみでも
良い。
(i) Electrolyte composition The liquid composition of the anolyte is mainly composed of alkali metal iodide salts such as potassium iodide and sodium iodide as iodine compounds, but it also contains acids and other substances for pH adjustment. Alkali, salts, conductive salts, etc. may be added, and iodate may be included. In addition to the above-mentioned liquids, the catholyte may be made of an alkali hydroxide or a conductive salt, or may be only water.

また陰極液にヨウ素酸塩を含んでいると、陰極反応で水
素ガスの発生がないので、排ガス処理の必要がなくなる
Furthermore, when the catholyte contains iodate, no hydrogen gas is generated in the cathode reaction, so there is no need for exhaust gas treatment.

ヨウ素化合物含有電解液の主成分のヨウ化アルカリ金属
塩の濃度は、0.1〜5モル/乏の範囲がよく、貴金属
を十分に溶かすことができる。また、結晶析出等の問題
が起こらないようにしておいたほうが良く、その他の成
分は、使用条件などを考慮にいれて選択する。
The concentration of the alkali metal iodide salt, which is the main component of the iodine compound-containing electrolytic solution, is preferably in the range of 0.1 to 5 mol/min, and the noble metal can be sufficiently dissolved. In addition, it is better to avoid problems such as crystal precipitation, and other components are selected taking into consideration usage conditions.

該電解液を隔膜電解することにより陽極室にはヨウ素を
生成するとともに、アルカリ金属イオンが陽極室より陰
極室に移動して陰極室に水酸化アルカリを生成する。
By subjecting the electrolyte to diaphragm electrolysis, iodine is generated in the anode chamber, and alkali metal ions move from the anode chamber to the cathode chamber to generate alkali hydroxide in the cathode chamber.

2KI  −T2+2に+2e        (1)
2 Hz O+ 2 K +2 e →2 K OH十
Hz   (2)(i:)隔膜電解槽 使用する隔膜電解槽は、特に限定されず、箱型の電解槽
を後述する隔膜を使用して各1個の陽極室と陰極室に区
画したものを使用しても、箱型の電解槽を複数の隔膜で
複数の陽極室と陰極室に区画して複極式の電解槽を構成
し、電解液がそれぞれ複数の電解室を循環する形式のも
のとしてもよい。
2KI −T2+2 +2e (1)
2 Hz O+ 2 K +2 e → 2 K OH 10 Hz (2) (i:) Diaphragm electrolytic cell The diaphragm electrolytic cell used is not particularly limited. Even if you use a box-shaped electrolytic cell divided into multiple anode and cathode chambers, a box-shaped electrolytic cell can be divided into multiple anode and cathode chambers with multiple diaphragms to form a bipolar electrolytic cell. may be of a type in which each of the electrolytic chambers is circulated through a plurality of electrolytic chambers.

(iii )電解条件 ヨウ素の生成には、下記する条件で電解を行うことが好
ましい。
(iii) Electrolytic conditions For the production of iodine, it is preferable to perform electrolysis under the following conditions.

電解液温度   20〜110°C 電流密度    0.5〜50A/dm2陽極室側pH
3〜12.5 陰極室側pH12以上 (iv )隔膜 アスベスト膜、炭化水素膜、イオン交換膜など従来の隔
膜電解に使用されている任意の隔膜を使用することがで
きるが、前記のように、陽極室に酸化性のヨウ素が、陰
極室に水酸化アルカリが生成するので、対酸化性及び対
アルカリ性に優れた陽イオン交換膜、特にイオン交換基
としてスルホン酸基及び/又はカルボン酸基を有するフ
ッ素系陽イオン交換膜を使用することが好ましい。
Electrolyte temperature 20~110°C Current density 0.5~50A/dm2 Anode chamber side pH
3 to 12.5 Cathode chamber side pH 12 or higher (iv) Diaphragm Any diaphragm used in conventional diaphragm electrolysis, such as an asbestos membrane, a hydrocarbon membrane, or an ion exchange membrane, can be used, but as mentioned above, Since oxidizing iodine is generated in the anode chamber and alkali hydroxide is generated in the cathode chamber, a cation exchange membrane with excellent anti-oxidation and alkali properties, especially one having a sulfonic acid group and/or a carboxylic acid group as an ion exchange group, is used. It is preferable to use a fluorine-based cation exchange membrane.

(v)電極 陽極は、酸化反応がおこるので、電極の消耗を防ぐため
不溶性陽極がよく、白金、イリジウム及びルテニウムな
どの白金族金属や白金族金属の酸化物を電極活性物質と
して被覆してなる電極や酸化鉛電極などが特に良い。ま
た後述する貴金属の回収物を陽極に使用し、消耗の都度
交換するようにしても良い。
(v) Since oxidation reactions occur in the electrode anode, an insoluble anode is preferable to prevent electrode wear, and is coated with a platinum group metal such as platinum, iridium, and ruthenium or an oxide of a platinum group metal as an electrode active material. Electrodes and lead oxide electrodes are particularly good. Alternatively, a recovered precious metal, which will be described later, may be used for the anode, and the anode may be replaced each time it is consumed.

陰極は、ステンレス板などの通常の電極材料で良いが、
陽極と同じ材料を用いると電極の切換をすることができ
、陰極の清掃をすることができる。
The cathode may be made of ordinary electrode material such as a stainless steel plate, but
By using the same material as the anode, the electrode can be switched and the cathode can be cleaned.

本工程では、前記工程(I)で形成されたヨウ素を含む
ヨウ素化合物含有液を、貴金属の溶解抽出液として使用
することにより、貴金属を含む回収物から貴金属を溶解
抽出する。
In this step, the iodine compound-containing liquid containing iodine formed in the step (I) is used as a dissolving and extracting solution for noble metals, thereby dissolving and extracting noble metals from the recovered material containing noble metals.

貴金属を溶解する化学反応式の例として、金を溶解する
化学反応式は次のように表すことができる。
As an example of a chemical reaction equation for dissolving noble metals, a chemical reaction equation for dissolving gold can be expressed as follows.

2Au+31z+2KI−2KAuI4 (3)貴金属
の回収物中の貴金属としては、金や銀、パラジウムなど
が特に良く、回収物としては、合金や張り材、メツキ製
品など多くのものがあるが、プラスチックやセラミック
と貴金属などの複合材料などでも良い。
2Au+31z+2KI-2KAuI4 (3) Gold, silver, palladium, etc. are particularly good as precious metals among recovered precious metals.There are many recovered materials such as alloys, upholstery materials, and plating products, but plastics, ceramics, etc. Composite materials such as precious metals may also be used.

貴金属の回収物から貴金属を溶解抽出する方法としては
、次のような方法等がある。
Methods for dissolving and extracting precious metals from recovered precious metals include the following methods.

(a)直接溶解法 この方法は、貴金属回収物を電極として使用し、該電極
を前記隔膜電解の陽極として使用し電解液中に溶解する
方法である。
(a) Direct dissolution method In this method, a recovered precious metal is used as an electrode, and the electrode is used as an anode for the diaphragm electrolysis, and is dissolved in an electrolytic solution.

つまり該直接溶解法では、電解槽の陽極室中に回収物か
らなる陽極を吊るして、あるいは寸法安定性電極等の上
に回収物を適当な方法で置き通電する方法で、回収物を
陽極とし通電溶解する方法である。
In other words, in the direct dissolution method, the recovered material is used as an anode by suspending the anode made of the recovered material in the anode chamber of the electrolytic cell, or by placing the recovered material on a dimensionally stable electrode or the like in an appropriate manner and energizing it. This is a method of dissolving it by applying electricity.

(b)間接溶解法 この方法は、陽極で発生したヨウ素を含むヨウ素化合物
含有電解液と陽極室内及び/又は陽極室と接続された溶
解槽内の貴金属回収物とを反応させて電解液中に溶解さ
せる方法である。
(b) Indirect dissolution method This method involves reacting an iodine compound-containing electrolyte containing iodine generated at the anode with precious metal recovered in the anode chamber and/or the dissolution tank connected to the anode chamber to form an electrolyte. This is a method of dissolving it.

直接法を採用すると電極である貴金属の回収物が電解の
進行に従って溶解し、交換の必要が生ずるので、電極と
して不溶性陽極を用い電極交換の必要のない間接電解法
を採用することが望ましい。
If the direct method is used, the precious metal recovered as the electrode will dissolve as the electrolysis progresses and will need to be replaced, so it is desirable to use an indirect electrolysis method that uses an insoluble anode as the electrode and does not require electrode replacement.

また電解槽は、単なるヨウ素発生器として使用し、前記
反応槽中で貴金属回収物の溶解を行う方法が最も取り扱
いや保守の面で望ましく、電解槽と反応容器の間で電解
液を循環して貴金属回収物の溶解を行っても良い。
In addition, it is most desirable in terms of handling and maintenance to use the electrolytic cell simply as an iodine generator and to dissolve the recovered precious metal in the reaction tank, and the electrolytic solution is circulated between the electrolytic cell and the reaction vessel. The recovered precious metal may also be dissolved.

得られた貴金属を溶解した溶液は、濾過等によりゴミや
不溶解物と分離するようにして次工程に送られるが、濾
過等により貴金属とアルカリ金属以外の金属はほとんど
が不溶解物として除かれる。
The obtained solution containing dissolved precious metals is sent to the next process after being separated from dust and undissolved substances by filtration, etc., but most of the metals other than precious metals and alkali metals are removed as insoluble substances by filtration etc. .

貴金属を溶解した溶液は、そのpHを12以上の強アル
カリ性にすることにより、貴金属のうちの金が選択的に
析出する。
When the pH of a solution containing dissolved noble metals is made strongly alkaline to 12 or higher, gold among the noble metals is selectively precipitated.

2KAu14+  6KOH→ 2八u+KIO3+7
KI+31(zo   (4)析出した金は濾過などに
より分離することしこより金属金として回収することが
できる。pHが12以下であると4式の反応がおこらず
、金を析出させることはできない。
2KAu14+ 6KOH→ 28u+KIO3+7
KI+31(zo) (4) The precipitated gold can be separated by filtration or the like and then recovered as metallic gold. If the pH is below 12, the reaction of formula 4 will not occur and gold cannot be precipitated.

金を析出させる条件は、pH12以上であれシホよいが
、好ましくは12.5〜14.5の範囲である。
The conditions for depositing gold may be as long as the pH is 12 or higher, but it is preferably in the range of 12.5 to 14.5.

この操作により比較的品位の高い金を得ることができ、
その品位はおおむね95%以上であるので、その後の精
製操作などの手間が少なくなる。
This operation allows you to obtain relatively high-grade gold,
Since the quality is approximately 95% or higher, the effort required for subsequent refining operations is reduced.

また貴金属回収物に金が含まれなし)場合しよ、本操作
を省略しても良いが、次工程のためにpH&よ12以上
にしておく方が良い。
If the recovered precious metal does not contain gold, this step may be omitted, but it is better to keep the pH at 12 or higher for the next step.

金属金を回収した後の溶液から残る貴金属を回収するに
は、化学還元及び/又は電解により析出させて回収する
In order to recover the precious metal remaining from the solution after recovering metallic gold, it is deposited and recovered by chemical reduction and/or electrolysis.

化学還元剤としては、ヒドラジンや水素化ホウ素ナトリ
ウムなどの還元剤のほかに、マグネシウムやアルミニウ
ム、亜鉛末などの金属還元剤など多くのものがある。
There are many chemical reducing agents, including reducing agents such as hydrazine and sodium borohydride, as well as metal reducing agents such as magnesium, aluminum, and zinc dust.

後述する電解液の再利用をするためには、電解により貴
金属を析出させるのが特に良い。これは前述の化学還元
剤から生成する成分が電解液の繰り返し使用により増え
てくるので電解液の交換回数が多くなるが、電解ではこ
うした問題が起こらないことによる。
In order to reuse the electrolytic solution, which will be described later, it is particularly preferable to deposit the noble metal by electrolysis. This is because the components generated from the chemical reducing agent described above increase with repeated use of the electrolyte, which increases the number of times the electrolyte must be replaced, but this problem does not occur with electrolysis.

電解により貴金属を析出させる条件は、電流密度0.5
〜IOA /dm2、温度20〜80°Cで行うことが
好ましく、陽極として不溶性陽極を用いることが望まし
い。該電解により貴金属とイオン化傾向で水素より責な
金属を除去することができるが、水素より卑な金属も除
去することができる。
The conditions for depositing precious metals by electrolysis are a current density of 0.5
It is preferable to carry out at ~IOA/dm2 and a temperature of 20 to 80°C, and it is preferable to use an insoluble anode as the anode. This electrolysis can remove noble metals and metals that have a tendency to ionize more strongly than hydrogen, but it can also remove metals that are less noble than hydrogen.

これらの操作により、残る貴金属を回収することができ
る。
Through these operations, the remaining precious metal can be recovered.

貴金属回収後の溶液はそのまま前記工程(I)へ循環さ
せるか、適当な後処理を経て循環させる。
The solution after precious metal recovery is circulated as it is to the step (I), or it is circulated after being subjected to an appropriate post-treatment.

適当な後処理とは、濾過などによるゴミなどの除去のほ
か、電解液中の溶解しているビルドアップ成分を難溶性
塩にする処理を施したり、ヨウ素化合物の補充や、電解
液の一部を交換したり、pHを調整したりする操作のこ
とである。
Appropriate post-treatment includes removing dust by filtration, etc., converting dissolved build-up components in the electrolyte into poorly soluble salts, replenishing iodine compounds, and removing some of the electrolyte. This refers to operations such as exchanging liquids and adjusting pH.

図は本発明の実施の一例の方法を装置として具体化した
もので、以下この図面に基づいて説明するが、これは本
発明を限定するものではない。
The drawing embodies a method as an example of the present invention as an apparatus, and the following description will be made based on this drawing, but the present invention is not limited thereto.

図は、隔膜電解槽においてヨウ素と水酸化アルカリの生
成を行い、電解液は貴金属溶解抽出装置と前記隔膜電解
槽の陽極室との間を循環するようにして貴金属の溶解を
行い、該貴金属溶解液と陰極で副成した水酸化アルカリ
の反応により金を回収し、さらに電解で残りの貴金属を
回収し、貴金属回収後の電解液は再利用するようにした
フローチャートである。
The figure shows that iodine and alkali hydroxide are generated in a diaphragm electrolytic cell, and the electrolyte is circulated between the noble metal dissolving and extracting device and the anode chamber of the diaphragm electrolytic cell to dissolve the precious metal. This is a flowchart in which gold is recovered by a reaction between the liquid and an alkali hydroxide formed as a by-product at the cathode, and the remaining precious metal is further recovered by electrolysis, and the electrolytic solution after recovering the precious metal is reused.

隔膜1により陽極室2と陰極室3に分離された隔膜電解
槽4には、ヨウ化カリウムを主成分としさらにコラ素酸
カリウムを含むアルカリ性のヨウ素化合物含有電解液が
収容されている。通電により陽極室2にはヨウ素(I2
、■3−)が生成し、カリウムイオンは隔膜1を通って
陰極室3へ拡散する。陰極ではヨウ素酸カリウムの分解
がおこり水素ガスを発生することなく水酸化カリウムが
生成する。
A diaphragm electrolytic cell 4 separated by a diaphragm 1 into an anode chamber 2 and a cathode chamber 3 contains an alkaline iodine compound-containing electrolytic solution containing potassium iodide as a main component and potassium cholate. Iodine (I2
, (3-) are generated, and potassium ions diffuse into the cathode chamber 3 through the diaphragm 1. At the cathode, potassium iodate is decomposed and potassium hydroxide is produced without generating hydrogen gas.

陽極液は陽極室2から移送管5により貴金属の回収物の
入った貴金属溶解抽出装置6に送られ、フィルタ7を介
して戻し管5により陽極室に循環されるようになってい
る。貴金属溶解抽出装置6では、貴金属の溶解及び抽出
が行われ、フィルタフにより不溶解物等が除かれる。
The anolyte is sent from the anode chamber 2 through a transfer pipe 5 to a noble metal dissolving/extracting device 6 containing recovered precious metals, and is circulated through a filter 7 through a return pipe 5 to the anode chamber. In the noble metal dissolving and extracting device 6, noble metals are dissolved and extracted, and insoluble matters are removed by a filter.

貴金属を溶解抽出した溶液は、導出管8により反応槽9
に送られるとともに、傍管1oにより前記隔膜電解槽4
の陰極室3に生成した水酸化カリウムも反応槽9に送ら
れ、pHを12以上にすることにより金属金が析出する
。金属金はスラリーとして濾過管工1より金分離フィル
タ12に送られ固液分離されて回収される。
The solution in which the precious metals have been dissolved and extracted is transferred to a reaction tank 9 through an outlet pipe 8.
and the diaphragm electrolytic cell 4 through the side pipe 1o.
Potassium hydroxide generated in the cathode chamber 3 is also sent to the reaction tank 9, and by raising the pH to 12 or more, metal gold is deposited. Metallic gold is sent as a slurry from the filtration pipework 1 to the gold separation filter 12, where it is separated into solid and liquid and recovered.

濾過液は、分離管13を通って電解槽14に送られ、電
解により電解槽14の陰極に残りの貴金属が析出する。
The filtrate is sent to the electrolytic cell 14 through the separation tube 13, and the remaining precious metal is deposited on the cathode of the electrolytic cell 14 by electrolysis.

析出した貴金属は陰極より掻き落とされて、スラリーと
して連接管15を経て分離フィルタ16に送られ固液分
離されて回収される。゛ 濾過液は導入管17より調整槽18に送られ、薬品投入
口19よりヨウ化カリウムやアルカリなどの僅かに消費
された薬品が補充され、再利用管2oにより隔膜電解槽
4に送られて再利用される。また電解液が著しく汚染さ
れた場合は排出管21より糸外に排出される。
The precipitated precious metal is scraped off from the cathode and sent as a slurry to the separation filter 16 via the connecting pipe 15 where it is separated into solid and liquid and recovered.゛The filtrate is sent to the adjustment tank 18 through the introduction pipe 17, supplemented with slightly consumed chemicals such as potassium iodide and alkali through the chemical input port 19, and sent to the diaphragm electrolytic tank 4 through the reuse pipe 2o. Reused. Further, if the electrolyte is significantly contaminated, it is discharged from the discharge pipe 21 to the outside of the thread.

(実施例) 図に示す装置を利用して貴金属を回収を行った。(Example) Precious metals were recovered using the equipment shown in the figure.

縦20cm、横40cm、高さ30cmの箱型電解槽4
をフッ素系陽イオン交換膜1(商品名ナフィオン)を使
用して陽極室2と陰極室3に区画し、菱形の網状に加工
した縦25c+n、横18cm、厚さ0.2c+nのチ
タン製の網に白金メツキしたものを陽極とし、同寸法の
ステンレス板を陰極として、極間距離が0.5cmにな
るように吊るした。
Box-shaped electrolytic cell 4 with length 20cm, width 40cm, and height 30cm
was divided into an anode chamber 2 and a cathode chamber 3 using a fluorine-based cation exchange membrane 1 (trade name: Nafion), and a titanium mesh machined into a diamond-shaped mesh measuring 25cm+n long, 18cm wide, and 0.2cm+n thick. A plate plated with platinum was used as an anode, and a stainless steel plate of the same size was used as a cathode, and they were hung so that the distance between the electrodes was 0.5 cm.

調整槽18には、11あたりヨウ化カリウム332gと
ヨウ素酸カリウム21gを含み、水酸化カリウムでpH
=13.2に調整したヨウ素化合物電解液を十分に用意
し、該ヨウ素化合物電解液を前記隔膜電解槽の陽極室2
及び陰極室3が常に10fiになるように満たした。
Adjustment tank 18 contains 332 g of potassium iodide and 21 g of potassium iodate per tank 11, and the pH is adjusted with potassium hydroxide.
Prepare a sufficient amount of iodine compound electrolyte solution adjusted to 13.2, and pour the iodine compound electrolyte solution into the anode chamber 2 of the diaphragm electrolytic cell.
And the cathode chamber 3 was always filled with 10fi.

貴金属溶解抽出装置6(容量102)には、金、銀、パ
ラジウムのペーストで回路を形成させたセラミックの基
板を粉砕した貴金属回収物10kgを詰め陽極室2液が
循環するようにした。
The noble metal dissolving and extracting device 6 (capacity 102) was filled with 10 kg of precious metal recovered material obtained by crushing a ceramic substrate on which a circuit was formed with gold, silver, and palladium paste, so that the anode chamber 2 liquid was circulated.

液温度を60°C1電流密度を5A/dm2程度に維持
し、隔膜電解槽4に12時間通電して貴金属回収物から
貴金属を溶解抽出した。8時間通電後に電解を止めて、
陽極室2側と陰極室3内の電解液を反応槽9に送り、金
を回収したところ、18gの金が回収された。
The liquid temperature was maintained at 60° C. and the current density was maintained at about 5 A/dm 2 , and electricity was applied to the diaphragm electrolytic cell 4 for 12 hours to dissolve and extract noble metals from the recovered precious metals. Stop electrolysis after 8 hours of electricity,
When the electrolyte in the anode chamber 2 side and the cathode chamber 3 was sent to the reaction tank 9 and gold was recovered, 18 g of gold was recovered.

金を回収した残りの液は、電解槽14に送り30A(5
A/dm2)で5時間電解し、銀やパラジウムを電析さ
せたところ貴金属として銀25gやパラジウム12gが
得られた。
The remaining liquid after recovering the gold is sent to the electrolytic tank 14 at 30A (5
A/dm2) was electrolyzed for 5 hours to deposit silver and palladium, yielding 25 g of silver and 12 g of palladium as precious metals.

貴金属を回収した後の溶液は、調整槽18に送り、再利
用できるようにだ。
The solution after recovering the precious metals is sent to the adjustment tank 18 so that it can be reused.

以上の操作を繰り返し行ったところ、電解液は何回でも
再利用することができた。貴金属を廃液と共に外部に排
出することがほとんど無くなったので、回収率も従来の
ものに比べて高いものであった。
When the above operation was repeated, the electrolyte solution could be reused any number of times. Since precious metals are almost no longer discharged to the outside together with waste liquid, the recovery rate was also higher than in conventional methods.

また金属金還元後の溶液をヨウ素化合物電解液の陽極室
液として再利用することも出来るのが本発明の特徴でも
ある。この特徴としては貴金属と溶解抽出するのに必要
とするヨウ素化合物含有電解液が少量で、大量の貴金属
含有回収物から貴金属の回収をすることが可能となる点
で特に貴金属としても高価な金を迅速かつ選択的に回収
できることにある。
Another feature of the present invention is that the solution after metal gold reduction can be reused as the anode chamber solution of the iodine compound electrolyte. One of the characteristics of this is that only a small amount of electrolyte containing iodine compounds is required to dissolve and extract the precious metals, making it possible to recover precious metals from a large amount of recovered materials containing precious metals. The reason is that it can be recovered quickly and selectively.

(発明の効果) 本発明は、貴金属を回収するに際して、隔膜電解槽で生
じたヨウ素を含むヨウ素化合物含有電解液により貴金属
回収物から貴金属を溶解抽出し、次いで該貴金属を溶解
抽出した溶液のp)lを12以上にして該溶液から金を
選択的に析出させ金属金を回収し、さらに金属全回収後
の溶液から還元及び/又は電解して残りの貴金属を回収
し、貴金属回収後の溶液は再利用するようにすることに
より、貴金属成分を分離して回収できる七ともに、電解
液を再利用することができるので効率良く貴金属を回収
し、廃液の発生量を低減することができるなどの効果が
ある。
(Effects of the Invention) When recovering a precious metal, the present invention dissolves and extracts the precious metal from the precious metal recovered material using an electrolytic solution containing an iodine compound containing iodine generated in a diaphragm electrolytic cell, and then the pH of the solution in which the precious metal is dissolved and extracted. ) Selectively precipitate gold from the solution by setting l to 12 or more to recover metallic gold, and further reduce and/or electrolyze the remaining precious metal from the solution after all metal recovery, and recover the remaining precious metal from the solution after recovering the precious metal. By reusing the metals, the precious metal components can be separated and recovered, and the electrolyte can be reused, making it possible to efficiently recover precious metals and reduce the amount of waste liquid generated. effective.

また還元に必要なアルカリをヨウ素を含む貴金属含有電
解液と同時に得たり、電解に伴い発生する水素ガスを発
生させないようにしたり、貴金属の回収を理論上、閉鎖
反応として薬品の補充などを不用にすることが出来るな
どの別の効果もあり、従来の貴金属の回収方法に比べて
画期的なもので、発明の効果大なるものといえる。
In addition, the alkali necessary for reduction can be obtained at the same time as the electrolyte containing precious metals containing iodine, hydrogen gas generated during electrolysis can be prevented from being generated, and the recovery of precious metals can theoretically be performed as a closed reaction, eliminating the need for replenishing chemicals. It has other effects such as being able to recover precious metals, which is revolutionary compared to conventional precious metal recovery methods, and can be said to be a great effect of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を説明するための、本発明の一態様を示すフ
ローチャートである。 1・・・隔膜、2・・・陽極室、3・・・陰極室、4・
・・隔膜電解槽、5・・・移送管、5′・・・戻し管、
6・・・貴金属溶解抽出装置、7・・・フィルタ、8・
・・導出管、9・・・反応槽、10・・・傍管、11・
・・濾過管、12・・・全分離フィル夕、13・・・分
離管、14・・・電解槽、15・・・連接管、16・・
・分離フィルタ、17・・・導入管、18・・・調整槽
、19−・・・薬品投入口、20・・・再利用管、21
・・・排出管。 出願人  田中貴金属工業株式会社
The figure is a flowchart showing one aspect of the present invention for explaining the present invention. 1... Diaphragm, 2... Anode chamber, 3... Cathode chamber, 4...
...Diaphragm electrolytic cell, 5...Transfer pipe, 5'...Return pipe,
6... Precious metal melting and extraction device, 7... Filter, 8...
... Outlet pipe, 9... Reaction tank, 10... Side pipe, 11.
...Filtering tube, 12... Total separation filter, 13... Separation tube, 14... Electrolytic cell, 15... Connecting pipe, 16...
-Separation filter, 17...Introduction pipe, 18...Adjustment tank, 19-...Chemical inlet, 20...Reuse pipe, 21
...Exhaust pipe. Applicant Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)(a)隔膜により陽極室と陰極室に分離された隔
膜電解槽において、ヨウ素化合物含有電解液を電解して
陽極室側にヨウ素を生成させ、 (b)生成した該ヨウ素を含むヨウ素化合物含有液によ
り貴金属を含む回収物から貴金属を溶解抽出し、 (c)該貴金属を抽出したヨウ素化合物含有液に水酸化
アルカリを加え、pHを12以上の強アルカリ性とする
ことにより、前記貴金属のうちの金を選択的に還元析出
させ、該金属金を還元後の溶液から分離して金を回収し
、 (d)該溶液を電解及び/又は還元により残る貴金属を
析出させ、該貴金属を析出後の溶液から分離して貴金属
を回収し、 (e)貴金属を析出後の溶液はヨウ素化合物含有電解液
として再利用することを特徴とする貴金属の回収方法。
(1) (a) In a diaphragm electrolytic cell separated into an anode chamber and a cathode chamber by a diaphragm, an electrolytic solution containing an iodine compound is electrolyzed to generate iodine in the anode chamber side, (b) iodine containing the generated iodine (c) Adding alkali hydroxide to the iodine compound-containing solution from which the precious metal has been extracted to make the pH strongly alkaline at 12 or higher, thereby removing the precious metal. Selectively reduce and precipitate the gold, separate the metal gold from the solution after reduction to recover the gold, (d) electrolyze and/or reduce the solution to precipitate the remaining precious metal, and precipitate the precious metal. A method for recovering a precious metal, comprising: recovering the noble metal by separating it from a subsequent solution; and (e) reusing the solution after precipitating the precious metal as an iodine compound-containing electrolyte.
(2)隔膜電解槽の陰極室に水酸化アルカリを生成させ
、該水酸化アルカリを貴金属を抽出したヨウ素化合物含
有電解液をpH12以上の強アルカリ性とすることに用
いることを特徴とする特許請求の範囲第1項記載の貴金
属の回収方法。
(2) A patent claim characterized in that an alkali hydroxide is generated in the cathode chamber of a diaphragm electrolytic cell, and the alkali hydroxide is used to make an iodine compound-containing electrolyte from which precious metals have been extracted strongly alkaline to a pH of 12 or higher. A method for recovering precious metals as described in Scope 1.
(3)貴金属を析出後のヨウ素化合物を含有する溶液を
、隔膜電解槽の陰極室液としても利用することを特徴と
する特許請求の範囲第1項及び第2項に記載の貴金属の
回収方法。(4)金属金還元後の溶液をヨウ素化合物含
有電解液の陽極室液として再利用することを特徴とする
特許請求の範囲第1項から第3項記載の貴金属の回収方
法。
(3) A method for recovering precious metals according to claims 1 and 2, characterized in that the solution containing an iodine compound after precipitating the precious metal is also used as the cathode chamber liquid of the diaphragm electrolytic cell. . (4) The method for recovering precious metals according to claims 1 to 3, characterized in that the solution after reducing metal gold is reused as an anode chamber solution of an iodine compound-containing electrolyte.
JP623688A 1988-01-14 1988-01-14 Precious metal recovery method Expired - Lifetime JP2571591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP623688A JP2571591B2 (en) 1988-01-14 1988-01-14 Precious metal recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP623688A JP2571591B2 (en) 1988-01-14 1988-01-14 Precious metal recovery method

Publications (2)

Publication Number Publication Date
JPH01184238A true JPH01184238A (en) 1989-07-21
JP2571591B2 JP2571591B2 (en) 1997-01-16

Family

ID=11632881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP623688A Expired - Lifetime JP2571591B2 (en) 1988-01-14 1988-01-14 Precious metal recovery method

Country Status (1)

Country Link
JP (1) JP2571591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202484A (en) * 1989-12-28 1991-09-04 Miyama Kk Electrolyzer for recovering gold
CN112607941A (en) * 2020-12-11 2021-04-06 逸辰环保科技(厦门)有限公司 Precious metal recovery system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141625A (en) * 1974-08-05 1976-04-08 Beisaido Rifuainingu Ando Chem
JPS58174532A (en) * 1982-04-05 1983-10-13 Tanaka Kikinzoku Kogyo Kk Recovery of palladium or noble metal mixed in palladium
JPS6417827A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining device for gold and refining method for gold using said device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141625A (en) * 1974-08-05 1976-04-08 Beisaido Rifuainingu Ando Chem
JPS58174532A (en) * 1982-04-05 1983-10-13 Tanaka Kikinzoku Kogyo Kk Recovery of palladium or noble metal mixed in palladium
JPS6417827A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining device for gold and refining method for gold using said device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202484A (en) * 1989-12-28 1991-09-04 Miyama Kk Electrolyzer for recovering gold
CN112607941A (en) * 2020-12-11 2021-04-06 逸辰环保科技(厦门)有限公司 Precious metal recovery system and method

Also Published As

Publication number Publication date
JP2571591B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US4028199A (en) Method of producing metal powder
AU2011339119A1 (en) Electrorecovery of gold and silver from thiosulphate solutions
JPH0780466A (en) Method and device for regenerating aqueous solution containing metal ion and sulfuric acid
EA021918B1 (en) Method and arrangement for producing metal powder
EP0253783B1 (en) Process for refining gold and apparatus employed therefor
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
AU5537490A (en) Method of electrolytic treatment and unit therefor
JP2520674B2 (en) Method and device for recovering metal supported on carrier
RU2094534C1 (en) Electrolytic method for dissolving platinum, platinum metals' impurities and/or platinum metals' alloys containing radium, palladium, iridium, gold, and silver
JP2571591B2 (en) Precious metal recovery method
RU2510669C2 (en) Method of extracting noble metals from wastes
JP4501726B2 (en) Electrowinning of iron from acidic chloride aqueous solution
JPS5919994B2 (en) Method for producing metal powder from dilute solution of metal
KR100545664B1 (en) Method for electro copperplating substrates
JPH11229172A (en) Method and apparatus for producing high-purity copper
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JP2927352B1 (en) Etching waste liquid recycling method and its apparatus
RU2093607C1 (en) Electrolytic method for purifying concentrated hydrochloric acid solutions of platinum containing impurities
JP5344278B2 (en) Indium metal production method and apparatus
RU2176279C1 (en) Method for processing secondary gold-containing material to pure gold
JP2594802B2 (en) Electrolytic reduction method
JPH0215187A (en) Production of iron and chlorine from aqueous solution containing iron chloride
JPS6363638B2 (en)
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JPS6160148B2 (en)