JPH01183458A - Material having low expansion coefficient - Google Patents

Material having low expansion coefficient

Info

Publication number
JPH01183458A
JPH01183458A JP63006589A JP658988A JPH01183458A JP H01183458 A JPH01183458 A JP H01183458A JP 63006589 A JP63006589 A JP 63006589A JP 658988 A JP658988 A JP 658988A JP H01183458 A JPH01183458 A JP H01183458A
Authority
JP
Japan
Prior art keywords
thermal expansion
spodumene
low thermal
cordierite
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006589A
Other languages
Japanese (ja)
Inventor
Masaaki Mishima
昌昭 三島
Shumei Hosokawa
細川 周明
Taiji Matano
泰司 俣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP63006589A priority Critical patent/JPH01183458A/en
Publication of JPH01183458A publication Critical patent/JPH01183458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title material having high density, low thermal expansion coefficient and improved heat-resistance, strength and thermal shock resistance, by reacting petalite, spodumene, etc., with a spinel under heating. CONSTITUTION:A material having low thermal expansion coefficient, containing a composite texture composed of beta-spodumene and cordierite as the crystal phase and free from isolated silica can be produced by mixing petalite, spodumene, etc., with a natural raw material (e.g., talc or alumina) or a synthetic raw material having a composition of formula Li2O.Al2O3.nSiO2 (n>4) and calcining the mixture at 1250-1280 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶相としてβ−スポジュメンとコーディエ
ライトとを含み、非晶質遊離シリカを含有しない耐熱性
、耐熱衝撃性性に優れた構造部材に適した緻密質、低熱
膨張性、耐熱性、高強度。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a method for producing a material containing β-spodumene and cordierite as a crystalline phase, and having excellent heat resistance and thermal shock resistance without containing amorphous free silica. Dense material, low thermal expansion, heat resistance, and high strength suitable for structural members.

耐熱衝撃性にふいて優れた特性を有する低熱膨張性セラ
ミック材料に関する。
This invention relates to a low thermal expansion ceramic material that has excellent properties in terms of thermal shock resistance.

〔従来の技術〕[Conventional technology]

従来、このような特性を有する低熱膨張性材料として、
β−スポジュメン、ユークリプタイト。
Conventionally, as a low thermal expansion material with such characteristics,
β-spodumene, eucryptite.

コーディエライト等の結晶からなる多結晶体、あるいは
それらの組成でガラス質からなるリチウムアルミノ珪酸
塩鉱物の焼結体が知られている。
Polycrystalline bodies consisting of crystals such as cordierite, or sintered bodies of lithium aluminosilicate minerals having a glassy composition are known.

そして、このリチウムアルミノ珪酸塩鉱物の焼結体は、
葉長石、リチア輝石、炭酸リチウム等の天然原料あるい
は合成されたスポジニメン又はユークリプタイト等と、
粘土、珪石等とのリチーアルミナーシリカ系原料及びそ
れらに結晶核形成材を添加することにより製造される。
This sintered body of lithium aluminosilicate mineral is
Natural raw materials such as phyllodespar, spodumene, lithium carbonate, or synthesized spodinimene or eucryptite,
It is manufactured by adding lithium alumina silica-based raw materials such as clay and silica stone and a crystal nucleating agent to them.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来のりチウムアルミノ珪酸塩鉱物からなる低熱膨
張性材料は、特に高温構造部材に適用したとき、耐熱性
に難点があり、また加熱冷却の繰り返しによる収縮と組
織劣化等の問題があり、この問題が実用化を阻む原因と
なっている。
This conventional low thermal expansion material made of lithium aluminosilicate mineral has problems in heat resistance, especially when applied to high-temperature structural members, and also has problems such as shrinkage and structural deterioration due to repeated heating and cooling. This is a cause that hinders practical application.

本発明の目的は、リチウムアルミノ珪酸塩鉱物からなる
低熱膨張性材料本来の低熱膨張特性を維持しつつ、耐熱
性の不足、加熱冷却の繰り返しによる収縮性、組織劣化
等の問題を解決することにある。
The purpose of the present invention is to solve problems such as insufficient heat resistance, shrinkage due to repeated heating and cooling, and structural deterioration while maintaining the inherent low thermal expansion characteristics of a low thermal expansion material made of lithium aluminosilicate minerals. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来のりチウムアルミノ珪酸塩鉱物からなる
低熱膨張性材料の上記の種々の問題点がその焼結過程で
原料中のシリカ成分が非晶質として焼成体中に残存する
ことに起因するという知見の下で完成したものである。
The present invention proposes that the above-mentioned various problems of conventional low thermal expansion materials made of lithium aluminosilicate minerals are caused by the fact that the silica component in the raw material remains in the fired body as amorphous during the sintering process. It was completed based on knowledge.

とくに、この遊離シリカによる問題は結晶相がβ−スポ
ジュメンとコーディエライトとからなる複合組織を有す
るときに影響が大きく、逆にβ−スポジュメンとコーデ
ィエライトとからなる複合組織構造から遊離シリカを排
除することによって、緻密質、低熱膨張性、耐熱性、高
強度、耐熱衝撃性等の従来にない優れた特性を兼ね備え
た低熱膨張性材料を得たものである。
In particular, this problem caused by free silica has a large effect when the crystal phase has a composite structure consisting of β-spodumene and cordierite. By eliminating these materials, we have obtained a low thermal expansion material that has unprecedented properties such as denseness, low thermal expansion, heat resistance, high strength, and thermal shock resistance.

本発明による低熱膨張性材料は、たとえば天然原料であ
る葉長石、リチア輝石等とスピネルとを出発原料とし、
且つ葉長石、リチア輝石等の加熱分解過程で生じて(る
シリカからコーディエライトが生成する時の化学量論に
相当するスピネル量を配合したものを通常の方法により
成形及び焼成することにより得られる。
The low thermal expansion material according to the present invention uses natural raw materials such as feldspar, spodumene, etc. and spinel as starting materials,
In addition, it is obtained by molding and firing in a conventional manner a spinel containing an amount of spinel corresponding to the stoichiometry when cordierite is produced from silica produced in the thermal decomposition process of phyllodespar, spodumene, etc. It will be done.

配合物成形体の焼成条件としては、焼結温度、時間は出
発原料である葉長石、リチア輝石等とスピネルとの配合
比率あるいは原料粒度により適宜選択する必要があり、
焼成雰囲気は通常大気中で充分であり、雰囲気はガス種
類あるいはそれらの圧力等を特に限定する必要はない。
As for the firing conditions for the compound molded body, the sintering temperature and time need to be appropriately selected depending on the blending ratio of the starting materials such as feldspar, spodumene, etc. and spinel, or the particle size of the raw material.
The firing atmosphere is usually air, and there is no need to particularly limit the types of gases or their pressures.

ただし、減圧雰囲気にすると、Li2O成分の分解蒸発
が生じ得るので、焼結体の結晶相が目的とするものにな
らず、好ましくない。
However, if a reduced pressure atmosphere is used, the Li2O component may be decomposed and evaporated, so the crystalline phase of the sintered body will not be the desired one, which is not preferable.

なお、葉長石、リチア輝石等とスピネルとの組合せ以外
でも、焼結過程で生じてくるシリカ成分と反応してコー
ディエライトとなるような成分であれば、そのようなも
のでも出発原料として充分である。たとえば、葉長石、
リチア輝石等とタルクヌびアルミナ等を出発原料とする
ことができる。
In addition to the combination of phyllodespar, spodumene, etc. and spinel, any component that reacts with the silica component produced during the sintering process to form cordierite may be sufficient as a starting material. It is. For example, leaf feldspar,
Lithium pyroxene, etc., talcium alumina, etc. can be used as starting materials.

あるいはまた、合成原料としてLi、O・At’ 20
3・ns+cL (n > 4)の組成からなるものに
、スピネル、タルク、アルミナ等を配合したものを出発
原料とすることも可能である。
Alternatively, Li, O・At' 20 as a synthetic raw material
It is also possible to use as a starting material a material having a composition of 3.ns+cL (n > 4) mixed with spinel, talc, alumina, etc.

〔実施例〕〔Example〕

結晶相がペタライトである原料粉末とスピネルとの種々
の比率の配合物について、鋳込成形法により成形体を作
製した後、焼成温度1250〜1280℃により焼結体
を作製した。それらの基本特性として、焼結体を構成す
る結晶相と熱膨張率とを測定した結果を第1表に示す。
Compounds of raw material powder whose crystal phase is petalite and spinel in various ratios were produced by a cast molding method, and then sintered bodies were produced at a firing temperature of 1250 to 1280°C. Table 1 shows the results of measuring the crystal phases and thermal expansion coefficients constituting the sintered bodies as their basic properties.

表中Q印を付したものは本発明によるものである。Those marked with Q in the table are those according to the present invention.

ペタライトとスピネルとの配合比率が適性な範囲である
場合は、焼結体結晶がβ−スポジニメンとコープ、イエ
ライトとからなる多結晶複合焼結体が得られる。それら
の熱膨張率は1000℃で0.25%未満であり、非常
に低熱膨張性であることがわかる。
When the blending ratio of petalite and spinel is within an appropriate range, a polycrystalline composite sintered body is obtained in which the sintered body crystals are composed of β-sposinimene, cope, and yerite. Their coefficient of thermal expansion is less than 0.25% at 1000°C, indicating that they have very low thermal expansion.

配合比率が適性な範囲を外れてスピネル量が少ない場合
は、焼結体結晶相にクリストバライトが残存しているた
めに、従来技術により製造されるリチウムアルミナ珪酸
塩鉱物からなる低熱膨張性材料と同様の問題点が生じる
If the blending ratio is out of the appropriate range and the amount of spinel is small, cristobalite remains in the crystalline phase of the sintered body, which is similar to the low thermal expansion material made of lithium alumina silicate mineral produced by conventional technology. The problem arises.

配合比率が適性な範囲を外れてスピネル量が多い場合は
、焼結体結晶相がβ−スポジュメンとコーディエライト
とからなる多結晶複合焼結体が得られるが、スピネルが
結晶相として残留しているため、目的とする低熱膨張性
が得られない。
If the blending ratio is out of the appropriate range and the amount of spinel is large, a polycrystalline composite sintered body whose crystalline phase is β-spodumene and cordierite will be obtained, but the spinel will remain as a crystalline phase. Therefore, the desired low thermal expansion cannot be achieved.

焼結体のその他の特性値を第2表に示す。Other characteristic values of the sintered body are shown in Table 2.

表かられかるように、本発明による多結晶複合体(試料
N11L2,3.4)は、原料のペタライトが分解して
生成するシリカがスピネルと反応してコーディエライト
に変化してしまう結果、遊離シリ力を全く含有しないも
ので、充分に緻密であり、曲げ強さ及び熱衝撃抵抗性は
きわめて良好であった。
As can be seen from the table, in the polycrystalline composite according to the present invention (sample N11L2, 3.4), the silica produced by decomposition of the raw material petalite reacts with spinel and changes into cordierite. It contained no free silica, was sufficiently dense, and had very good bending strength and thermal shock resistance.

第  1  表 (以下この頁余白) 第2 表 ※水中投下急冷法による曲げ強さの低下から評価〔発明
の効果〕 本発明の低熱膨張性多結晶複合焼結体は、以下のような
効果をもたらす。
Table 1 (hereinafter referred to as the margin of this page) Table 2 *Evaluation based on the decrease in bending strength by the underwater quenching method [Effects of the invention] The low thermal expansion polycrystalline composite sintered body of the present invention has the following effects. bring.

イ、焼結体を構成する結晶相に結晶質又は非晶質の遊離
シリカが含まれていないために、加熱冷却の繰り返しに
よる収縮1組織劣化等の問題が解消される。
B. Since the crystalline phase constituting the sintered body does not contain crystalline or amorphous free silica, problems such as shrinkage and structural deterioration due to repeated heating and cooling are solved.

口、結晶相がβ−スポジュメンとコーディエライトとか
らなっているために、熱膨張率が非常に小さい。
Since the crystal phase consists of β-spodumene and cordierite, the coefficient of thermal expansion is extremely small.

ハ、上記2つの結晶相からなる複合組織を有しているた
めに、機械的強度が良好であり、低熱膨張性と相俟って
熱衝撃抵抗性に優れている。
C. Since it has a composite structure consisting of the above two crystal phases, it has good mechanical strength, and combined with low thermal expansion, it has excellent thermal shock resistance.

特許出願人    黒 崎 窯 業 株式会社(ほか1
名)
Patent applicant: Kurosaki Ceramics Co., Ltd. (and 1 other
given name)

Claims (3)

【特許請求の範囲】[Claims] 1.結晶相がβ−スポジュメンとコーディエライトとか
らなる複合組織を有し、且つ遊離シリカを含有しないこ
とを特徴とする低熱膨張性材料。
1. A low thermal expansion material characterized in that the crystal phase has a composite structure consisting of β-spodumene and cordierite, and does not contain free silica.
2.複合組織が焼結過程で生じてくるシリカ成分と反応
してコーディエライトとなるような成分から得られたも
のであることを特徴とする特許請求の範囲第1項に記載
の低熱膨張性材料。
2. The low thermal expansion material according to claim 1, wherein the composite structure is obtained from a component that reacts with a silica component generated during the sintering process to form cordierite. .
3.複合組織が焼結過程で生じてくるシリカ成分と反応
してコーディエライトとなるような成分が、葉長石,リ
チア輝石等とタルク及びアルミナ等の天然原料、あるい
はLi_2O・Al_2O_3・nSiO_2(n>4
)の組成からなる合成原料であることを特徴とする特許
請求の範囲第2項に記載の低熱膨張性材料。
3. Components whose composite structure reacts with the silica component generated during the sintering process to form cordierite are phyllodespar, spodumene, etc., natural raw materials such as talc and alumina, or Li_2O・Al_2O_3・nSiO_2 (n> 4
2. The low thermal expansion material according to claim 2, which is a synthetic raw material having the composition:
JP63006589A 1988-01-13 1988-01-13 Material having low expansion coefficient Pending JPH01183458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006589A JPH01183458A (en) 1988-01-13 1988-01-13 Material having low expansion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006589A JPH01183458A (en) 1988-01-13 1988-01-13 Material having low expansion coefficient

Publications (1)

Publication Number Publication Date
JPH01183458A true JPH01183458A (en) 1989-07-21

Family

ID=11642518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006589A Pending JPH01183458A (en) 1988-01-13 1988-01-13 Material having low expansion coefficient

Country Status (1)

Country Link
JP (1) JPH01183458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508820A (en) * 2001-05-17 2005-04-07 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic media
JP2009263189A (en) * 2008-04-28 2009-11-12 Nikko Co Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same
CN112979166A (en) * 2019-12-02 2021-06-18 北京建筑材料科学研究总院有限公司 High-temperature-resistant low-expansion glaze coating, glaze high-temperature-resistant material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508820A (en) * 2001-05-17 2005-04-07 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic media
JP2009263189A (en) * 2008-04-28 2009-11-12 Nikko Co Low temperature-fired high strength low thermal expansion ceramic, and method for producing the same
CN112979166A (en) * 2019-12-02 2021-06-18 北京建筑材料科学研究总院有限公司 High-temperature-resistant low-expansion glaze coating, glaze high-temperature-resistant material and preparation method thereof

Similar Documents

Publication Publication Date Title
US4063955A (en) Low thermal expansion ceramics of cordierite solid solution and method for producing same
US5332703A (en) Batch compositions for cordierite ceramics
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
US2776896A (en) Ceramic composition having thermal shock resistance
US6066585A (en) Ceramics having negative coefficient of thermal expansion, method of making such ceramics, and parts made from such ceramics
JPS6035312B2 (en) Method for producing low-expansion cordierite ceramics
JPS6317793B2 (en)
US5288672A (en) Ceramics based on aluminum titanate, process for their production and their use
US4818729A (en) Process for preparing stabilized high cristobalite
US5393472A (en) Method of producing wollastonite & ceramic bodies containing wollastonite
US3279930A (en) Ceramic product and its preparation
JPH01183458A (en) Material having low expansion coefficient
JPS6156184B2 (en)
JP2003238238A (en) Ceramics sintered compact, glaze, and manufacturing method for ceramics sintered compact
JP2619832B2 (en) Aluminum titanate ceramics and method for producing the same
JPH01183463A (en) Multiple sintered product of aluminum titanate/ beta-spodumene/mullite and production thereof
US3549394A (en) Low thermal expansion ceramic material
US3269848A (en) Calcium aluminate shapes
US2332343A (en) Ceramic material
Kichkailo et al. Lithium-bearing heat-resistant ceramics (a review)
JPH01183459A (en) Production of material having low expansion coefficient
JPH0224779B2 (en)
JP2984317B2 (en) Method for producing zeolite composition
JP3017829B2 (en) Calcium silicate sintered body and method for producing the same
JPH0226863A (en) Cordierite-based ceramic and production thereof