JPH01183413A - Spring and production thereof - Google Patents

Spring and production thereof

Info

Publication number
JPH01183413A
JPH01183413A JP63007254A JP725488A JPH01183413A JP H01183413 A JPH01183413 A JP H01183413A JP 63007254 A JP63007254 A JP 63007254A JP 725488 A JP725488 A JP 725488A JP H01183413 A JPH01183413 A JP H01183413A
Authority
JP
Japan
Prior art keywords
spring
silicon carbide
temperature
core
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007254A
Other languages
Japanese (ja)
Inventor
Yasuhiro Obara
小原 庸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP63007254A priority Critical patent/JPH01183413A/en
Publication of JPH01183413A publication Critical patent/JPH01183413A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties

Abstract

PURPOSE:To obtain a spring having excellent heat resistance, durability, antioxidant properties, etc., by forming a carbonaceous material into the shape of the spring, infusibilizing the resultant formed product, calcining the infusibilized molded product by heating, reacting the calcined molded product with carbon monoxide at a prescribed temperature and converting carbon into silicon carbide. CONSTITUTION:A kneaded starting raw material for forming a carbonaceous material is formed into the prescribed shape of a spring (e.g., coil form). The resultant formed product is then infusibilized and subsequently calcined at 700-3000 deg.C while being heated. The obtained springy material is subsequently reacted with carbon monoxide at 1200-2300 deg.C temperature to convert part or all of a wiry body 2 or plate body of the springy material into silicon carbide and form a part 21 of converted silicon carbide. Thereby, the aimed spring is obtained. Furthermore, the resultant spring is heated in an oxidizing atmosphere to oxidize and remove a part 22 unconverted into the silicon carbide. As a result, the spring having a hollow part 23 in the wiry body 2 can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性、耐久性、耐酸化性等に優れた。炭化
珪素に転化してなる。ばね及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent heat resistance, durability, oxidation resistance, etc. It is converted to silicon carbide. This invention relates to a spring and its manufacturing method.

〔従来技術〕[Prior art]

従来、高温下で使用する耐熱性に優れたばねとしては、
ニッケルベース耐熱合金製のばね、ステンレス鋼製のば
ね1部分安定化ジルコニア製のばね、窒化珪素製のコイ
ルばね、炭素製のばねなどが知られている。
Conventionally, springs with excellent heat resistance used at high temperatures include:
Springs made of nickel-based heat-resistant alloys, springs made of stainless steel, springs made of partially stabilized zirconia, coil springs made of silicon nitride, springs made of carbon, etc. are known.

上記ニッケルベース耐熱合金製のばねは、約600℃の
温度領域まで耐え得ることから、原子力発生装置用又は
高温パルプのばねとして使用されている。又、上記ステ
ンレス鋼製のばねは、約400℃の温度領域まで耐え得
ることから、高温度領域で常用されている。
The springs made of the above-mentioned nickel-based heat-resistant alloy can withstand temperatures up to about 600° C., and are therefore used for nuclear power generators or as springs for high-temperature pulp. Further, the stainless steel springs mentioned above are commonly used in high temperature ranges because they can withstand temperatures up to about 400°C.

一方、上記部分安定化ジルコニア製のばねは。On the other hand, the above spring made of partially stabilized zirconia.

使用上限温度が約150℃であり、上記2つのばねより
もその耐熱性は劣り、約150℃以下では使われている
。また、上記窒化珪素製のばねは。
The upper limit temperature for use is about 150°C, and its heat resistance is inferior to the above two springs, so it is used at temperatures below about 150°C. Also, the above spring made of silicon nitride.

最高使用温度が約1000℃である。その他に。The maximum operating temperature is approximately 1000°C. Other.

炭素製のばねは、1000℃以上の温度領域においても
、熱間強度は低下することはないが、非酸化性雰囲気で
なければ使用することができない。
Carbon springs do not lose their hot strength even in a temperature range of 1000° C. or higher, but they cannot be used unless they are in a non-oxidizing atmosphere.

このため、近年炭素材料に耐酸化性を付与する方法が種
々開発されている0例えば、特開昭56−140075
号公報には、生コークスにセラミックス粉体を混合した
原料粉を用いた複合材料が開示されている。
Therefore, in recent years, various methods for imparting oxidation resistance to carbon materials have been developed.
The publication discloses a composite material using raw material powder obtained by mixing raw coke with ceramic powder.

〔解決すべき課題〕〔Problems to be solved〕

しかしながら、上記従来のいずれのばねも、1000℃
以上の高温度領域における酸化性雰囲気下では使用する
ことができない。
However, all of the above conventional springs have a temperature of 1000°C.
It cannot be used in an oxidizing atmosphere in the above high temperature range.

即ち、上記ニッケルベース耐熱合金製及びステンレス鋼
製のいずれの金属ばねも、上述のごとく。
That is, both the metal springs made of the nickel-based heat-resistant alloy and stainless steel are as described above.

その耐熱温度は600℃以下であるため、それ以上の温
度で使用される高温加熱炉又は熱機関等の防振用ばね又
はバルブ用ばねなどに使用できない。
Since its heat resistance temperature is 600° C. or lower, it cannot be used for vibration isolation springs or valve springs in high-temperature heating furnaces or heat engines that are used at temperatures higher than that.

また、上記ジルコニア製及び窒素珪素製のセラミックば
ねは、1000℃以上の高温度領域では焼結助剤等が液
相を形成し始め、急激に強度劣化を起したり、急熱急冷
すると熱衝撃によるクランクが発生する。
In addition, in the above-mentioned ceramic springs made of zirconia and nitrogen silicon, sintering aids, etc. begin to form a liquid phase in the high temperature range of 1000 degrees Celsius or higher, causing rapid strength deterioration, and thermal shock when rapidly heated and cooled. A crank occurs.

一方、上記炭素製のばねは、非酸化性雰囲気下では、1
000℃以上の高温度領域においては強度劣化を起こす
ことなく、むしろ約2500℃までは強度は徐々に増加
する傾向にある。しかし。
On the other hand, the above carbon spring has 1
In a high temperature range of 000°C or higher, the strength does not deteriorate, but rather the strength tends to gradually increase up to about 2500°C. but.

酸化性雰囲気下では、500℃以上になると容易に酸化
され1重量の減少(酸化消耗ともいう)を起こす、その
ため、500℃以上の酸化性雰囲気下では1強度が急激
に劣下して使用に耐えることができない。
In an oxidizing atmosphere, if the temperature exceeds 500°C, it will easily oxidize and cause a loss of weight (also called oxidation consumption). Therefore, in an oxidizing atmosphere of 500°C or higher, the strength of the product will rapidly decrease and it cannot be used. I can't stand it.

また、上記公報に記載の複合材料は、その炭素部分が酸
化性雰囲気から完全に保護されていないため、耐酸化性
は十分でない。
Furthermore, the composite material described in the above publication does not have sufficient oxidation resistance because its carbon portion is not completely protected from an oxidizing atmosphere.

ところで、コイルばねは、そのばね定数の設定に当り、
ばねを構成する線状体の太さ1例えば直径等を変えたり
、線状体を多層構造にすることにより、上記ばね定数の
値をある範囲内で自由に選定することができる。
By the way, when setting the spring constant of a coil spring,
The value of the spring constant can be freely selected within a certain range by changing the thickness, for example, the diameter, of the linear body constituting the spring, or by forming the linear body into a multilayer structure.

また、ばねの耐熱衝撃性を高め、同時に重量を軽くする
ためには、芯部を中空にした線状体とすることが考えら
れる。
Furthermore, in order to improve the thermal shock resistance of the spring and reduce its weight at the same time, it is conceivable to use a linear body with a hollow core.

しかしながら、従来の各種ばねでは、材料の特性上、線
状体を強固な多層構造としたり、芯部を中空にすること
は技術上極めて困難であった。
However, in various conventional springs, due to the characteristics of the materials, it is technically extremely difficult to form the linear body into a strong multilayer structure or to make the core portion hollow.

本発明は、かかる従来技術の課題に鑑みてなされたもの
で、耐熱性、耐久性、耐酸化性等に優れ。
The present invention was made in view of the problems of the prior art, and has excellent heat resistance, durability, oxidation resistance, etc.

しかもばねを構成する線状体等の芯部に中空部を容易に
形成できる。ばね及びその製造方法を提供しようとする
ものである。
Furthermore, a hollow portion can be easily formed in the core of the linear body or the like constituting the spring. The present invention aims to provide a spring and a method for manufacturing the same.

〔課題の解決手段〕[Means for solving problems]

本発明は、炭素材料を基材としてなり、所定のばね形状
に賦形したばねの線状体又は板状体の一部又は全部が炭
化珪素に転化してなることを特徴とするばねにある。
The present invention resides in a spring made of a carbon material as a base material, characterized in that part or all of a linear body or a plate body of the spring shaped into a predetermined spring shape is converted into silicon carbide. .

しかして1本発明にかかるばねは、炭素材料を基材とし
ており、この基材を所定のばね形状に賦形したものを、
その一部又は全部が炭化珪素に転化したものである。
Therefore, the spring according to the present invention uses a carbon material as a base material, and this base material is shaped into a predetermined spring shape.
Part or all of it is converted to silicon carbide.

上記基材とは、出発材料という意味である。The above-mentioned base material means a starting material.

上記炭化珪素に転化したばねは、その態様として、第1
図、第2図、第3図に示す3つの場合がある。
The above-mentioned spring converted to silicon carbide has a first aspect.
There are three cases shown in FIG. 2, FIG. 3, and FIG.

また、上記ばねを製造する方法としては、炭素材料を形
成する出発原料混練物を所定のばね形状に賦形し、然る
後に、その賦形物を不融化し、その不融化物を700〜
3000℃の温度で加熱焼成する第1工程と。
In addition, as a method for manufacturing the above-mentioned spring, a starting material kneaded material forming a carbon material is shaped into a predetermined spring shape, and then the shaped material is infusible, and the infusible material is
A first step of heating and firing at a temperature of 3000°C.

該第1工程によって得たばね形状物を1200〜230
0℃の温度領域において、一酸化珪素と反応させ炭素材
料からなるばね形状物を炭化珪素に転化する第2工程と
からなることを特徴とするばねの製造方法がある。
The spring-shaped product obtained in the first step has a temperature of 1200 to 230
There is a method for manufacturing a spring characterized by comprising a second step of converting a spring-shaped object made of a carbon material into silicon carbide by reacting with silicon monoxide in a temperature range of 0.degree.

他の製造方法としては、炭素材料を形成する出発原料混
線物を所定のばね形状に賦形し、然る後に、その賦形物
を不融化し、その不融化物を700〜3000℃の温度
で加熱焼成する第1工程と。
Another manufacturing method is to shape the starting raw material mixture forming the carbon material into a predetermined spring shape, then infusible the shaped product, and heat the infusible material at a temperature of 700 to 3000°C. The first step is heating and firing.

該第1工程によって得たばね形状物を1200〜230
0℃の温度下で、一酸化珪素と反応させて芯部以外の表
層部を炭化珪素に転化する第2工程と、該第2工程によ
って得たばね形状物を酸化性雰囲気中で加熱し、芯部の
炭素材料からなる部分を酸化除去する第3工程とからな
ることを特徴とするばねの製造方法がある。
The spring-shaped product obtained in the first step has a temperature of 1200 to 230
A second step of converting the surface layer other than the core into silicon carbide by reacting with silicon monoxide at a temperature of 0°C, and heating the spring-shaped article obtained in the second step in an oxidizing atmosphere to form the core. There is a method for manufacturing a spring characterized by comprising a third step of oxidizing and removing a portion made of a carbon material.

しかして、上記ばねの形状としては、コイルばね、渦巻
ばね、板ばね9重ねばね、竹の子ばね等の各種のものが
ある。また、該ばねは、前述の通り、その線状体又は板
状体の表層部以外の芯部が中空部のものがある。また、
該ばねはその全部又は一部が炭化珪素に転化されている
There are various shapes of the springs, such as a coil spring, a spiral spring, a leaf spring, a bamboo spring, and the like. Further, as described above, some springs have a hollow core portion other than the surface layer of the linear body or plate body. Also,
The spring is wholly or partially converted to silicon carbide.

上記炭素材料は、炭素質材料と黒鉛質材料との両材料を
包含した広義の意味における炭素材という意味のもので
ある。
The above-mentioned carbon material is a carbon material in a broad sense that includes both carbonaceous materials and graphite materials.

そして、上記黒鉛質材料は、大別して、天然と人造のも
のとがあり、一般には層状構造をしている。
The above-mentioned graphite materials can be broadly classified into natural and artificial materials, and generally have a layered structure.

ここで、天然黒鉛としては9.りん状黒鉛、土状黒鉛、
キッシ直黒鉛などがあげられる。その他には、上記人造
黒鉛を処理した膨張黒鉛も使用することができる。
Here, natural graphite is 9. Phosphorous graphite, earthy graphite,
Examples include Kissi direct graphite. In addition, expanded graphite obtained by processing the above-mentioned artificial graphite can also be used.

上記炭素質材料は、主として、各種有機質材料を通常1
000〜1600℃の温度で加熱焼成したものである。
The above-mentioned carbonaceous material is mainly composed of various organic materials.
It is heated and fired at a temperature of 000 to 1600°C.

そして、これを更に2600〜3OOO℃の高温度領域
で熱処理して、その大半を黒鉛化したものと、黒鉛化し
ないものとがある。
Then, this is further heat-treated in a high temperature range of 2600 to 300°C to graphitize most of it, and some are not graphitized.

上記転化は、一般にはある物質自体が他の物質。In the above conversion, a substance itself is generally converted into another substance.

特に気相物質と化学反応を起こして、外形、ポロシティ
−は変化せず別物質に変化することをいう。
In particular, it refers to a substance that undergoes a chemical reaction with a gaseous substance and changes into a different substance without changing its external shape or porosity.

本発明では、上記炭素材料と一酸化珪素ガスとを下記の
化学式のように反応させて、SiC化することをいう。
In the present invention, the carbon material and silicon monoxide gas are reacted as shown in the chemical formula below to form SiC.

2 C+S i O=S i C+CO具体的には、後
に詳述するごとく、多孔性材料である炭素材料中にSi
Oを拡散浸透させることにより行う。
2 C+S i O=S i C+CO Specifically, as will be detailed later, Si is present in the porous carbon material.
This is done by diffusing and infiltrating O.

上記線状体又は板状体は、その断面形状は円形。The linear body or plate-shaped body has a circular cross-sectional shape.

楕円形、多角形などの各種形状であって、その形状は特
に限定するものではない。
The shape may be various shapes such as an ellipse or a polygon, and the shape is not particularly limited.

上記出発原料混練物は、コークス、カーボンブラック、
黒鉛材料粉、ピッチ類、繊維状物1合成樹脂などの各種
材料の1種又は2種以上のものを200〜300℃の加
熱下で加熱しながら、混練機等で混合したものである。
The above starting material kneaded material includes coke, carbon black,
One or more of various materials such as graphite material powder, pitch, and fibrous material 1 synthetic resin are mixed in a kneader or the like while being heated at 200 to 300°C.

また、上記コークスとしては、ピッチコークス。Further, the above-mentioned coke is pitch coke.

石油コークス等がある。また、カーボンブラックとして
は、チャンネルスブラック、ファネスブラック、ランプ
ブラック、サーマルブラック等がある。また、ピッチ類
としては、コールタールピッチ、石油ピッチ等がある。
There are petroleum coke, etc. Examples of carbon black include channel black, furnace black, lamp black, and thermal black. Further, pitches include coal tar pitch, petroleum pitch, and the like.

また、繊維状物としては、炭素繊維、炭化珪素繊維等が
ある。また1合成樹脂としては、フェノール樹脂、フラ
ン樹脂。
Furthermore, examples of fibrous materials include carbon fibers and silicon carbide fibers. Examples of synthetic resins include phenolic resin and furan resin.

ポリアミド、ポリイミド等の各種高分子物質がある。There are various polymer materials such as polyamide and polyimide.

賦形とは、出発原料混練物を押出成形機等で線状体又は
板状体に一次成形したものを1例えば。
Shaping refers to, for example, a mixture of starting materials that is primarily formed into a linear or plate-like body using an extrusion molding machine or the like.

コイル状又は板ばね等の各種の形状に二次成形すること
をいう。
This refers to secondary forming into various shapes such as coils or leaf springs.

加熱焼成とは、700〜3000℃9特に好ましくは、
1700〜2000℃で炭素化(又は炭化)することを
いう。
Heating and firing refers to 700 to 3000°C9, particularly preferably,
It refers to carbonization (or carbonization) at 1700 to 2000°C.

このようにして得られた炭素材料は、各種形状のばね形
状体に成形固定したままで、一酸化珪素ガスをその内部
に拡散浸透させ炭素質材料の全部又は一部を炭化珪素に
転化する。全部炭化珪素に転化したものは、第1図に示
すごとく、線状体の断面全体が炭化珪素であり、これを
炭化珪素転化部という、また、一部炭化珪素に転化した
ものは。
While the carbon material thus obtained is molded and fixed into spring-shaped bodies of various shapes, silicon monoxide gas is diffused into and permeated thereinto to convert all or part of the carbonaceous material into silicon carbide. As shown in Fig. 1, the whole cross section of the linear body is silicon carbide, and this is called the silicon carbide converted part, and the part that has been partially converted to silicon carbide is the one that is completely converted to silicon carbide.

第2図に示すごとく、線状体の断面の芯部に炭素質材料
が残留したものであり、このような芯部を炭化珪素未転
化部という、即ち1表層部21が炭化珪素であり、また
芯部22が炭素材料である。
As shown in FIG. 2, carbonaceous material remains in the core portion of the cross section of the linear body, and such a core portion is called an unconverted silicon carbide portion, that is, the first surface layer portion 21 is silicon carbide, Further, the core portion 22 is made of carbon material.

いわゆる二層構造のものである。It has a so-called two-layer structure.

また、上記炭化珪素に転化する方法としては。Further, as a method for converting the above silicon carbide.

例えば、炭素材料からなるコイル状物を、一酸化珪素ガ
ス雰囲気中で、1200〜2300℃の温度で加熱して
行うことができる。2300℃を超えると炭化珪素に転
化した層が分解を起こし始めるので好ましくない。
For example, it can be carried out by heating a coiled material made of a carbon material at a temperature of 1200 to 2300° C. in a silicon monoxide gas atmosphere. If the temperature exceeds 2300°C, the layer converted to silicon carbide starts to decompose, which is not preferable.

上記一酸化珪素ガスは、珪素粉と二酸化珪素粉との混合
物、炭素粉と二酸化珪素粉との混合物。
The silicon monoxide gas is a mixture of silicon powder and silicon dioxide powder, or a mixture of carbon powder and silicon dioxide powder.

炭化珪素と二酸化珪素粉との混合物を1400〜230
0℃に加熱して発生させることができる。
A mixture of silicon carbide and silicon dioxide powder at a temperature of 1400 to 230
It can be generated by heating to 0°C.

しかして2本発明にかかるばねは、その芯部まで完全に
炭化珪素に転化する態様(第1実施例。
Thus, the spring according to the present invention has an embodiment in which the core thereof is completely converted into silicon carbide (first embodiment).

第1図参照)と、その芯部まで完全に炭化珪素に転化す
ることなく、芯部が未転化部である態様(第2実施例、
第2図参照)と、上記未転化部の芯部のみを酸化除去し
て芯部に中空部を形成する態様(第3実施例、第3図参
照)とに大別される。
(see Figure 1), and an embodiment in which the core is not completely converted to silicon carbide and the core is an unconverted part (a second embodiment,
(see FIG. 2) and a mode in which only the core of the unconverted portion is oxidized and removed to form a hollow portion in the core (third embodiment, see FIG. 3).

上記中空部形成に当たって未転化部を酸化除去する方法
としては、空気中で600〜1500℃の温度下で、上
記コイル状物を加熱した直後に加熱炉から取り出して空
気中に放置する方法がある。
As a method for oxidizing and removing the unconverted portion when forming the hollow portion, there is a method of heating the coiled material in the air at a temperature of 600 to 1500°C, and then immediately taking it out of the heating furnace and leaving it in the air. .

この方法によれば9表層部の炭化珪素転化部は多孔質で
炭化珪素転化前の炭素質材料のポロシティ−と同一であ
るため、芯部の未転化部にまで拡散浸透して来た空気(
酸素)と選択的に反応して一酸化炭素ガス(CO)とな
り酸化除去される。
According to this method, the silicon carbide converted portion in the surface layer is porous and has the same porosity as the carbonaceous material before silicon carbide conversion, so the air that has diffused and penetrated into the unconverted portion of the core (
It selectively reacts with oxygen) to form carbon monoxide gas (CO) and is removed by oxidation.

また、他の炭化珪素転化法としては、上記一酸化珪素の
発生源材料9例えば、炭素粉と二酸化珪素粉との混合物
中に、炭素質材料からなるばね形状物を一緒に埋め込ん
で加熱処理する方法もある。
In addition, as another method for converting silicon carbide, a spring-shaped object made of a carbonaceous material is embedded in a mixture of the above-mentioned silicon monoxide source material 9, for example, carbon powder and silicon dioxide powder, and then heat-treated. There is a way.

〔作用及び効果〕[Action and effect]

本発明のばねにおいては、炭素材料からなるばね形状物
の一部又は全部を炭化珪素に転化させたものである。即
ち、多孔性材料である炭素材料からなるばね形状物の表
層へ一酸化珪素ガスを浸透拡散させ、炭素材料からなる
ばね形状物自体と一酸化珪素ガスとを反応させる気相−
固相反応を応用したもので、炭化珪素転化部と芯部の未
転化部の境界は完全な連続の組織になっている。そのた
め、CVD法やメツキ、塗布のような方法を使って耐熱
物質を被覆したもののように、被覆膜と基板がファン・
デル・ワールス力等による物理的接着のみで結合したも
のとは根本的に違っている。
In the spring of the present invention, part or all of the spring-shaped material made of carbon material is converted to silicon carbide. That is, a gas phase in which silicon monoxide gas is permeated and diffused into the surface layer of a spring-shaped object made of a porous carbon material, and the spring-shaped object itself made of a carbon material is reacted with the silicon monoxide gas.
This is an application of solid phase reaction, and the boundary between the silicon carbide converted area and the unconverted area of the core has a completely continuous structure. Therefore, in cases where the coating film and substrate are coated with a heat-resistant material using methods such as CVD, plating, or coating,
This is fundamentally different from those bonded only by physical adhesion such as the De Waals force.

したがって、高温下で繰り返し使用しても、ばねの炭化
珪素転化部が剥離や亀裂(クランク)を生ずることはな
い。
Therefore, even if the spring is repeatedly used at high temperatures, the silicon carbide converted portion of the spring will not peel or crack (crank).

また、該ばねを構成する炭化珪素部は、その生成原理か
らも明らかなように、焼結助剤等の添加物を加える必要
がない、そのため、1000℃以上の高温度領域におい
ても、従来のセラミックス製のばねのように、焼結助剤
等の液相化による機械的強度の急激な劣化は起こらず、
むしろ逆に2500℃までは温度の上昇と共に機械的強
度も増加する。したがって1本発明によれば、1000
℃以上でも高強度を保持しつつ、炭化珪素の特性の一つ
である耐酸化特性を付与した。耐熱性、耐久性、耐酸化
性等に優れたばねを提供することができる。
In addition, as is clear from the principle of its formation, the silicon carbide parts that make up the spring do not require the addition of additives such as sintering aids, so even in the high temperature range of 1000°C or higher, Unlike ceramic springs, there is no sudden deterioration in mechanical strength due to liquefaction of sintering aids, etc.
On the contrary, the mechanical strength increases as the temperature increases up to 2500°C. Therefore, according to the present invention, 1000
It maintains high strength even at temperatures above ℃, while providing oxidation resistance, which is one of the characteristics of silicon carbide. It is possible to provide a spring with excellent heat resistance, durability, oxidation resistance, etc.

一方、ばねの表層部は炭化珪素に転化した部分であり、
また芯部は炭素材料である二層構造の線状体により構成
されたばねにおいては、その表層部の炭化珪素と芯部の
炭素材料の占める割合をいろいろ変えることにより、ば
ね特性を調整できる。
On the other hand, the surface layer of the spring is the part converted to silicon carbide,
In addition, in a spring constructed of a two-layer linear body whose core is a carbon material, the spring characteristics can be adjusted by varying the ratio of silicon carbide in the surface layer to the carbon material in the core.

これにより、1000℃以上の苛酷な条件下でも各分野
で広く利用できる。
As a result, it can be widely used in various fields even under severe conditions of 1000°C or higher.

その他の態様として、ばねの表層部は炭化珪素に転化し
た部分であり、また芯部は中空にした部表層部は炭素材
料と同じ多孔性であると共に、その断面は円筒形状であ
る。そのため、熱衝撃に対して強く2重量も軽くするこ
とができ約2000℃までの急熱、またこの温度から約
500℃まで急冷するといった過酷な条件で使われる場
合も。
In another embodiment, the surface layer of the spring is a portion converted to silicon carbide, and the core is hollow, and the surface layer has the same porousness as the carbon material and has a cylindrical cross section. As a result, it is resistant to thermal shock, is 2 times lighter in weight, and can be used under harsh conditions such as rapid heating up to about 2,000 degrees Celsius, and rapid cooling from this temperature to about 500 degrees Celsius.

生産性の高い高温炉などに初めて応用することが可能と
なる。
For the first time, this technology can be applied to high-productivity high-temperature furnaces.

また1本発明によれば、ばね形状に賦形した炭素材料を
炭化珪素に転化することにより、その強度を向上するこ
とができる。そのため、ばねの全部を炭化珪素に転化し
た場合、その強度は炭素材料の約4倍になり、いろいろ
な分野におけるばねの設計に当り、安全率を大幅に向上
することができる。
Further, according to the present invention, the strength of the carbon material can be improved by converting the carbon material shaped into a spring shape into silicon carbide. Therefore, if the entire spring is converted to silicon carbide, its strength will be approximately four times that of carbon materials, and the safety factor can be greatly improved when designing springs in various fields.

次に、前記2つ及び3つの工程よりなる製造方法によれ
ば、上記のごとき優れた性能を有するばねを不安定な焼
結条件、成形条件、極めて困難な機械加工条件等を採用
しなくても、比較的簡単な方法によりばねを製造するこ
とができる。
Next, according to the manufacturing method consisting of the two and three steps described above, the springs with the above-mentioned excellent performance do not have to use unstable sintering conditions, molding conditions, extremely difficult machining conditions, etc. The spring can also be manufactured by a relatively simple method.

〔実施例〕〔Example〕

第1実施例 本例は、第1図に示すごとく、全体が炭化珪素に転化し
たコイルばねを製造するものである。
First Embodiment In this embodiment, as shown in FIG. 1, a coil spring entirely converted to silicon carbide is manufactured.

即ち、まず炭素膏剤として1石油コークス10部とラン
プブラック45部と人造黒鉛粉28部と土状黒鉛扮2部
とレゾール型フェノール樹脂との合計100重量部を準
備する。二のほかに、結合材として、コールタールピン
チを49重量部を準備する。そして、これらを2本の2
型混和翼を組合わせ使用する混線機中に入れ、約150
分間部合撹拌した。この混合撹拌に際しては、まず、常
温で上記炭素骨材と結合材とを充分に混合する。
That is, first, a total of 100 parts by weight of 10 parts of petroleum coke, 45 parts of lamp black, 28 parts of artificial graphite powder, 2 parts of earthy graphite dressing, and resol type phenolic resin is prepared as a carbon plaster. In addition to the above, 49 parts by weight of coal tar pinch was prepared as a binding material. Then, put these into two 2
Approximately 150
Partially stirred for a minute. During this mixing and stirring, first, the carbon aggregate and the binder are sufficiently mixed at room temperature.

次に、これを170℃に上昇した後、約120分間加熱
混合した。
Next, the temperature was raised to 170°C, and then heated and mixed for about 120 minutes.

このようにして得られた出発原料混練物を押出成形機に
より、押出温度が150℃であって、3■直径の穴を有
するダイスを介して、線状体に押し出し成形した。
The kneaded starting material thus obtained was extruded into a linear body using an extrusion molding machine at an extrusion temperature of 150° C. through a die having a 3-diameter hole.

次に、直径20醜のグリル製中子に、この線状体を、第
4図に示すごとく、コイル状のばね形状物を賦形するよ
う巻き取った。このコイル状物を約200℃で24時間
かけて空気中において不融化した。その不融化物を、昇
温速度が約り00℃/時間となるように、約2000″
Cまで昇温して加熱した(第1工程)。
Next, this linear body was wound around a grill core having a diameter of 20 mm so as to form a coiled spring shape as shown in FIG. This coiled material was infusible in air at about 200° C. for 24 hours. The infusible material was heated at a temperature of about 2,000" so that the heating rate was about 00°C/hour.
The temperature was raised to C and heated (first step).

このようにして得た炭素質材料からなるコイル状物を、
珪素粉と二酸化珪素との混合物からなる成形体(モルl
 : 1)2kgを準備し、これらを接触しないように
、同一黒鉛製容器内に入れて密閉する。そして、この黒
鉛製容器を、1950℃の炉内で加熱し、この温度のま
ま約1時間保持した(第2工程)。
The coiled material made of the carbonaceous material obtained in this way is
Molded body made of a mixture of silicon powder and silicon dioxide (mol l
: 1) Prepare 2 kg and place them in the same graphite container and seal to avoid contact. Then, this graphite container was heated in a furnace at 1950° C. and maintained at this temperature for about 1 hour (second step).

以上のように処理した結果、第1図及び第4図に示すご
と(、線状体2の断面形状の表面部と芯部との全体が、
β型炭化珪素に転化した炭化珪素転化部21からなるコ
イル状ばねlを得た。
As a result of the above processing, as shown in FIGS. 1 and 4 (the entire surface and core of the cross-sectional shape of the linear body 2
A coiled spring l consisting of a silicon carbide converted portion 21 converted into β-type silicon carbide was obtained.

上記コイル状ばね1を、加熱炉の防振用ばねとして、空
気中で約1400℃となる高温下で使用した。その結果
、800時間経過後の常温冷却後においても、上記ばね
の変形や亀裂は殆ど認められず、また酸化消耗も生じて
いなかった。
The above coiled spring 1 was used as a vibration isolation spring for a heating furnace at a high temperature of about 1400° C. in air. As a result, even after cooling to room temperature after 800 hours, almost no deformation or cracking was observed in the spring, and no oxidative wear and tear occurred.

また、上記高温下で使用後のばねは、1400℃の温度
領域における剪断強度が常温におけるそれとほぼ同じ値
であった。
Furthermore, the shear strength of the spring after being used at the above-mentioned high temperature in the temperature range of 1400° C. was approximately the same value as that at room temperature.

第2実施例 本例は、第2図に示すごとく、芯部を残し表面部が炭化
珪素に転化したコイルばねを製造するものである。
Second Embodiment In this example, as shown in FIG. 2, a coil spring is manufactured in which the core portion is left and the surface portion is converted to silicon carbide.

本例においては、第1工程までは、上記第1実施例と同
じ処理をして、炭素材料からなるコイル状物を得た。
In this example, up to the first step, the same treatments as in the first example were performed to obtain a coiled product made of a carbon material.

次に、上記コイル状物を炭化珪素粉と二酸化珪素粉との
混合物からなる成形体(モル比に1;2)2kgを準備
し、これと上記炭素材料からなるコイル状物とを接触し
ないように、黒鉛製容器内に入れ密封した。この黒鉛製
の容器を炉内で約1950℃で加熱し、この温度のまま
で約30分間保持した。
Next, prepare 2 kg of the above-mentioned coil-shaped object made of a mixture of silicon carbide powder and silicon dioxide powder (mole ratio: 1:2), and avoid contact between this and the above-mentioned coil-shaped object made of the carbon material. Then, it was placed in a graphite container and sealed. This graphite container was heated in a furnace to about 1950° C. and maintained at this temperature for about 30 minutes.

以上のように処理した結果、第2図及び第4図に示すご
と(、線状体2の断面が、芯部に炭素材料からなる未転
化部22を残し3表面部がβ型炭化珪素に転化した転化
部21を有するコイル状ばね1を得た。
As a result of the above treatment, as shown in FIGS. 2 and 4, the cross section of the linear body 2 is made of β-type silicon carbide, leaving an unconverted part 22 made of carbon material in the core part, and the surface part 3 is made of β-type silicon carbide. A coiled spring 1 having a converted portion 21 was obtained.

上記ばねlを、真空炉の防振用ばねとして、約1550
℃の高温下で使用した。この結果、800時間経過後の
常温冷却後においても、上記ばねの変形、亀裂等は殆ど
認められなかった。また。
The above spring l is used as a vibration isolating spring for a vacuum furnace.
It was used at a high temperature of ℃. As a result, even after cooling to room temperature after 800 hours, almost no deformation, cracks, etc. were observed in the spring. Also.

上記高温下で使用後のばねは、1550℃の温度領域に
おける剪断強度が常温におけるそれの約1゜25倍であ
った。
The shear strength of the spring after being used at the above-mentioned high temperature in the 1550°C temperature range was approximately 1°25 times that at room temperature.

第3実施例 本例は、第3図に示すごとく、全体が炭化珪素に転化さ
れた。中空状のコイルばねを製造するものである。
Third Example In this example, as shown in FIG. 3, the entire material was converted to silicon carbide. It manufactures hollow coil springs.

即ち、上記第2実施例で得られた芯部に炭化珪素の未転
化部22を有するコイル状ばね1を、約800℃の空気
中の酸化性雰囲気の炉内に入れ。
That is, the coiled spring 1 having the unconverted silicon carbide portion 22 in the core obtained in the second embodiment was placed in a furnace in an oxidizing atmosphere in air at about 800°C.

芯部の炭素材料部分を酸化除去した(第3工程)。The carbon material portion of the core was removed by oxidation (third step).

これにより、第3図及び第4図に示すごとく、線条体2
の断面の芯部に中空部23を有するコイル状バネ1を得
た。
As a result, as shown in FIGS. 3 and 4, the striatum 2
A coiled spring 1 having a hollow portion 23 in the core of the cross section was obtained.

上記ばね1を、急熱急冷式の焼結炉の防振用ばねとして
、最高温温度が約1900℃の高温下で使用した。その
結果、800時間後の常温冷却後のばねは、変形、亀裂
は殆ど認められず、また強度並びにばね定数にも何らの
変化も認められなかった。
The above spring 1 was used as a vibration-proofing spring for a sintering furnace of a rapid heating and cooling type at a high temperature with a maximum temperature of about 1900°C. As a result, the spring after being cooled to room temperature after 800 hours showed almost no deformation or cracking, and no change in strength or spring constant.

本例のばねは、芯部に中空部を有するので、該中空部の
直径を転化の反応条件の調節により可変して、一定形状
で、かつ各種のばね定数を有する炭化珪素質のばねを提
供することができる。したがって1本発明によれば、ば
ねの設計上極めて有利な、ばねおよびその製造方法を提
供することができる。
Since the spring of this example has a hollow part in the core, the diameter of the hollow part can be varied by adjusting the conversion reaction conditions to provide silicon carbide springs with a constant shape and various spring constants. can do. Therefore, according to the present invention, it is possible to provide a spring and a method for manufacturing the same that are extremely advantageous in terms of spring design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の実施例にかかるばねを示
し、第1図は第1実施例におけるばねの線状体の断面図
、第2図は、第2実施例にかかるばねの線状体の断面図
、第3図は、第3実施例にかかるばねの線状体の断面図
、第4図はばねの側面図である。 160.コイル状ばね。 218.線状体。 21、、、炭化珪素転化部。 22、、、炭化珪素転化部。 23、、、中空部。
1 to 4 show springs according to embodiments of the present invention, FIG. 1 is a sectional view of a linear body of the spring in the first embodiment, and FIG. 2 is a sectional view of the spring according to the second embodiment. FIG. 3 is a sectional view of the linear body of the spring according to the third embodiment, and FIG. 4 is a side view of the spring. 160. coiled spring. 218. striae. 21. Silicon carbide conversion section. 22. Silicon carbide conversion section. 23. Hollow part.

Claims (5)

【特許請求の範囲】[Claims] (1)炭素材料を基材としてなり、所定のばね形状に賦
形したばねの線状体又は板状体の一部又は全部が炭化珪
素に転化してなることを特徴とするばね。
(1) A spring made of a carbon material as a base material, characterized in that part or all of a spring wire or plate shaped into a predetermined spring shape is converted into silicon carbide.
(2)第1請求項に記載のばねにおいて、上記線状体又
は板状体はその一部が炭化珪素に転化し、またその芯部
は中空であることを特徴とするばね。
(2) The spring according to claim 1, wherein a portion of the linear body or plate body is converted into silicon carbide, and the core thereof is hollow.
(3)第1請求項に記載のばねにおいて、ばね形状はコ
イル形状であることを特徴とするばね。
(3) The spring according to claim 1, wherein the spring shape is a coil shape.
(4)炭素材料を形成する出発原料混練物を所定のばね
形状に賦形し、然る後に、その賦形物を不融化し、その
不融化物を700〜3000℃の温度で加熱焼成する第
1工程と、 該第1工程によって得たばね形状物を1200〜230
0℃の温度領域において、一酸化珪素と反応させ炭素材
料からなるばね形状物を炭化珪素に転化する第2工程; とからなることを特徴とするばねの製造方法。
(4) Shaping the starting raw material kneaded material that forms the carbon material into a predetermined spring shape, then making the shaped material infusible, and heating and baking the infusible material at a temperature of 700 to 3000°C. the first step; and the spring-shaped object obtained in the first step with a temperature of 1200 to 230
A second step of converting a spring-shaped object made of a carbon material into silicon carbide by reacting with silicon monoxide in a temperature range of 0° C. A method for manufacturing a spring, comprising: a second step of converting a spring-shaped object made of a carbon material into silicon carbide.
(5)炭素材料を形成する出発原料混練物を所定のばね
形状に賦形し、然る後に、その賦形物を不融化し、その
不融化物を700〜3000℃の温度で加熱焼成する第
1工程と、 該第1工程によって得たばね形状物を1200〜230
0℃の温度下で、一酸化珪素と反応させて芯部以外の表
層部を炭化珪素に転化する第2工程と、 該第2工程によって得たばね形状物を酸化性雰囲気中で
加熱し、芯部の炭素材料からなる部分を酸化除去する第
3工程とからなることを特徴とするばねの製造方法。
(5) Shaping the starting material kneaded material that forms the carbon material into a predetermined spring shape, then making the shaped material infusible, and heating and baking the infusible material at a temperature of 700 to 3000°C. the first step; and the spring-shaped object obtained in the first step with a temperature of 1200 to 230
A second step of converting the surface layer other than the core into silicon carbide by reacting with silicon monoxide at a temperature of 0°C; and heating the spring-shaped article obtained in the second step in an oxidizing atmosphere to form the core. A method for manufacturing a spring, comprising a third step of oxidizing and removing a portion made of a carbon material.
JP63007254A 1988-01-16 1988-01-16 Spring and production thereof Pending JPH01183413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007254A JPH01183413A (en) 1988-01-16 1988-01-16 Spring and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007254A JPH01183413A (en) 1988-01-16 1988-01-16 Spring and production thereof

Publications (1)

Publication Number Publication Date
JPH01183413A true JPH01183413A (en) 1989-07-21

Family

ID=11660895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007254A Pending JPH01183413A (en) 1988-01-16 1988-01-16 Spring and production thereof

Country Status (1)

Country Link
JP (1) JPH01183413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532315A (en) * 2004-04-16 2007-11-15 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Vibration device for continuous casting molds for casting liquid metals, especially liquid steel materials
WO2013127119A1 (en) * 2012-03-02 2013-09-06 喜临门家具股份有限公司 Spiral pneumatic spring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441265A (en) * 1977-09-02 1979-04-02 Kabel Metallwerke Ghh Method of making perforated cross section body made of elongate metal
JPS5712888A (en) * 1980-06-26 1982-01-22 Ebara Infilco Co Ltd Oxidation of oxidizable substance in and dephosphorization of waste water
JPS57188464A (en) * 1981-05-11 1982-11-19 Mitsubishi Pencil Co Carbon spring and manufacture
JPS60251175A (en) * 1984-05-24 1985-12-11 大阪セメント株式会社 Manufacture of formed body made from silicon carbide and carbon
JPS6111911A (en) * 1984-06-27 1986-01-20 Hitachi Metals Ltd Magnetic head device
JPS6114171A (en) * 1984-06-27 1986-01-22 株式会社ブリヂストン Manufacture of silicon carbide structure
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441265A (en) * 1977-09-02 1979-04-02 Kabel Metallwerke Ghh Method of making perforated cross section body made of elongate metal
JPS5712888A (en) * 1980-06-26 1982-01-22 Ebara Infilco Co Ltd Oxidation of oxidizable substance in and dephosphorization of waste water
JPS57188464A (en) * 1981-05-11 1982-11-19 Mitsubishi Pencil Co Carbon spring and manufacture
JPS60251175A (en) * 1984-05-24 1985-12-11 大阪セメント株式会社 Manufacture of formed body made from silicon carbide and carbon
JPS6111911A (en) * 1984-06-27 1986-01-20 Hitachi Metals Ltd Magnetic head device
JPS6114171A (en) * 1984-06-27 1986-01-22 株式会社ブリヂストン Manufacture of silicon carbide structure
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532315A (en) * 2004-04-16 2007-11-15 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Vibration device for continuous casting molds for casting liquid metals, especially liquid steel materials
WO2013127119A1 (en) * 2012-03-02 2013-09-06 喜临门家具股份有限公司 Spiral pneumatic spring

Similar Documents

Publication Publication Date Title
US4781993A (en) Fiber reinforced ceramic material
US4335217A (en) SiC-Si3 N4 Composite system for special heat-resisting ceramic materials and its fabrication method
JP4458192B2 (en) SiC fiber-bonded ceramics and method for producing the same
JP4991636B2 (en) Method for producing silicon carbide based porous material
JPH01183413A (en) Spring and production thereof
JPS5913470B2 (en) Silica brick manufacturing method
EP0239226A2 (en) Silicon nitride sintered bodies
JP2011207684A (en) Furnace core tube and furnace core tube composite member using the same
CN111517798A (en) Carbide-based ceramic material, preparation method and application thereof
JP4975246B2 (en) Tool material for firing silicon carbide
JP4239684B2 (en) High heat resistant inorganic fiber bonded ceramic member and method for manufacturing the same
JPH0513154A (en) Manufacture of resistant heating element
JP4673459B2 (en) Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus
JPH04329822A (en) Radiant tube
JPH01266406A (en) Radiant tube and its manufacture
JPS6392725A (en) Production of ceramic fiber
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JPH03199164A (en) Silicon carbide-carbon combined ceramics
JPS6116410B2 (en)
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
CN115196990A (en) Porous SiC ceramic material and preparation method thereof
JPH0737339B2 (en) Method for producing silicon carbide-carbonaceous composite molded body
JPS5954678A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPH1029866A (en) Production of sialon bonded silicon carbide brick