JPH01180785A - Torch nozzle for arc welding - Google Patents

Torch nozzle for arc welding

Info

Publication number
JPH01180785A
JPH01180785A JP33005087A JP33005087A JPH01180785A JP H01180785 A JPH01180785 A JP H01180785A JP 33005087 A JP33005087 A JP 33005087A JP 33005087 A JP33005087 A JP 33005087A JP H01180785 A JPH01180785 A JP H01180785A
Authority
JP
Japan
Prior art keywords
nozzle
weight
plating
arc welding
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33005087A
Other languages
Japanese (ja)
Inventor
Norio Nokita
野北 楷夫
Susumu Fujizu
藤津 進
Nobuo Inoue
井上 信男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP33005087A priority Critical patent/JPH01180785A/en
Publication of JPH01180785A publication Critical patent/JPH01180785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the nozzle tip from melting down and to reduce the quantity of sputters attached thereto by carrying out alloy plating or composite plating on ceramics base material. CONSTITUTION:The title nozzle is constituted of the ceramics base material which is plated with an alloy or a composite consisting of the alloy and ceramics on its surface. By this method, an excellent effect to reduce the number of times of sputter peeling work and extend the service life of the nozzle is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス製アーク溶接用トーチノズル(
以下ノズルと呼ぶ)に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a ceramic arc welding torch nozzle (
(hereinafter referred to as nozzle).

〔従来の技術〕[Conventional technology]

一般に金属の溶接は、被覆アーク、サブマージアーク、
イナートガスアーク、炭酸ガスアーク、ノンガスシール
ドアーク、スタッド、エレクトロスラグ、電子ビーム、
テルミット、ガス、ブラズマおよびレーザー等のいわゆ
る融接といわれる方法で行われている。これらの内、融
接部の酸化を防止するため不活性ガスによるシールを行
うものにイナートガスアーク溶接と炭酸ガスアーク溶接
の二通りがあり、本発明はこれらに使用するトーチの先
端にガスシールな行うための機能をそなえたノズルに係
る。
In general, metal welding is performed using coated arc, submerged arc,
Inert gas arc, carbon dioxide arc, non-gas shielded arc, stud, electroslag, electron beam,
This is done by a method called fusion welding using thermite, gas, plasma, laser, etc. Among these, there are two types of welding, inert gas arc welding and carbon dioxide gas arc welding, which use an inert gas seal to prevent oxidation of the fusion weld, and the present invention provides a gas seal at the tip of the torch used for these. This relates to a nozzle with functions for

従来、ノズルは銅もしくは銅合金を基材としたもの、鉄
もしくは鉄合金を基材としたもの、あるいはアルミ合金
を基材としたもののように金属を基材とするものあるい
はこれに金属メッキをしだもの特開昭55−13741
3と、アルミナあるいはテラ化ケイ素のようなセラミッ
クスを基材としだもの特開昭61−60276、特開昭
62−38772、特開昭62−68682がある。
Conventionally, nozzles have been made of metal as a base material, such as those made of copper or copper alloys, iron or iron alloys, or aluminum alloys, or metal-plated nozzles. Shidamono JP 55-13741
3, and JP-A-61-60276, JP-A-62-38772, and JP-A-62-68682, which are based on ceramics such as alumina or silicon terraride.

金属を基材とするノズルは使用時間の経過と共に金属溶
加材および溶融金属部から発生するスパッタにより、ノ
ズル先端部が閉塞し、溶接部のガスシールが不完全とな
ると共にアークの安定性および溶接ワイヤの円滑な送り
出しが不可能となり、時にはアークの発生そのものが停
止してしまう。
As metal-based nozzles are used over time, the nozzle tip becomes clogged by spatter generated from the metal filler metal and the molten metal part, making the gas seal in the welding part incomplete and affecting the stability of the arc. It becomes impossible to send out the welding wire smoothly, and sometimes the generation of the arc itself stops.

ノズルにスパッタが付着するとスパッタとアークの熱に
よって、ノズル先端部が溶損し適切なガスシールが行わ
れにくくなる。ノズルは付着スパッタを頻繁に剥離する
操作を必要とし、かつ使用時間が延びるにしたがい、ノ
ズル内面があれ、スパッタが付きやすくなると共C:、
剥離に要する力も大きくなり、最後には剥離することす
ら不可能となる。
If spatter adheres to the nozzle, the nozzle tip will be eroded due to the heat of the spatter and the arc, making it difficult to properly seal the gas. The nozzle requires frequent operations to peel off adhering spatter, and as the usage time increases, the inner surface of the nozzle becomes rough and spatter becomes more likely to adhere.
The force required for peeling increases, and eventually it becomes impossible to even peel it off.

それ故、自動溶接機の分野では生産性が著しく阻害され
るという問題を生じていた。これを避けるためにノズル
内面にスパッタの付着防止剤(薬剤)を塗布することも
試みられているが実質的な効果は認められない。
Therefore, in the field of automatic welding machines, there has been a problem in that productivity is significantly hindered. In order to avoid this, attempts have been made to coat the inner surface of the nozzle with a spatter adhesion prevention agent (chemical), but no substantial effect has been found.

一方、セラミックスを基材とするノズルは金属を基材と
するノズルと比較して耐熱性に優れるものの、熱伝導率
が金属系よりも劣るため、ノズルに付着したスパッタの
冷却速度は遅くなり、ノズル自体の温度が高くなる傾向
にある。加えてセラミックス系ノズルは金属系よりも表
面状態が悪いため、ノズルと付着スパッタの接合力が強
くなり、スパッタの剥離性は金属系に劣る。
On the other hand, although ceramic-based nozzles have superior heat resistance compared to metal-based nozzles, their thermal conductivity is inferior to metal-based nozzles, so the cooling rate of spatter attached to the nozzle is slow. The temperature of the nozzle itself tends to increase. In addition, ceramic nozzles have a worse surface condition than metal nozzles, so the bonding force between the nozzle and attached sputter is stronger, and the sputter removability is inferior to metal nozzles.

特に炭酸ガスアーク溶接でセラミックス系ノズルを使用
した時、溶加材である電極ワイヤに脱酸剤として添加さ
れているマンガン、ケイ素およびワイヤを被覆している
銅などの元素を含むスパッタが弱酸化状態でノズル(−
付着した場合、この酸化物はセラミックスとの親和性を
有するので、金属系ノズルよりも強固に接着しやすい。
In particular, when a ceramic nozzle is used in carbon dioxide arc welding, the spatter containing elements such as manganese and silicon added as a deoxidizing agent to the filler electrode wire and copper coating the wire is in a weakly oxidized state. Press the nozzle (-
When attached, this oxide has an affinity for ceramics, so it is easier to bond more firmly than a metal nozzle.

一般にマンガン、ケイ素および銅の酸化物はセラミック
スの接合材として使用されることからもこの現象は説明
できる。
This phenomenon can also be explained by the fact that manganese, silicon, and copper oxides are generally used as bonding materials for ceramics.

セラミックス系ノズルはスパッタの付着力が強いため、
付着スパッタの機械的な剥離を行う時しばしばノズル先
端部に欠損を生じることも知られている。セラミックス
系が金属系ノズルよりもはるかに耐熱性に優れるにもか
かわらず、スパッタ発生量の少ないイナートガスアーク
溶接のTIG溶接81以外あまり利用されないのは、付
着スパッタの剥離性に難があるためである。
Ceramic nozzles have strong sputter adhesion, so
It is also known that defects often occur at the nozzle tip when mechanically removing adhering spatter. Even though ceramic nozzles have much better heat resistance than metal nozzles, they are not used much other than TIG welding 81 for inert gas arc welding, which generates less spatter, because it is difficult to remove adhering spatter. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前述のノズル先端部の溶損防止、付着スパッ
タ量の軽減および付着スパッタの剥離性を改善したセラ
ミックス系のアーク溶接用トーチノズルを提供するもの
である。
The present invention provides a ceramic-based arc welding torch nozzle that prevents erosion of the nozzle tip, reduces the amount of attached spatter, and improves the peelability of attached spatter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のノズルはセラミックスを基材とし、その表面に
合金メッキもしくは合金+セラミックスからなるコンポ
ジットメッキの処理をしたものから構成される。
The nozzle of the present invention is made of ceramic as a base material, the surface of which is coated with alloy plating or composite plating consisting of alloy and ceramics.

セラミックスは液相出現温度が1400’C以上の固体
の無機材料を対象とし、具体的には75重11%(特に
指定のない限り以下%として表す)以上のアルミナを含
むセラミックス系を始めとして、アルミナ−シリカ系、
アルミナ−カルシア系、炭化ケイ素系および窒化ケイ素
系の各県を指す。これらは焼結、熱間静水圧および熱間
圧縮等の方法でノズル形状に固化するか、固化後加工に
より指定形状に仕上げ、その後無電解メッキ処理を行う
ことに特徴がある。
Ceramics refers to solid inorganic materials with a liquid phase appearance temperature of 1400'C or higher, including ceramics containing alumina of 75% by weight or 11% (unless otherwise specified, expressed as %) or higher. Alumina-silica system,
Refers to each prefecture of alumina-calcia type, silicon carbide type, and silicon nitride type. These materials are characterized in that they are solidified into a nozzle shape by methods such as sintering, hot isostatic pressure, and hot compression, or are finished into a specified shape by processing after solidification, and then subjected to electroless plating.

発明者の知見によると、最も好適なメッキはN1−P、
N1−Bの各合金メッキまたはN1−P−BN、Ni 
−P−8iCのコンポジットメッキである。これらは単
一もしくは組み合わせてメッキしても良い。
According to the inventor's knowledge, the most suitable plating is N1-P,
N1-B alloy plating or N1-P-BN, Ni
-P-8iC composite plating. These may be plated singly or in combination.

N1−P、N1−8合金メッキは高温における金属酸化
物のメッキ層への拡散を防止するバリアーとして最適で
ある。ノズルにN1−P%N1−8合金メッキをするこ
とによって、付着スパッタは減少しがつ容易に剥離でき
るようC二なった。
N1-P and N1-8 alloy plating is optimal as a barrier to prevent metal oxide from diffusing into the plating layer at high temperatures. By plating the nozzle with an N1-P%N1-8 alloy, adhesion spatter was reduced and C2 was easily peeled off.

Ni −P −B Nコンポジットメッキは潤滑性に富
む六方晶型BNをN1−Pメッキ層に分散させ°るこ−
とによって、付着スパッタの剥離性をさらに改善するこ
とができる。加えてBNはノズル使用時に加わるメッキ
層の熱応力を緩和することもでき、ノズルを加熱した時
に生じやすいメッキ1−の亀裂発生もしくは基材からの
剥離を防止できるようになる。
Ni-P-BN composite plating is achieved by dispersing hexagonal BN, which is rich in lubricity, into the N1-P plating layer.
By doing so, the removability of the deposited sputter can be further improved. In addition, BN can also relieve the thermal stress applied to the plating layer when the nozzle is used, making it possible to prevent the plating 1- from cracking or peeling from the base material, which tends to occur when the nozzle is heated.

Ni −P −8iCコンポジツトメッキはNi −P
 −BNと同様に付着スパッタの剥離性を増し、メッキ
層に加わる熱応力を緩和させる効果を有する。
Ni-P-8iC composite plating is Ni-P
- Like BN, it has the effect of increasing the releasability of deposited sputtering and relieving thermal stress applied to the plating layer.

以下にメッキ層組成の限定理由を述べる。The reasons for limiting the composition of the plating layer will be described below.

N1−Pメッキ二ニッケル86〜97%、リン:3〜1
4%の範囲とする。その理由はニッケルが85%以下、
リン15946以上にすると%溶接中5=ノズルの受け
る熱によって、アモルファスであるメッキ層からNi3
P等の金属間化合物のみが形成される。さらにリン含有
率が茜まるとN15P2、Ni7Pa、Ni2P%Ni
6P5 、N1P2、およびNiPaの金属間化合物が
形成されるようになる。
N1-P plating Ni 86-97%, Phosphorus: 3-1
The range shall be 4%. The reason is that the nickel content is less than 85%.
If the phosphorus is 15946 or more, the heat received by the nozzle during welding will remove Ni3 from the amorphous plating layer.
Only intermetallic compounds such as P are formed. Furthermore, when the phosphorus content is increased to a red circle, N15P2, Ni7Pa, Ni2P%Ni
Intermetallic compounds of 6P5, N1P2, and NiPa begin to form.

大部分が金属間化合物のみになるとメッキ層の靭性は失
われると共に、セラミックス基材との密着性が低下する
If most of the plating layer is composed of only intermetallic compounds, the toughness of the plating layer will be lost and the adhesion to the ceramic substrate will be reduced.

ニッケルが98%a上、リンが2%以下であると、メッ
キ層への金属酸化物の拡散を防止するバリアーとしての
効果が失われる。よつて、N1−Pメッキ層の組成はニ
ッケル86〜97%、リン3〜14%の範囲とする。
If the nickel content is 98% a or more and the phosphorus content is 2% or less, the effect as a barrier for preventing metal oxide diffusion into the plating layer is lost. Therefore, the composition of the N1-P plating layer is in the range of 86 to 97% nickel and 3 to 14% phosphorus.

Ni −Bメッキ二ニッケル;92〜99%、ボロン;
1〜8%の範囲とする。限定理由はニッケルが91%J
/i下、ボロンが9%以上であると溶接中にノズルが受
ける熱によってアモルファスであるメッキ層からほとん
ど金属部分のないNi2B 。
Ni-B plating dinickel; 92-99%, boron;
The range is 1 to 8%. The reason for the limitation is that nickel is 91% J.
Under /i, when boron is 9% or more, there is almost no metal part from the amorphous plating layer due to the heat received by the nozzle during welding.

N15Bz 、およびNiBの金属間化合物のみが形成
される。大部分が金属間化合物のみになると前述と同様
Cニメッキ層の靭性が失われるとともに、セラミックス
基材との密着性が低下する。ニッケルが99%以上、ボ
ロンが1%以下であると、メッキ層への金属酸化物の拡
散を防止するバリアーとしての効果が失われる。よつて
、N1−Bメッキ層の組成はニッケル92〜99%、ボ
ロン1〜8%の範囲とする。
Only N15Bz and NiB intermetallic compounds are formed. If most of the material is composed of intermetallic compounds, the toughness of the C double-plated layer will be lost as described above, and the adhesion to the ceramic base material will be reduced. If the nickel content is 99% or more and the boron content is 1% or less, the effect as a barrier for preventing diffusion of metal oxides into the plating layer is lost. Therefore, the composition of the N1-B plating layer is in the range of 92 to 99% nickel and 1 to 8% boron.

Ni −P −B Nコンポジットメッキ:メッキの組
成でペースとなるN1−Pがニッケル86〜97%、リ
ン3〜14%の範囲にあるものであって、N1−PとB
Nの構成比率が45〜99容1i%:1〜55容量%か
らなるコンポジットメッキである。N1−Pの比率が4
4容量%以下、BNの比率が56容量%以上になるとコ
ンポジットメッキの基材に対する密着力が低下する。
Ni-P-B N composite plating: N1-P, which is the paste in the plating composition, is in the range of 86 to 97% nickel and 3 to 14% phosphorus, and N1-P and B
This is a composite plating in which the composition ratio of N is 45 to 99% by volume: 1 to 55% by volume. The ratio of N1-P is 4
When the ratio of BN is less than 4% by volume and more than 56% by volume, the adhesion of the composite plating to the base material decreases.

N1−Pの比率が99.1容量%以上、BNの比率が0
.9容量%以下になると付着スパッタの剥離性はN1−
Pメッキと差がなくなる。よって、Ni −P−BNの
Ni −PとBNの構成比率は45〜99容量%:1〜
55容量%とした。
N1-P ratio is 99.1% by volume or more, BN ratio is 0
.. When the amount is less than 9% by volume, the removability of the attached sputter is N1-
There is no difference from P plating. Therefore, the composition ratio of Ni-P and BN in Ni-P-BN is 45-99% by volume: 1-
It was set to 55% by volume.

Ni −P −SiCコンポジットメッキ;メッキの組
成でペースとなるNi −Pはニッケル86〜97%、
リン3〜14%の範囲にあるものであって、N1−Pと
8iCの構成比率が45〜99容量%=1〜55容量%
からなるコンポジットメッキである。N1−Pの比率が
44容量%以下、SiCの比率が56容1*以上になる
と前記と同様にメッキの基材に対する密着力が低下する
と共にメッキ層の靭性も低下する。N1−Pの比率が9
9.1容量%以上、SiCの比率が0.9容量9V)以
下になると、付着スパッタの剥離性はN1−Pメッキと
差がすくナル。ヨう”C、N1−P −SiCノN1−
P トSiCの構成比率は45〜99容1i%:1〜5
5容量%とした。、 なお、メッキ層の厚さは1μから100μ、好ましくは
5μから25μの範囲で使用するのが良い。
Ni-P-SiC composite plating; Ni-P, which is the paste in the plating composition, is 86-97% nickel,
Phosphorus is in the range of 3-14%, and the composition ratio of N1-P and 8iC is 45-99% by volume = 1-55% by volume
It is a composite plating consisting of. When the ratio of N1-P is less than 44% by volume and the ratio of SiC is more than 56% by volume, the adhesion of the plating to the base material decreases as well as the toughness of the plating layer, as described above. The ratio of N1-P is 9
When the ratio of SiC is 9.1% by volume or more and the ratio of SiC is 0.9% by volume (9V) or less, the removability of attached sputtering is very different from N1-P plating. YO"C, N1-P -SiCノN1-
The composition ratio of P and SiC is 45-99 volume 1i%: 1-5
The amount was 5% by volume. The thickness of the plating layer is preferably in the range of 1μ to 100μ, preferably 5μ to 25μ.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1゜ アルミナ粉95%、酸化クロム粉5%を混合、成形、焼
結して、外径21mm01内径16mm、1、長さ73
mmのセラミックス系ノズルを作り、アルカリ脱脂後、
フッ酸を含む酸性溶液でエツチングし、キャタライジン
グ処理を実施し、ニッケル含有量6allのニッケルリ
ン浴でメッキした。得られたメッキは厚さ17μでニッ
ケル中に129りのリンを含む。このノズルを炭酸ガス
溶接機を用い、付着スパッタ量および剥離性の評価テス
トを実施した。
Example 1゜95% alumina powder and 5% chromium oxide powder were mixed, molded, and sintered to form a product with an outer diameter of 21 mm, an inner diameter of 16 mm, and a length of 73 mm.
After making a mm ceramic nozzle and degreasing it with alkaline,
Etching was performed with an acidic solution containing hydrofluoric acid, catalytic treatment was performed, and plating was performed in a nickel-phosphorus bath with a nickel content of 6all. The resulting plating was 17μ thick and contained 129 phosphorus in nickel. Using this nozzle, a carbon dioxide gas welding machine was used to evaluate the amount of attached spatter and peelability.

溶接条件は 材料;軟鋼板、1 電極ワイヤ;軟鋼1.2 mm l
電圧−電流;33V−30OA 炭酸ガス ; 20 I!/min 溶接速度 : 30〜34 arm / min材料−
ノズル間距離:20■ 姿 勢;下向き  溶接時間;10分/回としビードオ
ンプレートで実施した。
Welding conditions are Material: Mild steel plate, 1 Electrode wire: Mild steel 1.2 mm l
Voltage-current; 33V-30OA Carbon dioxide gas; 20 I! /min Welding speed: 30~34 arm/min Material-
Distance between nozzles: 20cm Posture: downward Welding time: 10 minutes/time Welding was carried out using bead-on-plate.

結果を第1表に示す。The results are shown in Table 1.

実施例2 アルミナ55%、シリカ45%の組成からなるアルミナ
−シリカ系(ムライト)のノズルをアルカリ脱脂後、ク
ロムを含む酸性溶液でエツチングし、キャタライジング
処理を実施し、ニッケル含有! 4.8 g/ lのニ
ッケルリン浴でメッキした。
Example 2 An alumina-silica type (mullite) nozzle with a composition of 55% alumina and 45% silica was degreased with an alkali, etched with an acidic solution containing chromium, and subjected to catalyzing treatment to produce a nozzle containing nickel! Plated with a 4.8 g/l nickel phosphorus bath.

得られたメッキは厚さ5μでニッケル中に14%のリン
を含む。
The resulting plating is 5 microns thick and contains 14% phosphorus in nickel.

このノズルを実施例1に示す条件で評価テストを実施し
た。
An evaluation test was conducted on this nozzle under the conditions shown in Example 1.

実施例3゜ シリコンナイトライド92%、アルミナ2%、イツトリ
ア5%の組成からなるノズルをアルカリ脱脂後、フッ酸
とクロム酸を含む酸性溶液でエツチングし、キャタライ
ジング処理を実施し、ニッケル・ボロン浴でメッキした
。得られたメッキは厚さ10μでニッケル中に8%のボ
ロンを含む。
Example 3 A nozzle with a composition of 92% silicon nitride, 2% alumina, and 5% yttoria was degreased with alkali, etched with an acidic solution containing hydrofluoric acid and chromic acid, and subjected to catalytic treatment to remove nickel and boron. Plated in bath. The resulting plating was 10 microns thick and contained 8% boron in nickel.

このノズルを実施例1に示す条件で評価した。This nozzle was evaluated under the conditions shown in Example 1.

実施例4゜ シリコンカーバイド84.4 %、アルミナ15%、炭
素0.6%を混合、圧粉、成形、焼結して得たノズルを
弱アルカリ脱脂後、クロム酸を含む酸性溶液でエツチン
グし、キャタライジング処理を実施し、ニッケル含有量
3s//でBN粒子を分散させたニッケルリン浴でメッ
キした。得られたメッキは厚さ35μで、構成比(容1
1%)はN1−p:BNが62:3gである。
Example 4 A nozzle obtained by mixing 84.4% silicon carbide, 15% alumina, and 0.6% carbon, pressing, molding, and sintering was degreased with a weak alkali, and then etched with an acidic solution containing chromic acid. , a catalytic treatment was performed, and plating was performed in a nickel-phosphorous bath in which BN particles were dispersed with a nickel content of 3 s//. The obtained plating has a thickness of 35μ and a composition ratio (volume 1
1%) has a ratio of N1-p:BN of 62:3 g.

このノズルを実施例1に示す条件で評価した。This nozzle was evaluated under the conditions shown in Example 1.

実施例5゜ アルミナ82%、酸化カルシュラム3%、ジルコニア1
5%の組成からなるノズルをアルカリ脱脂後、酸性溶液
でエツチングし、キャタライジング処理を実施し、ニッ
ケル含有量5g/lでBN粒子を分散させたニッケルリ
ン浴でメッキした。
Example 5゜82% alumina, 3% calcilum oxide, 1 zirconia
After alkali degreasing, a nozzle with a composition of 5% was etched with an acidic solution, subjected to a catalytic treatment, and plated with a nickel-phosphorus bath containing BN particles dispersed therein with a nickel content of 5 g/l.

得られたメッキは厚さ25μで構成比(容量%)はN1
−P:BNが78:22である。
The resulting plating has a thickness of 25μ and a composition ratio (volume %) of N1.
-P:BN is 78:22.

このノズルを実施例1に示す条件で評価した。This nozzle was evaluated under the conditions shown in Example 1.

実施例6゜ アルミナ82%、シリカ12%の組成からなるアルミナ
−シリカ系(ムライト)を70%とジルコニア30%を
混合、圧粉、成形、焼結して得たノズルをアルカリ脱脂
後、フッ酸とクロム酸を含む酸性溶液でエツチングし、
キャタライジング処理を実施し、ニッケル含有量6 w
/lで、SIC粒子を分散させたニッケルリン浴でメッ
キした。得られたメッキは厚さ22μで構成比(容量%
)はN1−p:stcが95:5である・ このノズルな実施例1に示す条件で評価した。
Example 6゜A nozzle obtained by mixing 70% alumina-silica (mullite) with a composition of 82% alumina and 12% silica and 30% zirconia, compacting, molding, and sintering was degreased with alkali and then fluoresced. Etching with an acidic solution containing acid and chromic acid,
Catalyzing treatment to reduce nickel content to 6w
Plating was carried out in a nickel phosphorus bath in which SIC particles were dispersed at a concentration of 100 ml. The obtained plating has a thickness of 22μ and the composition ratio (volume %)
) has N1-p:stc of 95:5. This nozzle was evaluated under the conditions shown in Example 1.

なお、市販の金属系ノズルとメッキ処理をしてないセラ
ミックスノズルについても比較例として示した。
A commercially available metal nozzle and a ceramic nozzle that has not been plated are also shown as comparative examples.

第1表 材料別実験結果 ×:剥離にかなり力を要するか、不可能。Table 1: Experimental results by material ×: Separation requires considerable force or is impossible.

○:剥離に力を要するが、可能である。○: Peeling requires force, but is possible.

◎:容易(二剥離できる。◎: Easy (can be peeled off twice).

ノズル先端が欠損した場合も30回までテストを実施。Tests are conducted up to 30 times even if the nozzle tip is damaged.

〔発明の効果〕〔Effect of the invention〕

第1表で明らかにした様に、セラミックス基材に合金メ
ッキ又はコンポジプトメプキをしたアーク溶接用ノズル
は従来品と比べてスパッタ付2mが172〜1/3に減
少し、かつスパッタの剥離性が低下しく二くいという特
徴がある。そのため、スパッタ剥離作業回数の減少、ノ
ズルの長寿命化にすぐれた効果を有する。
As shown in Table 1, the arc welding nozzle with alloy plating or composite plating on the ceramic base material has a reduction of 2 m with spatter by 172 to 1/3 compared to conventional products, and the peeling of spatter has been reduced by 172 to 1/3. It is characterized by a decrease in sex and a 2-year-old man. Therefore, it has excellent effects in reducing the number of sputter stripping operations and extending the life of the nozzle.

Claims (6)

【特許請求の範囲】[Claims] (1)セラミックスを基材とするアーク溶接用トーチノ
ズルにおいて、セラミックス表面に合金メッキ又は合金
+セラミックスからなるコンポジットメッキをしたアー
ク溶接用トーチノズル。
(1) An arc welding torch nozzle that uses ceramic as a base material and has the ceramic surface coated with alloy plating or composite plating consisting of alloy and ceramics.
(2)合金メッキはニッケル86重量%以上97重量%
以下、リン3重量傷以上14重量%以下である特許請求
の範囲第1項記載のアーク溶接用トーチノズル。
(2) Alloy plating is 86% or more by weight of nickel and 97% by weight.
The arc welding torch nozzle according to claim 1, wherein the phosphorus content is 3% by weight or more and 14% by weight or less.
(3)合金メッキはニッケル92重量%以上99重量%
以下、ボロン1重量%以上8重量%以下である特許請求
の範囲第1項記載のアーク溶接用トーチノズル。
(3) Alloy plating is 92% or more by weight of nickel or 99% by weight.
The torch nozzle for arc welding according to claim 1, wherein the content of boron is 1% by weight or more and 8% by weight or less.
(4)コンポジットメッキはニッケル86重量%以上9
7重量%以下、リン3重量%以上14重量%以下である
合金メッキが45重量%以上99重量%以下であって、
六方晶の結晶構造を有する窒化ホウ素が1容量%以上5
5容量%以下である特許請求の範囲第1項記載のアーク
溶接用トーノズル。
(4) Composite plating is 86% or more of nickel by weight9
The alloy plating is 7% by weight or less and 3% by weight or more and 14% by weight or less of phosphorus is 45% by weight or more and 99% by weight or less,
Boron nitride with a hexagonal crystal structure is 1% by volume or more5
The toe nozzle for arc welding according to claim 1, wherein the content is 5% by volume or less.
(5)コンポジットメッキはニッケル86重量%以上9
7重量%以下、リン3重量%以上14重量%以下である
合金メッキが45重量%以上99重量%以下、シリコン
カーバイドが1容量%以上55容量%以下からなる特許
請求の範囲第1項記載のアーク溶接用トーチノズル。
(5) Composite plating is 86% or more of nickel by weight9
7% by weight or less, phosphorus from 3% to 14% by weight, alloy plating from 45% to 99% by weight, and silicon carbide from 1% by volume to 55% by volume according to claim 1. Torch nozzle for arc welding.
(6)合金メッキ又はコンポジットメッキの厚さは1μ
から100μとした特許請求の範囲第1項記載のアーク
溶接用トーチノズル。
(6) Thickness of alloy plating or composite plating is 1μ
The arc welding torch nozzle according to claim 1, wherein the arc welding torch nozzle has a diameter of 100μ.
JP33005087A 1987-12-28 1987-12-28 Torch nozzle for arc welding Pending JPH01180785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33005087A JPH01180785A (en) 1987-12-28 1987-12-28 Torch nozzle for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33005087A JPH01180785A (en) 1987-12-28 1987-12-28 Torch nozzle for arc welding

Publications (1)

Publication Number Publication Date
JPH01180785A true JPH01180785A (en) 1989-07-18

Family

ID=18228217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33005087A Pending JPH01180785A (en) 1987-12-28 1987-12-28 Torch nozzle for arc welding

Country Status (1)

Country Link
JP (1) JPH01180785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108338A1 (en) 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Nozzle for processing machinery, contact tip for welding, method of manufacturing the nozzle for the processing machinery, and method of manufacturing the contact tip for welding
JP2012218046A (en) * 2011-04-12 2012-11-12 Panasonic Corp Welding contact tip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216867A (en) * 1985-03-22 1986-09-26 Toyota Motor Corp Ceramic contact tip for arc welding and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216867A (en) * 1985-03-22 1986-09-26 Toyota Motor Corp Ceramic contact tip for arc welding and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108338A1 (en) 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Nozzle for processing machinery, contact tip for welding, method of manufacturing the nozzle for the processing machinery, and method of manufacturing the contact tip for welding
EP1629924A1 (en) * 2003-06-04 2006-03-01 Mitsubishi Denki Kabushiki Kaisha Nozzle for processing machinery, contact tip for welding, method of manufacturing the nozzle for the processing machinery, and method of manufacturing the contact tip for welding
EP1629924A4 (en) * 2003-06-04 2008-09-03 Mitsubishi Electric Corp Nozzle for processing machinery, contact tip for welding, method of manufacturing the nozzle for the processing machinery, and method of manufacturing the contact tip for welding
JP2012218046A (en) * 2011-04-12 2012-11-12 Panasonic Corp Welding contact tip

Similar Documents

Publication Publication Date Title
US5186380A (en) Titanium hydride coated brazing product
US4729504A (en) Method of bonding ceramics and metal, or bonding similar ceramics among themselves; or bonding dissimilar ceramics
US9422616B2 (en) Abrasion-resistant weld overlay
JPS62192296A (en) Solder material
JPH0524967B2 (en)
CN1157273C (en) Flux and hard lead welding difficult wetted metal material
JPH033557B2 (en)
TWI574770B (en) Ti-based welding consumables and manufacturing methods thereof
US5496391A (en) Material and a method for forming a protective coating on a substrate of a copper-based alloy
JP4558736B2 (en) Manufacturing method of composite member
EP1769881B1 (en) Process for producing high-melting metal particle-dispersed foam solder
JPH01180785A (en) Torch nozzle for arc welding
JPH075408B2 (en) Ceramic metallization composition, metallization method and metallized product
JPH0220688A (en) Fe-cr-ni-b-sic solder foil
JPH05305492A (en) Production of brazing filler metal clad aluminum material by thermal straying method
CN112095070A (en) Aluminum-containing metal powder applied to plasma spraying
JP3846960B2 (en) Welding torch member and manufacturing method thereof
JPS61266189A (en) Ceramic contact tip for arc welding and its production
JPH0337471B2 (en)
JPS61186190A (en) Composite filter rod for building up by welding
JPH10175044A (en) Mold for continuous casting and manufacture thereof
JP2007118012A (en) Vertical upward welding method
JPH0442066Y2 (en)
JPH0394984A (en) Member coated with composite build-up welded layer having excellent molten metal resistance
Koppitz et al. High-temperature brazing for reliable tungsten–CFC joints