JPH01179769A - Method for bonding ceramic material and metallic material - Google Patents

Method for bonding ceramic material and metallic material

Info

Publication number
JPH01179769A
JPH01179769A JP426588A JP426588A JPH01179769A JP H01179769 A JPH01179769 A JP H01179769A JP 426588 A JP426588 A JP 426588A JP 426588 A JP426588 A JP 426588A JP H01179769 A JPH01179769 A JP H01179769A
Authority
JP
Japan
Prior art keywords
active metal
metal
inert gas
ceramic material
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP426588A
Other languages
Japanese (ja)
Inventor
Junichi Sato
純一 佐藤
Katsuyuki Shirai
勝之 白井
Koichiro Fukui
福井 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Altemira Co Ltd
Original Assignee
Showa Denko KK
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Showa Aluminum Corp filed Critical Showa Denko KK
Priority to JP426588A priority Critical patent/JPH01179769A/en
Publication of JPH01179769A publication Critical patent/JPH01179769A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent the infiltration of an oxide into the bonding interface and to increase the bonding strength by melting an active metal layer formed on the bonding surface of the ceramic material in an inert gas atmosphere to form a metal plating layer, and brazing the metallic material to the plating layer through a brazing material. CONSTITUTION:An active metal (e.g., Cu-Ti alloy) is thermally sprayed in an inert gas atmosphere on the bonding surface of a ceramic material 1 (e.g., SiC) by using a thermal spraying device with an inert gas as the working gas to form an active metal layer 3 having 40-100mum thickness on the material 1. The laminate is then heated at 900-1,200 deg.C for 0.5-3hr in the same inert gas atmosphere to melt the active metal, and cooled in an inert gas atmosphere. A metal having excellent wettability with the active metal and the brazing material is plated on the surface of the active metal layer 3 to form a plating layer 4 having 10-40mum thickness. The bonding surface of the metallic material 2 is then superposed on the surface of the plating layer 4 through a solder 5, and both materials are brazed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、自動車用エンジン、産業用熱交換器等に用
いられるセラミックス材と金属材との接合品を製作する
ためのセラミックス材と金属材との接合方法、特に金属
材がアルミニウム=  1 − 材である場合に好適なセラミックス材と金属材との接合
方法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to the bonding of ceramic materials and metal materials for producing a bonded product of ceramic materials and metal materials used in automobile engines, industrial heat exchangers, etc. The present invention relates to a bonding method, particularly a method of bonding a ceramic material and a metal material that is suitable when the metal material is aluminum = 1 - material.

なおこの明細書において、アルミニウムの語はその合金
を含む意味で用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術 従来、Af1203 、Si3 N4、SiC等のセラ
ミックス材と、金属材例えばアルミニウム材との接合方
法として、金属ソルダー法のうち活性金属法が多く用い
られている。即ちこの方法は、接合媒体として例えばT
iないしはTi系合金等の活性金属の薄板を予め作製し
ておき、この活性金属薄板をセラミックス材の接合面上
に載置して真空中または不活性ガス中で加熱することに
より、まずセラミックス材表面に活性金属を溶融密着す
る。その後この活性金属表面にNiメッキを施したのち
、このメッキ層表面にろう材を介してアルミニウム材を
ろう付するものである。
BACKGROUND OF THE INVENTION Conventionally, among the metal solder methods, the active metal method has been widely used as a method for joining ceramic materials such as Af1203, Si3 N4, and SiC to metal materials, such as aluminum materials. That is, this method uses, for example, T as a bonding medium.
A thin plate of active metal such as Ti or Ti-based alloy is prepared in advance, and this active metal thin plate is placed on the bonding surface of the ceramic material and heated in vacuum or in an inert gas to form the ceramic material. The active metal is melted and adhered to the surface. After that, Ni plating is applied to the surface of this active metal, and then an aluminum material is brazed to the surface of this plating layer via a brazing material.

発明が解決しようとする問題点 しかしながら、上記の接合方法では、活性金属の薄板表
面に、それ自身の有する高い反応性のために金属酸化物
皮膜か形成されており、この酸化物が活性金属の溶融密
着時に活性金属とセラミックス材との接合界面に残存す
るため、セラミックス材と活性金属との密着性を妨げ、
ひいてはセラミックス材と金属材との接合強度が低くな
るという欠点かあった。
Problems to be Solved by the Invention However, in the above bonding method, a metal oxide film is formed on the surface of the active metal thin plate due to its own high reactivity, and this oxide Because it remains at the bonding interface between the active metal and the ceramic material during molten adhesion, it impairs the adhesion between the ceramic material and the active metal.
Furthermore, there was a drawback that the bonding strength between the ceramic material and the metal material was reduced.

この発明はかかる欠点を解消するためになされたもので
あって、高い接合強度を達成しうるセラミックス材と金
属材との接合方法を提供せんとするものである。
The present invention was made in order to eliminate such drawbacks, and it is an object of the present invention to provide a method for joining ceramic materials and metal materials that can achieve high joining strength.

問題点を解決するための手段 上記目的を達成するために、この発明は、接合媒体とし
ての活性金属の酸化を可及的防止して、セラミックス材
と活性金属との接合界面への酸化物の混入を防止するこ
とにより、セラミックス材と活性金属との密着性を向上
し、ひいてはセラミックス材と金属材との充分な接合強
度を達成しえたものである。
Means for Solving the Problems In order to achieve the above object, the present invention prevents the oxidation of the active metal as a bonding medium as much as possible, and prevents the oxidation of the oxide from forming on the bonding interface between the ceramic material and the active metal. By preventing contamination, it is possible to improve the adhesion between the ceramic material and the active metal, thereby achieving sufficient bonding strength between the ceramic material and the metal material.

即ちこの発明は、不活性ガス雰囲気中で、不活性ガスを
作動ガスとする溶射装置を用いて活性金属を溶射するこ
とによって、まずセラミックス材の接合面に活性金属層
を被覆形成したのち、これを不活性ガス雰囲気cl+i
こ保持したまま加熱して活性金属を溶融させ、その後活
性金属層の表面に活性金属及びろう材の両者に対してぬ
れ性の良好な金属メッキ層を被覆形成したのち、該メッ
キ層上にろう材を介して金属材をろう付することを特徴
とするセラミックス材と金属材との接合方法を要旨とす
るものである。
That is, this invention first coats the joint surface of the ceramic material with an active metal layer by thermally spraying the active metal in an inert gas atmosphere using a thermal spraying device using an inert gas as the working gas, and then Inert gas atmosphere cl+i
The active metal is heated while being held to melt the active metal, and then a metal plating layer with good wettability for both the active metal and the brazing material is formed on the surface of the active metal layer. The gist of this invention is a method for joining ceramic materials and metal materials, which is characterized by brazing the metal materials through the material.

この発明では、接合媒体としての活性金属を、酸化の虞
れを可及的排除した不活性ガス雰囲気溶射法によって、
まず、セラミックス材の接合面に溶射し、活性金属層を
被覆形成する。不活性ガス雰囲気溶射法とは、Arガス
等の不活性ガス雰囲気中に、セラミックス材及び溶射装
置を配置するとともに、溶射装置の作動ガスつまり溶射
ヰ4の噴射用ガスにも不活性ガスを用いて、セラミック
ス材の接合面に活性金属を溶射する方法である。ここで
、作動ガスに不活性ガスを用いうる溶射装置としては、
例えば電気式溶射装置の1つとして知られているプラズ
マジェット溶射装置とか、高周波誘導式溶射装置を挙げ
うる。作動ガスとして不活性ガスを用いること以外の溶
射条件は、これら溶射装置を用いる場合に通常採用され
る条件を適宜採択すれば良い。
In this invention, the active metal as a bonding medium is sprayed using an inert gas atmosphere spraying method that eliminates the risk of oxidation as much as possible.
First, an active metal layer is formed by thermal spraying on the bonding surface of the ceramic material. The inert gas atmosphere thermal spraying method involves arranging the ceramic material and thermal spraying equipment in an inert gas atmosphere such as Ar gas, and using an inert gas as the working gas of the thermal spraying equipment, that is, the injection gas for thermal spraying. This is a method of thermally spraying active metals onto the joint surfaces of ceramic materials. Here, thermal spray equipment that can use an inert gas as the working gas includes:
Examples include a plasma jet thermal spraying device known as an electric thermal spraying device and a high-frequency induction thermal spraying device. Thermal spraying conditions other than the use of an inert gas as the working gas may be those normally employed when using these thermal spraying apparatuses.

活性金属としては、TiないしはTi系合金やZrない
しはZr系合金等を用いうるか、特にSi3N4あるい
はSiCとアルミニウムとの接合の場合にはCu−Ti
合金を、またAΩ203とアルミニウムとの接合の場合
にはAg−Cu−Ti合金を好適に用いうる。溶射によ
って形成される活性金属層の厚さは40〜100μmと
するのが良い。40μm未満では接合媒体としての活性
金属量が少なくなるため、結果的に充分な接合強度か得
られないおそれがあるからであり、逆に100μmを超
えても活性金属量の増大に見合う接合強度の向上効果が
得られないばかりか、却って材料、エネルギの無駄によ
るコストアップの欠点を派生するからであ上記によりセ
ラミックス材に活性金属層を被覆形成したのち、これを
不活性ガス雰囲気に保持したまま加熱して活性金属を溶
融させる。この加熱処理は、セラミックス材と活性金属
との密着性を更に高めるために実施するものであり、加
熱条件は900〜b 間が望ましい。
As the active metal, Ti or Ti-based alloys, Zr or Zr-based alloys, etc. can be used, or in particular, in the case of joining Si3N4 or SiC and aluminum, Cu-Ti.
An alloy can be preferably used, and in the case of joining AΩ203 and aluminum, an Ag-Cu-Ti alloy can be suitably used. The thickness of the active metal layer formed by thermal spraying is preferably 40 to 100 μm. If the thickness is less than 40 μm, the amount of active metal as a bonding medium will decrease, and as a result, sufficient bonding strength may not be obtained. This is because not only no improvement effect can be obtained, but also the disadvantage of increased costs due to waste of materials and energy. Heat to melt the active metal. This heat treatment is carried out to further improve the adhesion between the ceramic material and the active metal, and the heating conditions are preferably between 900 and b.

活性金属の溶融後、不活性ガス雰囲気中でそのまま冷却
したのち、続いて活性金属層の表面に活性金属及びろう
材の両者に対しぬれ性の良好な金属をメッキする。メッ
キ層を設けるのは、接合強度を更に一層増大させるため
である。かかるメッキ層の形成に好適な金属として、接
合すべき金属材がアルミニウム材の場合には従来と同じ
(Niを挙げることができる。またメッキ層の厚さは1
0〜40μmとすることにより所期の効果を良好に達成
しうる。
After the active metal is melted, it is cooled as it is in an inert gas atmosphere, and then the surface of the active metal layer is plated with a metal that has good wettability for both the active metal and the brazing material. The purpose of providing the plating layer is to further increase the bonding strength. The metal suitable for forming such a plating layer is the same as conventional metals when the metal material to be bonded is aluminum (Ni can be mentioned. Also, the thickness of the plating layer is 1
The desired effect can be satisfactorily achieved by setting the thickness to 0 to 40 μm.

続いて上記メッキ層の表面に、ろう材を介して金属材の
接合面を重ね合せ状態にセットする。
Subsequently, the bonding surfaces of the metal materials are set to be superimposed on the surface of the plated layer via the brazing material.

重ね合せ後においては、セラミックス材と金属材とはそ
の相互接合面全面において確実かつ充分な接合状態を得
られるように、締付は具等を用いて接合面相互を圧着方
向に加圧しておき、この状態でろう付を行うものとなす
のが望ましい。ろう材を介して行うろう付は、常法によ
る真空ろう付性によって行うのが一般的であるが、特に
該方法のみに限定されるものではなく、不活性ガスろう
付性等によることも許容される。
After overlapping, the ceramic material and the metal material should be tightened by applying pressure to each other in the crimping direction using a tool, etc., so that a secure and sufficient bond can be obtained over the entire surface of the bonded surfaces. It is desirable to perform brazing in this state. Brazing through a brazing filler metal is generally performed using a vacuum brazing method using a conventional method, but it is not limited to this method, and it is also acceptable to use an inert gas brazing method. be done.

金属材がアルミニウム材である場合、ろう材としては一
般的にはAΩ−8i系合金が用いられる。
When the metal material is aluminum, an AΩ-8i alloy is generally used as the brazing material.

発明の詳細 な説明したように、この発明に係るセラミックス材と金
属材との接合方法は、不活性ガス雰囲気中で、不活性ガ
スを作動ガスとする溶射装置を用いて活性金属を溶射す
ることによって、まずセラミックス材の接合面に活性金
属層を被覆形成したのち、これを不活性ガス雰囲気中に
保持したまま加熱して活性金属を溶融させ、その後活性
金属層の表面に活性金属及びろう材の両者に対してぬれ
性の良好な金属メッキ層を被覆形成したのち、該メッキ
層上にろう材を介して金属材をろう付することを特徴と
するものである。従って大気に触れることなくセラミッ
クス材に活性金属層を被覆形成しえ、その間の活性金属
の酸化による酸化物の生成を最少限に抑制できるから、
接合強度低下の原因であるセラミックス材と活性金属層
の接合界面への酸化物の混入を著しく抑制でき、その結
果セラミックス材と活性金属層との密着性を向上でき、
ひいてはセラミックス材と金属材の接合強度を向上しつ
る。しかもまた、活性金属層の形成は、セラミックス材
への溶射によって行うとともに、溶射後にセラミックス
材を加熱して活性金属を溶融させる工程を実施するもの
であるから、セラミックス材と活性金属層とのより一層
の密着性を確保することができ、益々優れた接合強度を
有するセラミックス材と金属材との接合品の提供が可能
となる。
As described in detail, the method of joining a ceramic material and a metal material according to the present invention includes thermal spraying an active metal in an inert gas atmosphere using a thermal spraying device using an inert gas as a working gas. First, an active metal layer is formed on the bonding surface of the ceramic material, and then heated while being held in an inert gas atmosphere to melt the active metal, and then the active metal and brazing material are coated on the surface of the active metal layer. A metal plating layer having good wettability is coated on both of the two, and then a metal material is brazed onto the plating layer via a brazing filler metal. Therefore, it is possible to coat the ceramic material with an active metal layer without exposing it to the atmosphere, and the generation of oxides due to oxidation of the active metal during that time can be suppressed to a minimum.
It is possible to significantly suppress the incorporation of oxides into the bonding interface between the ceramic material and the active metal layer, which causes a decrease in bonding strength, and as a result, the adhesion between the ceramic material and the active metal layer can be improved.
This also improves the bonding strength between ceramic materials and metal materials. Moreover, since the active metal layer is formed by thermal spraying onto the ceramic material and a step is carried out to heat the ceramic material and melt the active metal after thermal spraying, the relationship between the ceramic material and the active metal layer is reduced. Further adhesion can be ensured, making it possible to provide a bonded product of a ceramic material and a metal material that has even better bonding strength.

 8 一 実施例 [実施例] 長さ40mm、幅30mm、厚さ5mmの直方体形状の
セラミックス材と、同一形状の金属材とを接合用試験片
として用意した。セラミックス材としてはAC303を
、金属材としてはアルミニウム(AIloo)をそれぞ
れ用いた。
8 One Example [Example] A rectangular parallelepiped ceramic material with a length of 40 mm, a width of 30 mm, and a thickness of 5 mm and a metal material of the same shape were prepared as test pieces for bonding. AC303 was used as the ceramic material, and aluminum (AIloo) was used as the metal material.

次に、セラミックス材をArガス雰囲気中に配置すると
ともに、同じ<Arガス雰囲気中に配置した溶射装置に
より活性金属を溶射して、セラミックス材試験片の長さ
方向の一方の端面に活性金属層を被覆形成した。溶射装
置はプラズマジェット溶射装置を用い、作動ガスには同
じ<Arガスを用いた。また活性金属は60wt%Cu
−20wt%Ti−20wt%Agからなる合金を用い
るとともに、活性金属層の被覆厚さは50μmとした。
Next, the ceramic material is placed in an Ar gas atmosphere, and an active metal is thermally sprayed using the same thermal spraying device placed in the Ar gas atmosphere to form an active metal layer on one longitudinal end surface of the ceramic material specimen. A coating was formed. A plasma jet thermal spraying device was used as the thermal spraying device, and the same <Ar gas was used as the working gas. In addition, the active metal is 60wt%Cu
An alloy consisting of -20 wt% Ti and 20 wt% Ag was used, and the coating thickness of the active metal layer was 50 μm.

次に上記セラミックス材をAr雰囲気中に保持したまま
、その雰囲気内にある炉中に投入した。そして該セラミ
ックス材の実体温度1000°Cに1時間加熱保持して
活性金属を溶融したのち、そのまま炉中冷却した。
Next, the ceramic material was placed in a furnace in an Ar atmosphere while being kept in the Ar atmosphere. Then, the ceramic material was heated and maintained at an actual temperature of 1000° C. for 1 hour to melt the active metal, and then cooled in the furnace as it was.

次に、セラミックス材を大気中に取り出したのち、活性
金属層表面に電解Niメッキ層を被覆形成した。メッキ
層の厚さは20μmであった。
Next, after the ceramic material was taken out into the atmosphere, an electrolytic Ni plating layer was formed on the surface of the active metal layer. The thickness of the plating layer was 20 μm.

次に、第1図に示すように、セラミックス材(1)のメ
ッキ層(4)表面に、92wt%AΩ−8wt%Si合
金からなる厚さ0.3mmの板状のろう制(5)を介在
させてアルミニウム材(2)の長さ方向の端面を重ね合
せ、もって第2図に示す接合試験片(6)を製作したの
ち、該試験片にスプリング(7a)付きのSUS針金か
らなる2本の締付は具(7)(7)を掛渡してしばり、
画材間に圧着方向への加圧力を(−1与した。
Next, as shown in Fig. 1, a plate-shaped solder paste (5) with a thickness of 0.3 mm made of a 92 wt% AΩ-8 wt% Si alloy is applied to the surface of the plating layer (4) of the ceramic material (1). After overlapping the longitudinal end surfaces of the aluminum materials (2) to produce a bonded test piece (6) shown in FIG. To tighten the book, use tools (7) (7) to tie it.
A pressing force (-1) was applied between the art materials in the pressing direction.

続いて真空度1.  OX 10−6mmHgに調整し
た真空ろう付炉内に上記により製作した接合試験片(6
)を投入し、600℃×1時間加熱してアルミニウム材
をろう付した。
Next, the degree of vacuum is 1. The bonded test piece (6
) and heated at 600°C for 1 hour to braze the aluminum material.

上記により得た接合品の接合強度を測定したところ、9
Kg/mt?rであった。
When the bonding strength of the bonded product obtained above was measured, it was found to be 9
Kg/mt? It was r.

[従来例] 上記実施例と同じ試験片を用意し、まずセラミックス材
の接合面に60シt%Cu−20wt%Ti−20wt
%Ag合金からなる厚さ0.3mmの活性金属薄板を置
き、Arガス雰囲気の炉中で1000℃×1時間加熱し
たのち炉中冷却した。
[Conventional example] The same test piece as in the above example was prepared, and first, 60 sit%Cu-20wt%Ti-20wt was applied to the bonding surface of the ceramic material.
A 0.3 mm thick active metal thin plate made of a %Ag alloy was placed, heated in a furnace in an Ar gas atmosphere at 1000° C. for 1 hour, and then cooled in the furnace.

次に、実施例と同一条件で活性金属表面にN1メッキ層
を被覆したのち、該メッキ層表面に実施例と同じろう材
を介してアルミニウム材を重ね合せて接合試験片を製作
するとともに、該接合試験片を実施例と全く同様に締付
は具でしばった。
Next, an N1 plating layer was coated on the active metal surface under the same conditions as in the example, and then an aluminum material was laminated on the surface of the plated layer via the same brazing filler metal as in the example to produce a bonded test piece. The bonded test piece was tightened with a tool in exactly the same manner as in the example.

次に実施例と同一条件で真空炉内で加熱することにより
アルミニウム材をろう付した。
Next, the aluminum material was brazed by heating in a vacuum furnace under the same conditions as in the example.

上記により得た接合品の接合強度を測定したところ、I
K’j/−であった。
When the bonding strength of the bonded product obtained above was measured, it was found that I
It was K'j/-.

以上の結果から、この発明によれば、セラミックス材と
金属材との接合強度を従来よりも格段に向上しつること
を確認しえた。
From the above results, it has been confirmed that according to the present invention, the bonding strength between a ceramic material and a metal material can be significantly improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明の実施例において用いた試
験片を示すもので、第1図はセラミックス材とアルミニ
ウム材との重ね合せ前の状態を示す要部拡大断面図、第
2図は画材を重ね合せて接合試験片を製作した状態の斜
視図である。 (1)・・・セラミックス材、(2)・・・アルミニウ
ム材、(3)・・・活性金属層、(4)・・・メッキ層
、(5)・・・ろう材。 以上
Figures 1 and 2 show test pieces used in examples of the present invention. Figure 1 is an enlarged sectional view of the main parts showing the state before the ceramic material and aluminum material are stacked together, and Figure 2 is an enlarged cross-sectional view of the main parts. 1 is a perspective view of a bonded test piece produced by overlapping art materials. (1) Ceramic material, (2) Aluminum material, (3) Active metal layer, (4) Plating layer, (5) Brazing material. that's all

Claims (1)

【特許請求の範囲】[Claims] 不活性ガス雰囲気中で、不活性ガスを作動ガスとする溶
射装置を用いて活性金属を溶射することによって、まず
セラミックス材の接合面に活性金属層を被覆形成したの
ち、これを不活性ガス雰囲気中に保持したまま加熱して
活性金属を溶融させ、その後活性金属層の表面に活性金
属及びろう材の両者に対してぬれ性の良好な金属メッキ
層を被覆形成したのち、該メッキ層上にろう材を介して
金属材をろう付することを特徴とするセラミックス材と
金属材との接合方法。
First, an active metal layer is formed on the joint surface of the ceramic material by thermal spraying in an inert gas atmosphere using a thermal spraying device that uses inert gas as the working gas, and then this is coated in an inert gas atmosphere. The active metal is melted by heating while being held inside, and then a metal plating layer with good wettability for both the active metal and the brazing material is formed on the surface of the active metal layer. A method for joining ceramic materials and metal materials, characterized by brazing the metal materials through a brazing filler metal.
JP426588A 1988-01-11 1988-01-11 Method for bonding ceramic material and metallic material Pending JPH01179769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP426588A JPH01179769A (en) 1988-01-11 1988-01-11 Method for bonding ceramic material and metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP426588A JPH01179769A (en) 1988-01-11 1988-01-11 Method for bonding ceramic material and metallic material

Publications (1)

Publication Number Publication Date
JPH01179769A true JPH01179769A (en) 1989-07-17

Family

ID=11579710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP426588A Pending JPH01179769A (en) 1988-01-11 1988-01-11 Method for bonding ceramic material and metallic material

Country Status (1)

Country Link
JP (1) JPH01179769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392388A (en) * 2016-10-14 2017-02-15 深圳市品川新能源技术有限公司 Ceramic and conductor welding process
CN110776330A (en) * 2018-12-31 2020-02-11 深圳硅基仿生科技有限公司 Brazing method of ceramic and metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392388A (en) * 2016-10-14 2017-02-15 深圳市品川新能源技术有限公司 Ceramic and conductor welding process
CN106392388B (en) * 2016-10-14 2018-06-01 深圳市品川新能源技术有限公司 Ceramics and conductor welding procedure
CN110776330A (en) * 2018-12-31 2020-02-11 深圳硅基仿生科技有限公司 Brazing method of ceramic and metal

Similar Documents

Publication Publication Date Title
CA1268322A (en) Direct liquid phase bonding of ceramics to metals
JPH0249267B2 (en)
KR890000912B1 (en) Method for joining ceramic and metal
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
JPH01179769A (en) Method for bonding ceramic material and metallic material
EP0922682A1 (en) Method of forming a joint between a ceramic substrate and a metal component
JPH01179768A (en) Method for bonding ceramic material and metallic material
JP2001026855A (en) Production of nickel solder-coated stainless steel sheet excellent in self-brazability
JPS60141681A (en) Ceramic member for adhesion and method therefor
JPS6090879A (en) Ceramic and metal bonding method
JPH04295069A (en) Method for metallizing ceramics and production of ceramics-metal combined body by utilizing this method
KR100555910B1 (en) A method of junction for different matal
JPH0226880A (en) Method for brazing graphite to metal
JPH0615426B2 (en) Bonded body of SiC or Si (bottom 3) N (bottom 4) base material and Mo or W base material
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH04220198A (en) Ti series brazing filler metal powder
JPS61169190A (en) Composite brazing filler metal
JPH0147277B2 (en)
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPS59141393A (en) Brazing filler material
JPH03226372A (en) Method for brazing metal, ceramics and the like
JPH0671651B2 (en) Method of joining metals via thermal spray coating
JPS6228067A (en) Joining method for ceramics
JPS59207885A (en) Method of bonding ceramic member to metal member
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal