JPH01178851A - Analyzing method of polarization - Google Patents

Analyzing method of polarization

Info

Publication number
JPH01178851A
JPH01178851A JP152988A JP152988A JPH01178851A JP H01178851 A JPH01178851 A JP H01178851A JP 152988 A JP152988 A JP 152988A JP 152988 A JP152988 A JP 152988A JP H01178851 A JPH01178851 A JP H01178851A
Authority
JP
Japan
Prior art keywords
angle
analyzer
polarizer
measurement
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP152988A
Other languages
Japanese (ja)
Inventor
Takao Miyama
隆男 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP152988A priority Critical patent/JPH01178851A/en
Publication of JPH01178851A publication Critical patent/JPH01178851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce a measuring time by using a deviation of a polarizer angle from an analyzer angle in a four-zone measurement which is obtained at one measuring point beforehand, so as to correct the results of measurement of the polarizer angle and the analyzer angle at other measuring points. CONSTITUTION:A polarizer 6 and an analyzer 12 being rotated alternately and repeatedly, an angle P of the polarizer 6 whereat a light detection output is a minimum value and an angle A of the analyzer 12 corresponding thereto are measured, and a phase difference DELTA and a reflection coefficient ratio angle are calculated on the basis of said angles. On the occasion of the above- mentioned measurement, the polarizer angle and the analyzer angle are determined by a four-zone measurement only at an initial measuring point. At the other subsequent measuring points, the determination is implemented by a one- zone measurement, and the polarizer angle and the analyzer angle thus obtained are corrected by using a deviation of the polarizer angle from the analyzer angle obtained by the aforesaid four-zone measurement. According to this method, a measuring time can be reduced while a precision equivalent to the one of the four-zone measurement is maintained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、主として消光方式を適用する場合の偏光解析
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention mainly relates to a polarization analysis method when an extinction method is applied.

(ロ)従来技術とその問題点 偏光解析方法は、光の偏光特性を利用し、試料に対する
入射光と反射光との位相差Δ、反射係数比角Wを測定す
ることにより試料の薄膜の厚さdや屈折率nを求める方
法であって、たとえば、Siウェハ上に生成された5i
Ot酸化膜の厚さ測定等に利用されている。
(b) Prior art and its problems The polarization analysis method utilizes the polarization characteristics of light to measure the phase difference Δ between incident light and reflected light on the sample, and the reflection coefficient ratio angle W, thereby determining the thickness of the thin film of the sample. A method for determining the refractive index n and the refractive index n, for example, 5i produced on a Si wafer.
It is used for measuring the thickness of Ot oxide film, etc.

この偏光解析方法における測定手法として、従来、測光
方式と消光方式とがあり、特に後者の消光方式は、偏光
角度を直接測定するために測定精度が高い利点がある。
Conventionally, there are a photometric method and an extinction method as measuring methods in this polarization analysis method, and the latter extinction method in particular has the advantage of high measurement accuracy because it directly measures the polarization angle.

この消光方式のための偏光解析装置1は、第1図に示す
ような構成が採られる。この装置lでは、He−Neレ
ーザ等の光源2から試料10までの入射光路上に、偏光
子6と1/4波長板等で構成される補償子8とが、また
、試料IOからの反射光路上には検光子12と光検出器
14とがそれぞれ配置されている。なお、16は増幅器
、18はメータである。そして、偏光子6と検光子12
とを交互に繰り返して回転させ、光検出器14の検出出
力が極小値となる偏光子6の角度Pと、これに対応する
検光子12の角度Aとを測定し、得られた偏光子角Pと
検光子角Aとに基づいて位相差Δと反射係数比用事とを
算出する。
A polarization analyzer 1 for this extinction method has a configuration as shown in FIG. In this device 1, on the incident optical path from the light source 2 such as a He-Ne laser to the sample 10, there is also a polarizer 6 and a compensator 8 composed of a quarter-wave plate, etc. An analyzer 12 and a photodetector 14 are arranged on the optical path, respectively. Note that 16 is an amplifier and 18 is a meter. Then, a polarizer 6 and an analyzer 12
The angle P of the polarizer 6 at which the detection output of the photodetector 14 becomes the minimum value and the corresponding angle A of the analyzer 12 are measured, and the obtained polarizer angle is The phase difference Δ and the reflection coefficient ratio are calculated based on P and the analyzer angle A.

ところで、上記の消光方式の測定モードには、試料上の
一つの測定点に対して偏光子6の回転に伴って存在する
第1〜第4ゾーンの4箇所の消光位置からそれぞれ得ら
れる偏光子角P1′P、と検光子角A1〜A4を求めて
それらの平均値を算出する4ゾーン測定、一つの測定点
に対する第1、第2ゾーンの2箇所の消光位置からそれ
ぞれ偏光子角PI、P2と検光子角A1、A、を求めて
その平均値を算出する2ゾーン測定、一つの測定点に対
して第1ゾーンの消光位置のみから偏光子角P+と検光
子角A1を求めるlゾーン測定の3つの測定モードかあ
る。lゾーン測定から4ゾーン測定になるほど、装置の
光軸ずれ等に起因する誤差が補正されるために測定精度
が高(なるものの、測定点当たりの測定回数か多くなる
ので、それだけ測定に時間がかかり、特に、試料表面」
二の厚さ分布を調べる等の多点測定では測定が極めて長
時間に及ぶという問題かある。
By the way, in the above-mentioned extinction method measurement mode, polarizers obtained from four extinction positions of the first to fourth zones that exist as the polarizer 6 rotates with respect to one measurement point on the sample are used. Four-zone measurement in which the angle P1'P, and the analyzer angles A1 to A4 are calculated and their average value is calculated, and the polarizer angle PI is calculated from the two extinction positions of the first and second zones for one measurement point, respectively. Two-zone measurement in which P2 and analyzer angles A1 and A are determined and their average value calculated; l-zone measurement in which polarizer angle P+ and analyzer angle A1 are determined from only the extinction position of the first zone for one measurement point. There are three measurement modes of measurement. The more you change from 1-zone measurement to 4-zone measurement, the higher the measurement accuracy is because errors caused by misalignment of the optical axis of the device are corrected (although the number of measurements per measurement point increases, so the measurement time increases accordingly). especially on the sample surface.
There is a problem in multi-point measurements, such as examining the thickness distribution of the second layer, that the measurements take an extremely long time.

本発明は、このような事情に鑑みてなされたものであっ
て、消光方式において、4ゾーン測定と同等の精度を維
持しながら測定時間が短縮できるようにすることを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to shorten the measurement time while maintaining the same accuracy as 4-zone measurement in the extinction method.

(ハ)問題点を解決するための手段 本発明は、上記の目的を達成するために、光源から試料
までの入射光路上に偏光子、補償子8が、試料からの反
射光路上に検光子と光検出器がそれぞれ配置された偏光
解析装置を適用し、前記試料上の所定の測定点からの反
射光の検出強度が極小値となる偏光子角と検光子角とを
測定し、これらの値に基づいて試料に対する入射光と反
射光との位相差Δと反射係数比角Wとを算出する偏光解
析方法において、次の構成を採る。
(C) Means for Solving the Problems In order to achieve the above object, the present invention provides a polarizer and a compensator 8 on the incident optical path from the light source to the sample, and an analyzer on the reflected optical path from the sample. A polarization analyzer equipped with a photodetector and a photodetector is applied to measure the polarizer angle and analyzer angle at which the detected intensity of the reflected light from a predetermined measurement point on the sample is a minimum value, and these angles are measured. A polarization analysis method for calculating a phase difference Δ between incident light and reflected light on a sample and a reflection coefficient ratio angle W based on the values has the following configuration.

すなわち、本発明では、最初に、試料上の一つの測定点
に対して首記偏光子の回転に伴って存在する第1〜第4
ゾーンの各消光位置における偏光子角P1′P、と検光
子角A、〜A4を測定してその平均値P、Aを求め、前
記第1ゾーンの消光位置における偏光子角P1および検
光子角A1の萌記平均値P、Aからの偏差δP(−P−
P、) 、δA(−入−A、)をそれぞれ算出し、 引き続いて、他の各測定点に対しては第1ゾーンの測定
のみを行い、これにより各測定点で得られた各偏光子角
P、と検光子角A1に対して前記偏差δP1δAを加算
したP1+δP、A、+δAの値を該当する各測定点に
おける偏光子角P1′1検光子角A I−とじて補正す
るようにしている。
That is, in the present invention, the first to fourth polarizers that exist with respect to one measurement point on the sample as the polarizer rotates are first measured.
Measure the polarizer angle P1'P and the analyzer angles A, ~A4 at each extinction position of the zone to obtain their average values P and A, and calculate the polarizer angle P1 and the analyzer angle at the extinction position of the first zone. Moeki average value P of A1, deviation from A δP(-P-
P, ) and δA (-in-A,) are respectively calculated, and then only the first zone is measured for each of the other measurement points, thereby each polarizer obtained at each measurement point The value of P1+δP, A, +δA, which is obtained by adding the deviation δP1δA to the angle P and the analyzer angle A1, is corrected by combining the polarizer angle P1'1 analyzer angle AI- at each corresponding measurement point. There is.

(ニ)作用 本発明方法では、予め測定点で得られた4ゾーン測定で
の偏光子角と検光子角の偏差δP、δAを利用して他の
測定点における偏光子角と検光子角の測定結果を補正す
るため、4ゾーン測定が必要なのは最初だけでよく、そ
の後の測定はlゾーン測定だけで4ゾーン測定の場合と
同等の精度をもつ偏光子角と検光子角の値が測定できる
。したがって、試料の多点測定が必要な場合に、測定時
間を従来よりら大幅に短縮することか可能となる。
(D) Effect In the method of the present invention, the deviations δP and δA between the polarizer angle and analyzer angle in the four-zone measurement obtained in advance at the measurement points are used to calculate the polarizer angle and analyzer angle at other measurement points. In order to correct the measurement results, 4-zone measurements are only required at the beginning, and subsequent measurements can measure polarizer angle and analyzer angle values with the same accuracy as 4-zone measurements by only measuring the l-zone. . Therefore, when multi-point measurement of a sample is required, the measurement time can be significantly shortened compared to the conventional method.

(ホ)実施例 本発明方法を、Siウェハ上に生成されたの5iOt薄
膜の厚さを多点測定する場合を例にとって説明する。な
お、この偏光解析方法では、従来例で説明した第1図に
示す構成の偏光解析装置1がそのまま適用される。
(e) Example The method of the present invention will be explained by taking as an example the case where the thickness of a 5iOt thin film formed on a Si wafer is measured at multiple points. In addition, in this polarization analysis method, the polarization analysis apparatus 1 having the configuration shown in FIG. 1 described in the conventional example is applied as is.

第2図に示すように、最初に、Siウェハ上の一箇所を
測定点X。とじて設定し、この測定点X。
As shown in FIG. 2, first, one location on the Si wafer is set as measurement point X. and set this measurement point X.

に対して4ゾーン測定を行う。すなわち、第1ゾ−ンの
測定では、補償子8の方位を一45°に設定した後、S
iウェハ上の測定点X。に対して光源2からの光を偏光
子〇、補償子8を介して照射し、該測定点X0からの反
射光を検光子12を介して光検出器14で検出し、メー
タ18でその検出出力を観察する。その際、偏光子6を
00〜90°の範囲で回転するとともに、これに対応し
て検光子12を回転させ、光検出器14で検出される検
出強度が極小値となる偏光子角P、と検光子角A、とを
測定する。第2ゾーンの測定では、補償子8の方位を+
45°に設定した後、偏光子6を0°〜90°の範囲で
回転するとともに、これに対応して検光子12を回転さ
せ、光検出器I4で検出される検出強度が極小値となる
偏光子角P、と検光子角A、とを測定する。第3ゾーン
の測定では、補償子8の方位を一45°に設定した後、
偏光子6を90°〜180’の範囲で回転するとともに
、これに対応して検光子12を回転させて光検出器14
で検出される検出強度が極小値となる偏光子角P3と検
光子角A3とを測定する。さらに、第4ゾーンの測定で
は、補償子8の方位を+45°に設定した後、偏光子6
を90°〜1800の範囲で回転するとともに、これに
対応して検光子12を回転させ、光検出器14で検出さ
れる検出強度が極小値となる偏光子角P4と検光子角A
4とを測定する。
Perform 4-zone measurement for That is, in the measurement of the first zone, after setting the orientation of the compensator 8 to -45°,
i Measurement point X on the wafer. The light from the light source 2 is irradiated through the polarizer 〇 and the compensator 8, and the reflected light from the measurement point X0 is detected by the photodetector 14 via the analyzer 12, and the meter 18 detects the reflected light Observe the output. At that time, the polarizer 6 is rotated in the range of 00 to 90 degrees, and the analyzer 12 is rotated correspondingly, such that the polarizer angle P at which the detection intensity detected by the photodetector 14 becomes the minimum value, and analyzer angle A, are measured. In the measurement of the second zone, the direction of the compensator 8 is +
After setting it to 45 degrees, the polarizer 6 is rotated in the range of 0 degrees to 90 degrees, and the analyzer 12 is rotated correspondingly, so that the detection intensity detected by the photodetector I4 becomes a minimum value. Polarizer angle P and analyzer angle A are measured. In the measurement of the third zone, after setting the orientation of the compensator 8 to -45°,
The polarizer 6 is rotated in the range of 90° to 180', and the analyzer 12 is rotated correspondingly to detect the photodetector 14.
Polarizer angle P3 and analyzer angle A3 at which the detection intensity detected at is the minimum value are measured. Furthermore, in the measurement of the fourth zone, after setting the orientation of the compensator 8 to +45°, the polarizer 6
is rotated in the range of 90° to 1800 degrees, and the analyzer 12 is rotated correspondingly to determine the polarizer angle P4 and the analyzer angle A at which the detection intensity detected by the photodetector 14 becomes a minimum value.
Measure 4.

こうして、Siウェハ上の一つの測定点X。に対して第
1〜第4ゾーンの各々の偏光子角P、〜P4および検光
子角A、〜A、が測定されると、次式に基づいてその平
均値P、Aを求める。
Thus, one measurement point X on the Si wafer. When the polarizer angles P, ~P4 and analyzer angles A, ~A, of each of the first to fourth zones are measured, the average values P, A are determined based on the following equation.

0°<p、<45°のとき、 丁・(CP1′90°lPt +(Ps−180°) 
−(P1′90°))7445°<P、<90°のとき
、 P・(P、 −(P1′90°)−+(P1′90°)
 −(P4−tgoo))740°<A、<45°のと
き、 A・(A++At+(A3−180’ )−KA4−1
80°))/445°<A、<90°のとき、 τ・((A1′180’ )−KA1′180°)十A
3−1A4)/4そして、これらの平均値P、Aと第1
ゾーンの消光位置における偏光子角P、と検光子角A、
の偏差6P(=P−PI) 、δA(=A−AI) を
ut。
When 0°<p, <45°, Ding (CP1'90°lPt + (Ps-180°)
-(P1'90°))7445°<P, When <90°, P・(P, -(P1'90°)-+(P1'90°)
-(P4-tgoo))740°<A, <45°, A・(A++At+(A3-180')-KA4-1
80°))/445°<A, when <90°, τ・((A1'180') - KA1'180°) 10A
3-1A4)/4 and these average values P, A and the first
Polarizer angle P and analyzer angle A at the extinction position of the zone,
ut the deviation 6P (=P-PI) and δA (=A-AI).

ぞれ算出する。これらの偏差δP1δAは、lゾーン測
定における光学上の誤差に対応している。
Calculate each. These deviations δP1δA correspond to optical errors in l-zone measurement.

Siウェハ上に設定した他の測定点Xl1′X7、・・
・に対してはlゾーン測定のみを行う。すなわち、この
第1ゾーンの測定では、上述したように、補償子8の方
位を一45°に設定して偏光子6を00〜90°の範囲
で回転するとともに、これに対応して検光子12を回転
させて光検出器14で検出される検出強度が極小値とな
る偏光子角P、と検光子角AIとを測定する。そして、
これにより各測定点で得られた各偏光子角P1と検光子
角A1に対して前記偏差δP、δAを加算したP1+δ
P、A、+δAの値を該当する各測定点における偏光子
角Pr−と検光子角A1′とする。これにより、lゾー
ン測定での光学上の誤差が補正されることになる。
Other measurement points set on the Si wafer Xl1'X7,...
For ・, only l-zone measurement is performed. That is, in the measurement of the first zone, as described above, the orientation of the compensator 8 is set to -45°, the polarizer 6 is rotated in the range of 00 to 90°, and the analyzer is rotated correspondingly. 12 is rotated to measure the polarizer angle P and the analyzer angle AI at which the detection intensity detected by the photodetector 14 becomes a minimum value. and,
As a result, P1+δ is obtained by adding the deviations δP and δA to each polarizer angle P1 and analyzer angle A1 obtained at each measurement point.
Let the values of P, A, and +δA be the polarizer angle Pr- and the analyzer angle A1' at each corresponding measurement point. This corrects optical errors in l-zone measurement.

そして、各測定点X+SXz、・・・について、補正後
の偏光子角P+−と検光子角A1′に基づいて、Stウ
ェハに対する入射光と反射光との位相差Δと反射係数比
角ψとを、 Δ−(π/2)−2P1′ 1F=A、″ により算出する。
Then, for each measurement point X+SXz,..., based on the corrected polarizer angle P+- and analyzer angle A1', the phase difference Δ between the incident light and reflected light with respect to the St wafer and the reflection coefficient ratio angle ψ are calculated. is calculated by Δ-(π/2)-2P1'1F=A,''.

このように、予め一つの測定点X0で得られた4ゾーン
測定での偏光子角と検光子角の偏差δP1δAを利用し
て他の測定点XI、X2、・・・における偏光子角と検
光子角の測定結果を補正するため、4ゾーン測定が必要
なのは最初の測定点X。だけでよく、その後の測定はl
ゾーン測定だけで4ゾーン測定の場合と同等の精度をも
つ偏光子角と検光子角の値が測定できる。
In this way, by using the deviation δP1δA between the polarizer angle and analyzer angle in the four-zone measurement obtained in advance at one measurement point X0, the polarizer angle and analysis at other measurement points XI, X2, ... In order to correct the photon angle measurement results, 4-zone measurement is required at the first measurement point X. Only one measurement is necessary, and the subsequent measurements are
Only by zone measurement, values of the polarizer angle and analyzer angle can be measured with the same accuracy as in the case of 4-zone measurement.

(へ)効果 本発明によれば、消光方式を採用する偏光解析方法にお
いて、4ゾーン測定と同等の精度を維持しながら測定時
間を大幅に短縮することができる。
(f) Effects According to the present invention, in a polarization analysis method that employs an extinction method, measurement time can be significantly shortened while maintaining accuracy equivalent to that of four-zone measurement.

そのため、特に試料について多点測定が必要な場合に有
効となる等の優れた効果が発揮される。
Therefore, excellent effects such as being particularly effective when multi-point measurement of a sample is required are exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は消光方式が採用される偏光解析装置の構成図、
第2図は本発明方法をSiウェハのStO□薄膜測定に
適用する場合の説明図である。 1・・・偏光解析装置、2・・光源、6・・・偏光子、
8・・・補償子、12・・・検光子、14・・光検出器
Figure 1 is a configuration diagram of a polarization analyzer that uses the extinction method.
FIG. 2 is an explanatory diagram when the method of the present invention is applied to the measurement of a StO□ thin film on a Si wafer. 1... Polarization analyzer, 2... Light source, 6... Polarizer,
8... Compensator, 12... Analyzer, 14... Photodetector.

Claims (1)

【特許請求の範囲】[Claims] (1)光源から試料までの入射光路上に偏光子、補償子
が、試料からの反射光路上に検光子と光検出器がそれぞ
れ配置された偏光解析装置を適用し、前記試料上に設定
した所定の測定点からの反射光の検出強度が極小値とな
る偏光子角と検光子角とを測定し、これらの値に基づい
て試料に対する入射光と反射光の位相差Δおよび反射係
数比角Ψを算出する偏光解析方法において、 最初に、試料上の一つの測定点に対して前記偏光子の回
転に伴って存在する第1〜第4ゾーンの各消光位置にお
ける偏光子角P_1〜P_4と検光子角A_1〜A_4
を測定してその平均値@P@、@A@を求め、前記第1
ゾーンの消光位置における偏光子角P_1および検光子
角A_1の前記平均値@P@、@A@からの偏差δP(
=@P@−P_1)、δA(=@A@−A_1)をそれ
ぞれ算出し、 引き続いて、他の各測定点に対しては第1ゾーンの測定
のみを行い、これにより各測定点で得られた各偏光子角
P_1と検光子角A_1に対して前記偏差δP、δAを
加算したP_1+δP、A_1+δAの値を該当する各
測定点における偏光子角P_1′、検光子角A_1′と
して補正することを特徴とする偏光解析方法。
(1) A polarization analyzer is applied, in which a polarizer and a compensator are placed on the incident optical path from the light source to the sample, and an analyzer and a photodetector are placed on the reflected optical path from the sample, and are set on the sample. Measure the polarizer angle and analyzer angle at which the detected intensity of the reflected light from a predetermined measurement point is the minimum value, and based on these values, calculate the phase difference Δ and reflection coefficient ratio angle between the incident light and reflected light with respect to the sample. In the polarization analysis method for calculating Ψ, first, polarizer angles P_1 to P_4 at each extinction position of the first to fourth zones that exist as the polarizer rotates with respect to one measurement point on the sample. Analyzer angle A_1 to A_4
are measured and their average values @P@ and @A@ are determined, and the first
Deviation δP(
= @P@-P_1) and δA (= @A@-A_1), and then, for each of the other measurement points, only the first zone measurement is performed, thereby obtaining the results at each measurement point. The values of P_1+δP and A_1+δA, which are obtained by adding the deviations δP and δA to each polarizer angle P_1 and analyzer angle A_1, are corrected as polarizer angle P_1' and analyzer angle A_1' at each corresponding measurement point. A polarization analysis method characterized by:
JP152988A 1988-01-07 1988-01-07 Analyzing method of polarization Pending JPH01178851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP152988A JPH01178851A (en) 1988-01-07 1988-01-07 Analyzing method of polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP152988A JPH01178851A (en) 1988-01-07 1988-01-07 Analyzing method of polarization

Publications (1)

Publication Number Publication Date
JPH01178851A true JPH01178851A (en) 1989-07-17

Family

ID=11504045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP152988A Pending JPH01178851A (en) 1988-01-07 1988-01-07 Analyzing method of polarization

Country Status (1)

Country Link
JP (1) JPH01178851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174636A (en) * 1992-12-08 1994-06-24 Res Dev Corp Of Japan Measuring method of film thickness and optical constant
JPH06308021A (en) * 1993-04-23 1994-11-04 Res Dev Corp Of Japan Color difference observation method for thickness and refractive index

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174636A (en) * 1992-12-08 1994-06-24 Res Dev Corp Of Japan Measuring method of film thickness and optical constant
JPH06308021A (en) * 1993-04-23 1994-11-04 Res Dev Corp Of Japan Color difference observation method for thickness and refractive index

Similar Documents

Publication Publication Date Title
US11187649B2 (en) Method for conducting optical measurement usingfull Mueller matrix ellipsometer
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
US9103667B2 (en) Alignment method for optical axes of composite waveplate
EP0737856B1 (en) A method of investigating samples by changing polarisation
CN113466140B (en) Micro-lens polarization effect calibration method in low-light-spot ellipsometer
US7342661B2 (en) Method for noise improvement in ellipsometers
US5706088A (en) Polarizer-sample-analyzer intensity quotient ellipsometry
US20040233436A1 (en) Self-calibrating beam profile ellipsometer
JPH01178851A (en) Analyzing method of polarization
US6731386B2 (en) Measurement technique for ultra-thin oxides
JPH1038694A (en) Ellipsometer
CN117553927B (en) Wide-spectrum and wide-range high-precision birefringence phase difference measuring device
JPH05273120A (en) Polarization analyzer
JP3537732B2 (en) Ellipsometer using voltage controlled liquid crystal retarder
JPH04127004A (en) Ellipsometer and its using method
JPH05264440A (en) Polarization analyzing apparatus
JPS60249007A (en) Instrument for measuring film thickness
JPS6228606A (en) Film thickness measuring instrument
CN106383000A (en) Device and method for real-time measurement of optical material microcosmic stress based on monocrystal dual-electro-optical modulation
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
Monin et al. A new and high precision achromatic ellipsometer: a two-channel and polarization rotator method
JPH08128946A (en) Optical characteristic measuring method and measuring equipment
Goldstein et al. Measurement of small birefringence in sapphire and quartz plates
JPH06147837A (en) Method and equipment for measuring film thickness optically