JPH01177482A - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH01177482A
JPH01177482A JP62332005A JP33200587A JPH01177482A JP H01177482 A JPH01177482 A JP H01177482A JP 62332005 A JP62332005 A JP 62332005A JP 33200587 A JP33200587 A JP 33200587A JP H01177482 A JPH01177482 A JP H01177482A
Authority
JP
Japan
Prior art keywords
chamber
scroll
compression
pressure
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62332005A
Other languages
Japanese (ja)
Other versions
JPH07117049B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62332005A priority Critical patent/JPH07117049B2/en
Priority to KR1019880017493A priority patent/KR950008694B1/en
Priority to US07/291,233 priority patent/US4958993A/en
Priority to EP88121792A priority patent/EP0322894B1/en
Priority to CA000587150A priority patent/CA1329183C/en
Priority to DE3888147T priority patent/DE3888147T2/en
Publication of JPH01177482A publication Critical patent/JPH01177482A/en
Publication of JPH07117049B2 publication Critical patent/JPH07117049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To improve compression efficiency and to further improve vibration and noise characteristics, by a method wherein a revolving scroll is situated between a body frame and a stationary scroll, and is nipped between a thrust bearing and a stationary scroll with a fine gap therebetween. CONSTITUTION:A revolving scroll 18 is situated between a body frame 5 for supporting a drive shaft 4 and a stationary scroll 15. The revolving scroll is nipped between a thrust bearing 20 located on the body frame 5 side and movable only in an axial direction and the stationary scroll 15 with a fine gap therebetween. The revolving scroll 18 performs revolving movement, which is prevented from collision with a slide surface and the occurrence of sided- contact and silent and reduces production of vibration, without being affected by the moment and jumping phenomenon. This constitution enables increase of compression efficiency and further improvement of noise and vibration characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール圧縮機の過負荷軽減に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to overload mitigation of scroll compressors.

従来の技術 低振動、低騒音特性を備えたスクロール圧縮機は、吸入
室が外周部に有り、吐出ポートが渦巻きの中心部に設け
られ、圧縮流体の流れが一方向で往復動圧縮機や回転式
圧縮機のような流体を圧縮するための吐出弁を必要とせ
ず圧縮比が一定で、吐出脈動も比較的小さくて大きな吐
出空間を必要としないことが一般に知られている。
Conventional technology Scroll compressors with low vibration and low noise characteristics have a suction chamber on the outer periphery and a discharge port in the center of the spiral. It is generally known that this type of compressor does not require a discharge valve for compressing fluid, has a constant compression ratio, has relatively small discharge pulsation, and does not require a large discharge space.

また、振動や騒音特性をより一層改善するために、圧縮
機高速運転時などにおける旋回スクロールのジャンピン
グ現象を少なくする方策として第16図、第17図の構
成が考えられている。
Furthermore, in order to further improve vibration and noise characteristics, the configurations shown in FIGS. 16 and 17 have been considered as a measure to reduce the jumping phenomenon of the orbiting scroll during high-speed operation of the compressor.

同図は駆動シャフト1007の先端部の駆動ピン100
7aに連結する旋回スクロール1001の鏡板t001
aが固定スクロール1002(7)i板1002aとフ
レーム1008との間に微少隙間で支持され、圧縮機の
始動、停止時、高速運転時など圧縮負荷や回転部材の慣
性力などが変化する際に旋回スクロール1001mがジ
ャンピングするのを阻止し、旋回スクロール10o1と
固定スクロール1002との軸方向微少隙間を確保して
圧縮室の密封を図り、圧縮効率を高めると共に、部材間
の衝突により生じる異常音、振動、摺動部耐久性低下を
防止する工夫がなされている(特開昭55−14290
2号公報、米国特許3994633号公報など)。
The figure shows the drive pin 100 at the tip of the drive shaft 1007.
End plate t001 of the orbiting scroll 1001 connected to 7a
The fixed scroll 1002 (7) is supported with a small gap between the i-plate 1002a and the frame 1008, and is used when the compression load or the inertia of rotating members changes, such as when starting, stopping, or high-speed operation of the compressor. This prevents the orbiting scroll 1001m from jumping, ensures a small gap in the axial direction between the orbiting scroll 10o1 and the fixed scroll 1002, and seals the compression chamber to improve compression efficiency, and also prevents abnormal noises caused by collisions between members. Efforts have been made to prevent vibration and deterioration of the durability of sliding parts (Japanese Patent Application Laid-open No. 55-14290).
2, U.S. Pat. No. 3,994,633, etc.).

発明が解決しようとする問題点 しかし、スクロール圧縮機は圧縮比が一定なために、液
圧縮などにより圧縮室内が異常圧力上昇した場合に圧縮
室間隙間を広げて圧縮流体を漏洩させ、圧縮室圧力を降
下させることが出来ないので、圧縮負荷の増大、部品の
破損、摺動部耐久性の低下を生じるというスクロール圧
縮機特有の問題がある。
Problems to be Solved by the Invention However, since scroll compressors have a constant compression ratio, if the pressure inside the compression chamber increases abnormally due to liquid compression, etc., the gap between the compression chambers is widened and the compressed fluid leaks, causing the compression chamber to leak. Since the pressure cannot be lowered, there are problems unique to scroll compressors, such as increased compression load, damage to parts, and decreased durability of sliding parts.

また、この液圧縮問題解決のための方策として、第18
図の構成が考えられている。
In addition, as a measure to solve this liquid compression problem, the 18th
The composition of the figure has been considered.

同図は固定スクロール2001eを軸方向に移動可能な
構成にし、板バネ2023eの付勢力と背圧室2015
に吐出圧力を導入してその背圧力とで固定スクロール2
001eを旋回スクロール2001bに押圧し、旋回ス
クロールと固定スクロールとの間の軸方向隙間を無くし
て圧縮室の密封を図り、圧縮効率を高めると共に圧縮室
内で液圧縮が生じた時、固定スクロール2001・が旋
回スクロール2001dから軸方向に離反して圧縮室圧
力を降下せしめて負荷を軽減する構成である(米国特許
3600114号公報)。
The figure shows a structure in which the fixed scroll 2001e is movable in the axial direction, and the urging force of the leaf spring 2023e and the back pressure chamber 2015
Introducing discharge pressure to the fixed scroll 2 and its back pressure
001e is pressed against the orbiting scroll 2001b, the axial gap between the orbiting scroll and the fixed scroll is eliminated, the compression chamber is sealed, and the compression efficiency is increased. When liquid compression occurs in the compression chamber, the fixed scroll 2001. is separated from the orbiting scroll 2001d in the axial direction to lower the compression chamber pressure and reduce the load (US Pat. No. 3,600,114).

しかし、固定スクロール2001・を旋回スクロール2
001dに常に押圧する構成では、その付勢力を大きく
する必要があり両スクロールの接触面の摩擦や摩耗によ
り耐久性が低下し、入力損失も大きいという問題があっ
た。
However, the fixed scroll 2001 and the orbiting scroll 2
In the configuration in which the pressure is constantly pressed to 001d, it is necessary to increase the urging force, and there are problems in that durability is reduced due to friction and wear of the contact surfaces of both scrolls, and input loss is also large.

また、過負荷防止策として米国特許3817664号公
報などのように旋回スクロールを駆動軸の主軸と直角方
向に移動させる構成も考えられているが、部品構成が複
雑で振動や騒音特性の改善に難点があり、コスト高で圧
縮機の外形寸法が大きくなるなど、振動、騒音特性の改
善と過負荷軽減を同時に実現できるスクロール圧縮機が
望まれていた。
Additionally, as a measure to prevent overload, a structure in which the orbiting scroll is moved in a direction perpendicular to the main axis of the drive shaft, such as in U.S. Pat. Due to the high cost and large external dimensions of the compressor, there was a desire for a scroll compressor that could simultaneously improve vibration and noise characteristics and reduce overload.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール圧縮機は
、旋回スクロールが駆動軸を支承する本体フレームと固
定スクロールとの間に配置され、本体フレームの側に設
けられて軸方向にのみ移動が可能なスラスト軸受と固定
スクロールとの間に微少隙間を設けて挾まれており、ス
ラスト軸受は本体フレームとの間に適当な軸方向隙間を
維持しながら吐出流体圧力または吐出圧力と吸入圧力と
の間の中間流体圧力を利用して常に旋回スクロールの方
向に付勢されたものである。
Means for Solving the Problems In order to solve the above problems, the scroll compressor of the present invention has an orbiting scroll disposed between a main body frame supporting a drive shaft and a fixed scroll, and provided on the side of the main body frame. The thrust bearing, which can move only in the axial direction, and the fixed scroll are sandwiched with a small gap between them. It is always biased in the direction of the orbiting scroll by using the intermediate fluid pressure between the discharge pressure and the suction pressure.

作  用 本発明は上記構成によって、圧縮室圧力が正常で順次移
行する圧縮室の圧縮圧力により旋回スクロールに作用し
てスラスト軸受の側に向かうスラスト力がスラスト軸受
に作用する付勢力よりも小さい場合は、旋回スクロール
と固定スクロールとの間で軸方向に微少隙間が保たれて
圧縮室の密封を維持し、効率の良い圧縮作用をすると共
に成る程度の負荷変動時や加減速運転時、高速運転時で
も旋回スクロールのジャンピングや傾きを防止して振動
の少ない静粛な圧縮運転を続ける。
According to the above-mentioned structure, when the compression chamber pressure is normal and the thrust force acting on the orbiting scroll and directed toward the thrust bearing is smaller than the urging force acting on the thrust bearing due to the compression pressure in the compression chamber changing sequentially. A small gap is maintained in the axial direction between the orbiting scroll and the fixed scroll to maintain the sealing of the compression chamber and provide efficient compression, as well as during moderate load fluctuations, acceleration/deceleration operation, and high-speed operation. This prevents the orbiting scroll from jumping or tilting, allowing quiet compression operation with little vibration.

万−1液圧縮などが生じて瞬時的に圧縮室圧力が異常上
昇した場合は、旋回スクロールに作用するスラスト力が
スラスト軸受に作用する付勢力よりも大きくなり、スラ
スト軸受は本体フレームとの間の隙間を小さくする方向
に移動し、旋回スクロールと固定スクロールとの間の軸
方向隙間が大きくなる。その結果、圧縮室の密封を解除
して圧縮室圧力を降下せしめ、圧縮負荷を軽減し、再び
正常な圧縮運転に復帰させて動力損失の低減を図ると共
に、圧縮機の破損や摺動部の摩耗を防止して振動、騒音
、耐久性に優れた効率の良いスクロール圧縮機が提供で
きる。
If compression chamber pressure suddenly rises abnormally due to liquid compression, the thrust force acting on the orbiting scroll becomes greater than the urging force acting on the thrust bearing, and the thrust bearing The axial clearance between the orbiting scroll and the fixed scroll increases. As a result, the compression chamber is unsealed, the pressure in the compression chamber is lowered, the compression load is reduced, and normal compression operation is restored to reduce power loss. It is possible to provide an efficient scroll compressor that prevents wear, reduces vibration, noise, and has excellent durability.

実施例 以下、本発明の実施例のスクロール圧縮機について、図
面を参照しながら説明する。
Embodiments Hereinafter, scroll compressors according to embodiments of the present invention will be described with reference to the drawings.

第1図において、1は鉄製の密閉ケースで、その内部全
体は吐出室2に連通する高圧雰囲気となり、上部にモー
タ3、下部に圧縮部を配置し、モータ3の回転子3aに
固定された駆動軸4を支承する圧縮部の本体フレーム5
により、密閉ケース? °1の内部がモータ室6と吐出重重に仕切られている。
In Fig. 1, reference numeral 1 denotes a sealed iron case, the entire interior of which is in a high-pressure atmosphere communicating with a discharge chamber 2, with a motor 3 in the upper part and a compression part in the lower part, which is fixed to the rotor 3a of the motor 3. Main body frame 5 of the compression part that supports the drive shaft 4
Is it a closed case? The inside of 1 is partitioned into a motor chamber 6 and a discharge weight.

本体フレーム5は軽量化と軸受部の熱発散を主目的とし
た熱伝導特性に優れたアルミニウム合金製で、その外周
部に溶接性に優れた鉄製ライナー8が焼ばめ固定され、
ライナー8の外周面が密閉ケース1に全周内接し部分的
に溶接固定されている。
The main body frame 5 is made of an aluminum alloy with excellent heat conduction properties, with the main purpose of reducing weight and dissipating heat from the bearing part, and an iron liner 8 with excellent weldability is fixed to the outer periphery by shrink fitting.
The outer peripheral surface of the liner 8 is inscribed in the sealed case 1 all around and is partially fixed by welding.

モータ3の固定子3bの両端外周部は、密閉ケース1に
内接固定された軸受フレーム9と本体フレーム5によっ
て支持固定されている。駆動軸4は軸受フレーム9に設
けられた上部軸受10、本体フレーム5の上端部に設け
られた下部軸受11、本体フレーム5の中央部に設けら
れた主軸受12、本体フレーム5の上端面とモータ3の
回転子3aの下部端面との間に設けられたスラスト玉軸
受13とで支持され、その下端部には駆動軸4の主軸か
ら偏心した偏心軸受14が設けられている。
The outer peripheral portions of both ends of the stator 3b of the motor 3 are supported and fixed by a bearing frame 9 and a main body frame 5 which are internally fixed to the sealed case 1. The drive shaft 4 includes an upper bearing 10 provided on a bearing frame 9, a lower bearing 11 provided on the upper end of the main body frame 5, a main bearing 12 provided in the center of the main body frame 5, and an upper end surface of the main body frame 5. It is supported by a thrust ball bearing 13 provided between the lower end surface of the rotor 3a of the motor 3, and an eccentric bearing 14 eccentric from the main axis of the drive shaft 4 is provided at its lower end.

本体フレーム5の下端面にはアルミニウム合金製の固定
スクロール15が固定され、固定スクロール15は渦巻
き状の固定スクロールラップ15aと鏡板15bから成
り、鏡板15bの中央部には固定スクロールラップ15
aの巻き始め部に開口する吐出ポート16が吐出室2に
も開口して設けられ、固定スクロールラップ15暑の外
周部には吸入室17が設けられている。
A fixed scroll 15 made of aluminum alloy is fixed to the lower end surface of the main body frame 5, and the fixed scroll 15 consists of a spiral fixed scroll wrap 15a and an end plate 15b.
A discharge port 16 that opens at the beginning of the winding is also opened to the discharge chamber 2, and a suction chamber 17 is provided at the outer periphery of the fixed scroll wrap 15.

固定スクロールラップ15mに噛み合って圧縮室を形成
する渦巻き状の旋回スクロールランプ113aと駆動軸
4の偏心軸受14に支持された旋回軸18bとを直立さ
せたラップ支持円板18cとから成るアルミニウム合金
製の旋回スクロール18は固定スクロール15と本体フ
レーム5と駆動軸4とに囲まれて配置されており、旋回
軸18bの外周部に高張力鋼材料から成るスリーブ19
が焼ばめ固定され、ラップ支持円板18aの表面は硬化
処理されている。
It is made of aluminum alloy and consists of a spiral orbiting scroll lamp 113a that engages with a fixed scroll wrap 15m to form a compression chamber, and a wrap support disk 18c that stands upright with a rotation shaft 18b supported by an eccentric bearing 14 of a drive shaft 4. The orbiting scroll 18 is arranged surrounded by the fixed scroll 15, the main body frame 5, and the drive shaft 4, and a sleeve 19 made of high-strength steel material is attached to the outer periphery of the orbiting shaft 18b.
are fixed by shrink fit, and the surface of the lap support disk 18a is hardened.

本体フレーム5に固定された平行ピン19に拘束されて
軸方向にのみ移動が可能なスラスト軸受20と固定スク
ロール15の鏡板15bとの間にはスペーサ21が設け
られ、スペーサ21の軸方向寸法は油膜による摺動面の
シール性向上のためにラップ支持円板18aの厚さより
も約0.015〜0.020 mm大きく設定されてい
る。
A spacer 21 is provided between the thrust bearing 20, which is restrained by a parallel pin 19 fixed to the main body frame 5 and can only move in the axial direction, and the end plate 15b of the fixed scroll 15, and the axial dimension of the spacer 21 is The thickness is set approximately 0.015 to 0.020 mm larger than the thickness of the lap support disk 18a in order to improve the sealing performance of the sliding surface by an oil film.

駆動軸4の偏心軸受14の底部と旋回スクロール1日の
旋回軸18bの端部との間の偏心軸受空間36とラップ
支持円板18cの外周部空間37とは旋回軸tabとラ
ップ支持円板18cに設けられた油水A38mにより連
通されている。
The eccentric bearing space 36 between the bottom of the eccentric bearing 14 of the drive shaft 4 and the end of the orbiting shaft 18b of the orbiting scroll 1 and the outer peripheral space 37 of the lap support disk 18c are defined by the orbiting axis tab and the lap support disk. It is communicated by oil water A38m provided at 18c.

スラスト軸受20は第2図、第6図のように、その中央
部が2つの平行な直線部分22とそれに連なる2つの円
弧状曲線部分23から成る形状に貫通成形されている。
As shown in FIGS. 2 and 6, the thrust bearing 20 is formed through a central portion into a shape consisting of two parallel straight portions 22 and two arcuate curved portions 23 connected thereto.

旋回スクロール自転阻止用のオルダムリング24は、焼
結成形やインジェクション成形工法などに適した軽合金
や樹脂材料から成り、第4図のように両面が平行な薄い
環状板24mとその一面に設けられた一対の平行キ一部
分24bとから成り、環状板24mの外輪郭は2つの平
行な直線部分25とそれに連なる2つの円弧状曲線部分
26から成り、直線部分25は第6図のようにスラスト
軸受20の直線部分22に微少隙間で係合し、摺動可能
であり、平行キ一部分24bの側面24cは、直線部分
25の中央部で直交し、第1図、第2図のように旋回ス
クロール18のラップ支持円板18oに設けられた一対
のキー溝71に微少隙間で係合し、摺動可能な形状に設
定されている。
The Oldham ring 24 for preventing rotation of the orbiting scroll is made of a light alloy or resin material suitable for sinter molding, injection molding, etc., and is provided on one side of a thin annular plate 24m with parallel surfaces as shown in Fig. 4. The outer contour of the annular plate 24m consists of two parallel straight parts 25 and two arcuate curved parts 26 connected thereto, and the straight parts 25 are thrust bearings as shown in FIG. The side surface 24c of the parallel key part 24b is orthogonal to the straight part 25 at the center of the straight part 25, and as shown in FIGS. 1 and 2, it is slidable. It is set in a shape that allows it to engage with a pair of key grooves 71 provided in the 18 lap support disks 18o with a small gap and to be able to slide.

なお、環状板24aの内輪郭は外輪郭に類似した形状で
ある。また、平行キ一部分24bの付は根に設けられた
ヘコミ部24dは潤滑油の通路にもなる。
Note that the inner contour of the annular plate 24a has a shape similar to the outer contour. Further, a recessed portion 24d provided at the root of the parallel key portion 24b also serves as a passage for lubricating oil.

第1図、第3図のように、本体フレーム5とスラスト軸
受2oとの間には約0.1mm前後のレリース隙間27
が設けられ、そのレリース隙間27に対向して本体フレ
ーム5にも環状溝28が設けられ、環状溝28を囲んだ
ゴム製のシールリング70が本体フレーム5とスラスト
軸受20との間に装着されている。
As shown in Figures 1 and 3, there is a release gap 27 of approximately 0.1 mm between the main body frame 5 and the thrust bearing 2o.
An annular groove 28 is also provided in the main body frame 5 opposite to the release gap 27, and a rubber seal ring 70 surrounding the annular groove 28 is installed between the main body frame 5 and the thrust bearing 20. ing.

モータ室6の上部と吐出室2とは密閉ケース1の側壁を
貫通して接続されたバイパス吐出管29を介して連通し
、バイパス吐出管29のモータ室6への開口位置は固定
子3bの上部コイルエンド30の側面に対向し、バイパ
ス吐出管29の上部開口端と密閉ケース1の上面に接続
された吐出管31とは軸受フレーム5に設けられた抜き
穴32、密閉ケース1の上面と軸受フレーム9との間に
配置され多数の***を有したパンチングメタル33を介
して連通している。
The upper part of the motor chamber 6 and the discharge chamber 2 communicate with each other via a bypass discharge pipe 29 that passes through the side wall of the sealed case 1 and is connected to the upper part of the motor chamber 6. The discharge pipe 31, which faces the side surface of the upper coil end 30 and is connected to the upper open end of the bypass discharge pipe 29 and the upper surface of the sealed case 1, has a hole 32 provided in the bearing frame 5, and the upper surface of the sealed case 1. It communicates with the bearing frame 9 via a punching metal 33 having a large number of small holes.

モータ室6の下部に設けられた吐出室油溜34はモータ
室6の上部とモータ3の固定子3bの外周の一部をカッ
トして設けた冷却通路35により連通されている。また
、吐出室油溜34は本体フレーム5に設けられた油室B
58bを経由して環状W1j28に通じると共に、オル
ダムリング24が配置された旋回スクロール18の背圧
室39にも主軸受12の摺動部微・少隙間を介して通じ
、更に偏心軸受14に設けられた油溝A40mを介して
偏心軸受空間36へも連通している。
A discharge chamber oil reservoir 34 provided in the lower part of the motor chamber 6 is communicated with the upper part of the motor chamber 6 by a cooling passage 35 provided by cutting a part of the outer periphery of the stator 3b of the motor 3. Further, the discharge chamber oil reservoir 34 is an oil chamber B provided in the main body frame 5.
58b to the annular W1j28, and also to the back pressure chamber 39 of the orbiting scroll 18 in which the Oldham ring 24 is disposed, through a small gap in the sliding part of the main bearing 12, and further provided in the eccentric bearing 14. It also communicates with the eccentric bearing space 36 via the oil groove A40m.

また。本体フレーム5に設けられた油室B58bは駆動
軸4の下部軸受11に対応する下部軸受4aの表面に設
けられた螺線状油溝41にも通じており、螺線状油溝4
1の巻方向は駆動軸4が正回転する時に潤滑油の粘性を
利用したネジポンプ作用の生じるように設けられ、その
終端は下部軸受4aの途中まで形成されている。
Also. The oil chamber B58b provided in the main body frame 5 also communicates with the spiral oil groove 41 provided on the surface of the lower bearing 4a corresponding to the lower bearing 11 of the drive shaft 4.
The winding direction of No. 1 is provided so that a screw pump action using the viscosity of the lubricating oil occurs when the drive shaft 4 rotates forward, and the end thereof is formed halfway to the lower bearing 4a.

第6図、第7図のように、固定スクロール15は吸入室
17の両端を連通ずる円弧状の吸入通路42が設けられ
、それに直交する円形の吸入穴43が固定スクロールラ
ップ15mの側面に対しても直角方向に設けられ、吸入
穴43の底部は平面で吸入通路42の側面にまで到達し
ている。第8図のように、吸入穴43の中心は吸入通路
42の底面44とずれており、吸入通路42への開口部
寸法W45は吸入穴43の直径寸法より小さく設けられ
ている。また、吸入穴43にはアキュームレータ46の
吸入管47が接続されており、吸入穴43の底面44と
吸入管端面48との間には吸入管47の内径寸法および
吸入管端面48と底面44との間の吸入穴深さ寸法L4
9よりも大きく且つ開口寸法W45よりも大きい円形薄
鋼板の逆止弁50が配置されている。逆止弁50の表面
は油濡れ特性が悪く弾力性に富んだテフロンまたはゴム
などがコーティングされている。
As shown in FIGS. 6 and 7, the fixed scroll 15 is provided with an arc-shaped suction passage 42 that communicates both ends of the suction chamber 17, and a circular suction hole 43 perpendicular to the arc-shaped suction passage 42 is formed on the side surface of the fixed scroll wrap 15m. The bottom of the suction hole 43 is flat and reaches the side surface of the suction passage 42 . As shown in FIG. 8, the center of the suction hole 43 is offset from the bottom surface 44 of the suction passage 42, and the opening dimension W45 to the suction passage 42 is set smaller than the diameter dimension of the suction hole 43. Further, a suction pipe 47 of an accumulator 46 is connected to the suction hole 43, and between the bottom surface 44 of the suction hole 43 and the suction pipe end surface 48, the inner diameter dimension of the suction pipe 47 and the suction pipe end surface 48 and the bottom surface 44 are connected. Suction hole depth dimension L4 between
A check valve 50 made of a circular thin steel plate having a diameter larger than 9 and an opening size W45 is disposed. The surface of the check valve 50 is coated with Teflon or rubber, which has poor oil wettability and is highly elastic.

吸入室17にも吐出室2にも連通しない第2圧縮室51
と外周部空間37とは、第2圧縮室51に開口して鏡板
15bに設けられた細径のインジェクション穴52、鏡
板15bと樹脂製の断熱カバー53とで形成されたイン
ジェクション溝54、外周部空間37に開口した段付き
形状の油室C38cとから成るインジェクション通路5
5で連通され、油室C38aの大径部56には第9図に
示すような外周の一部に切欠き57を有する薄鋼板製の
逆止弁58とコイルスプリング59とが配置されている
。コイルスプリング59は断熱カバー53に押えられて
逆止弁58を常時付勢する。外周部空間37への油室C
38cの開口位置は、第10図、第11図に示す如く、
吐出ポート16に連通ずる第3圧縮室60の容積減少行
程が終了する近傍にまで旋回スクロール18が移動した
(第10図参照)時に外周部空間37と油室C38cと
が連通し、それ以外の時(第11図参照)にはラップ支
持円板113c+によって遮断される位置に設けられて
いる。
A second compression chamber 51 that does not communicate with either the suction chamber 17 or the discharge chamber 2
The outer peripheral space 37 includes a small diameter injection hole 52 opened to the second compression chamber 51 and provided in the end plate 15b, an injection groove 54 formed by the end plate 15b and a resin heat insulating cover 53, and an outer peripheral part. An injection passage 5 consisting of a stepped oil chamber C38c opening into the space 37
A check valve 58 made of a thin steel plate having a notch 57 in a part of its outer periphery and a coil spring 59 are disposed in the large diameter portion 56 of the oil chamber C38a as shown in FIG. . The coil spring 59 is pressed by the heat insulating cover 53 and always biases the check valve 58. Oil chamber C to outer peripheral space 37
The opening position of 38c is as shown in FIGS. 10 and 11.
When the orbiting scroll 18 moves close to the end of the volume reduction stroke of the third compression chamber 60 that communicates with the discharge port 16 (see FIG. 10), the outer peripheral space 37 and the oil chamber C38c communicate with each other, and the other At the time (see FIG. 11), it is provided at a position where it is blocked by the lap support disk 113c+.

第12図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、吸入・圧縮・吐出過程における
冷媒ガスの圧力変化状態を示し、実線62は正常圧力で
運転時の圧力変化を示し、点線63は異常圧力上昇運転
時の圧力変化を表わす。
In FIG. 12, the horizontal axis indicates the rotation angle of the drive shaft 4,
The vertical axis shows the refrigerant pressure, and shows the pressure change state of the refrigerant gas during the suction, compression, and discharge processes.The solid line 62 shows the pressure change during normal pressure operation, and the dotted line 63 shows the pressure change during abnormal pressure rise operation. represent.

第13図において、横軸は駆動軸4の回転角度を示し、
縦軸は冷媒圧力を示し、実線64は吐出室2にも吸入室
17にも連通しない第2圧縮室51a、51bのインジ
ェクション穴52m。
In FIG. 13, the horizontal axis indicates the rotation angle of the drive shaft 4,
The vertical axis indicates the refrigerant pressure, and the solid line 64 indicates the injection holes 52m of the second compression chambers 51a and 51b that do not communicate with either the discharge chamber 2 or the suction chamber 17.

52bの開口位置における圧力変化を示し、点線65は
吸入室17に連通する第1圧縮室61a。
The dotted line 65 indicates the first compression chamber 61a that communicates with the suction chamber 17.

61b(第6図参照)の定点における圧力変化を示し、
−点鎖線66は吐出室2に連通ずる第3圧縮室60a、
60bの定点における圧力変化を示し、二点鎖線67は
第1圧縮室etm、61bと第2圧縮室51m、51b
との間の定点における圧力変化を示し、2重点線68は
背圧室39の圧力変化を示す。
61b (see Figure 6) shows the pressure change at a fixed point,
- the dotted chain line 66 indicates a third compression chamber 60a communicating with the discharge chamber 2;
60b shows the pressure change at a fixed point, and the two-dot chain line 67 indicates the first compression chamber etm, 61b and the second compression chamber 51m, 51b.
The double dotted line 68 shows the pressure change in the back pressure chamber 39.

第14図は別の実施例のスクロール冷媒圧縮機の縦断面
図で、101m、101bは鉄製の密閉ケース、180
は鉄製の本体フレーム105をボルト固定した軟鋼製の
仕切り板で、その外周面部で密閉ケースl01m、10
1bと共に単一の溶接ビード181によって溶接密封さ
れ、密閉ケース101m、10Ib内を上側の吐出室1
02と下側の駆動室106(低圧側)とに仕切っている
FIG. 14 is a vertical cross-sectional view of a scroll refrigerant compressor of another embodiment, where 101 m and 101b are iron closed cases, 180
is a mild steel partition plate to which an iron main body frame 105 is fixed with bolts.
The upper discharge chamber 1 is welded and sealed together with 1b by a single weld bead 181, and the inside of the sealed case 101m and 10Ib is connected to the upper discharge chamber 1.
02 and a lower drive chamber 106 (low pressure side).

フレーム105に支承され、インバータ電源(図示せず
)によって運転制御されるモータ103により、回転駆
動される駆動軸104の上端部の偏心穴136には、旋
回スクロール118の旋回軸118bがはめ込まれ、旋
回スクロール118の自転阻止用のオルダムリング12
4が、本体フレーム105に固定された平行ピン(rf
!1示せず)に拘束されて軸方向にのみ移動が可能なス
ラスト軸受120と旋回スクロール118の各溝に係合
し、旋回スクロール118にかみ合う固定スクロール1
15が、仕切り板180にボルト固定され、固定スクロ
ール115の鏡板115bには吐出ポート116が設け
られ、鏡板115bの上面には、リードバルブ型の給油
通路制御弁装置182が取り付けられている。
An orbiting shaft 118b of an orbiting scroll 118 is fitted into an eccentric hole 136 at the upper end of a drive shaft 104 which is supported by a frame 105 and is rotationally driven by a motor 103 whose operation is controlled by an inverter power supply (not shown). Oldham ring 12 for preventing the rotation of the orbiting scroll 118
4 is a parallel pin (rf
! A fixed scroll 1 that engages with each groove of the orbiting scroll 118 and a thrust bearing 120 that is restrained by the orbiting scroll 118 (not shown) and can move only in the axial direction.
15 is bolted to a partition plate 180, a discharge port 116 is provided on the end plate 115b of the fixed scroll 115, and a reed valve type oil supply passage control valve device 182 is attached to the upper surface of the end plate 115b.

スラスト軸受120は、シールリング170の弾性力で
常に旋回スクロール118の方へ付勢され、仕切り板1
80に当接してその移動を規制されている。しかし、旋
回スクロール118を固定スクロール115に押し付け
て旋回スクロール118の円滑な旋回運動を阻害せぬよ
うに微少隙間(約0.020 mm )を確保できる軸
方向の寸法設定がなされている。
The thrust bearing 120 is always urged toward the orbiting scroll 118 by the elastic force of the seal ring 170, and the partition plate 1
80 and its movement is restricted. However, the dimensions in the axial direction are set such that a minute gap (approximately 0.020 mm) can be secured so that the orbiting scroll 118 is not pressed against the fixed scroll 115 and the smooth orbiting movement of the orbiting scroll 118 is not obstructed.

吐出室102の底部は吐出室油溜134となり、その上
部には多数の***を有した傘状のパンチングメタル13
3が密閉ケース101aに取り付けられ、密閉ケース1
01−とパンチングメタル133との間には細樹脂線材
から成るフィルタ183が詰められている。吐出室10
2は密閉ケース101−の上面に設けられた吐出管13
1、外部の冷凍サイクル配管系をそれぞれ経て密閉ケー
ス101bの側面に設けられた吸入管147を通じ、低
圧側の駆動室106に連通している。また駆動室106
の底部にはモータ室油溜184が設けられている。
The bottom of the discharge chamber 102 becomes a discharge chamber oil reservoir 134, and the upper part is an umbrella-shaped punching metal 13 with many small holes.
3 is attached to the sealed case 101a, and the sealed case 1
A filter 183 made of a thin resin wire is packed between the punching metal 133 and the punching metal 133. Discharge chamber 10
2 is a discharge pipe 13 provided on the upper surface of the sealed case 101-
1. It communicates with the drive chamber 106 on the low pressure side through an external refrigeration cycle piping system and a suction pipe 147 provided on the side surface of the sealed case 101b. In addition, the drive chamber 106
A motor chamber oil reservoir 184 is provided at the bottom of the motor chamber.

吐出室102にも吸入室117にも連通しない第2圧縮
室151と吐出室油溜134との間は、鏡板115bに
設けられた油吸い込み穴185、鏡板115bに薄鋼板
製のリード弁186と共に取り付けられた給油通路制御
弁装置182の弁押え187と鏡板115bとの間に形
成された弁室間188、リード弁186の打ち抜き穴1
89、鏡板115bに設けられた極細通路のインジェク
ション穴152とから成る絞り通路を有した第1給油通
路によって連通している。
Between the second compression chamber 151, which does not communicate with either the discharge chamber 102 or the suction chamber 117, and the discharge chamber oil reservoir 134, an oil suction hole 185 provided in the end plate 115b and a reed valve 186 made of a thin steel plate are provided in the end plate 115b. Between the valve chambers 188 formed between the valve holder 187 and the end plate 115b of the attached oil supply passage control valve device 182, and the punched hole 1 of the reed valve 186
89, and the injection hole 152, which is an extremely narrow passage provided in the end plate 115b, communicates with the first oil supply passage having a throttle passage.

固定スクロール115とスラスト軸受120との間に配
置された旋回スクロール118の旋回スクロールラップ
118aを支持するラップ支持円盤118bと、スラス
ト軸受120と駆動軸104とで形成された背圧室13
9との間は、第1給油通路の途中から分岐して弁室間1
88、リード弁186の打ち抜き穴189暑、鏡板11
5bに設けられた油室A138m、仕切り板180に設
けられた極細通路の油室B1313b1本体フレーム1
05に設けられた油室C138c、スラスト軸受120
と本体フレーム105との間に設けられ、その外周部を
ゴム製のシールリング170で支持・密封されたレリー
ス隙間127、スラスト軸受120に設けられた油室R
138dとで構成される給油通路により連通している。
A back pressure chamber 13 formed by a wrap support disk 118b that supports the orbiting scroll wrap 118a of the orbiting scroll 118 disposed between the fixed scroll 115 and the thrust bearing 120, the thrust bearing 120, and the drive shaft 104.
9 is branched from the middle of the first oil supply passage and is connected to the valve chamber 1.
88, punched hole 189 of reed valve 186, mirror plate 11
Oil chamber A138m provided in 5b, oil chamber B1313b1 with extremely narrow passage provided in partition plate 180, main body frame 1
Oil chamber C138c provided in 05, thrust bearing 120
A release gap 127 is provided between the main body frame 105 and the outer periphery thereof is supported and sealed by a rubber seal ring 170, and an oil chamber R is provided in the thrust bearing 120.
138d through a fuel supply passage.

背圧室139と低圧側の駆動室との間は主軸受112の
軸受隙間、偏心軸受114の隙間、駆動軸104に設け
られた偏心油室190と、横部穴191、駆動軸104
を支承し、本体フレーム105の下端に設けられた下部
軸受192と主軸受112との間の軸受油溜193、下
部軸受192の軸受隙間とで構成される絞り通路を有し
た第1潤滑通路により連通している。
Between the back pressure chamber 139 and the drive chamber on the low pressure side are the bearing gap of the main bearing 112, the gap of the eccentric bearing 114, the eccentric oil chamber 190 provided in the drive shaft 104, the side hole 191, and the drive shaft 104.
The first lubrication passage supports the main body frame 105 and has a throttle passage composed of a bearing oil reservoir 193 between the lower bearing 192 and the main bearing 112 provided at the lower end of the main body frame 105, and a bearing clearance of the lower bearing 192. It's communicating.

また、背圧室139と吸入室117との間は、スラスト
軸受120とランプ支持円板118bとの摺動面や、オ
ルダムリング124の摺動面を介して構成される第2潤
滑通路によって連通している。
Further, the back pressure chamber 139 and the suction chamber 117 are communicated through a second lubrication passage formed through the sliding surface of the thrust bearing 120 and the lamp support disk 118b and the sliding surface of the Oldham ring 124. are doing.

以上のように構成されたスクロール気体圧縮機について
、その動作を説明する。
The operation of the scroll gas compressor configured as above will be explained.

第1図〜第13図において、モータ3によって駆動軸4
が回転駆動すると旋回スクロール18が旋回運動をし、
圧縮機に接続した冷凍サイクルから潤滑油を含んだ吸入
冷媒ガスが、アキュームレータ46に接続した吸入管4
7、吸入穴43、吸入通路42を順次経て吸入室17に
流入し、旋回スクロール18と固定スクロール15との
間に形成された第1圧縮室61m、61bを経て圧縮室
内に閉じ込められ、常時密閉空間となる第2圧縮室51
a、51b、第3圧縮室60a、Sobへと順次移送圧
縮され、中央部の吐出ポート16を経て吐出室2へと吐
出される。
1 to 13, the drive shaft 4 is driven by the motor 3.
When is driven to rotate, the orbiting scroll 18 makes an orbiting motion,
Suction refrigerant gas containing lubricating oil from the refrigeration cycle connected to the compressor flows into the suction pipe 4 connected to the accumulator 46.
7. It flows into the suction chamber 17 through the suction hole 43 and the suction passage 42 sequentially, passes through the first compression chambers 61m and 61b formed between the orbiting scroll 18 and the fixed scroll 15, and is confined in the compression chamber, so that it is always sealed. Second compression chamber 51 serving as space
a, 51b, the third compression chamber 60a, and Sob, where it is sequentially transferred and compressed, and is discharged into the discharge chamber 2 through the discharge port 16 in the center.

潤滑油を含んだ吐出冷媒ガスは圧縮機外部へ配管された
バイパス吐出管29を経て再び圧縮機内のモータ室6に
帰還した後、外部の冷凍サイクルへ吐出管31から排出
されるが、モータ室6に流入する際に、モータ3の上部
コイルエンド30の側面に衝突してモータ巻き線の表面
に付着する。
The discharged refrigerant gas containing lubricating oil returns to the motor chamber 6 inside the compressor via the bypass discharge pipe 29 piped to the outside of the compressor, and then is discharged from the discharge pipe 31 to the external refrigeration cycle. 6, it collides with the side surface of the upper coil end 30 of the motor 3 and adheres to the surface of the motor winding.

これにより、潤滑油の一部が分離され、その後−受フレ
ーム9に設けられた抜き穴32を通過する際に、流れ方
向を変えたり、パンチングメタル33の***を通過する
際に、潤滑油の慣性力や表面付着などにより潤滑油が効
果的に分離される。
As a result, a part of the lubricating oil is separated, and then the lubricating oil is changed in flow direction when passing through the punch hole 32 provided in the receiving frame 9, or when passing through the small hole in the punching metal 33. Lubricating oil is effectively separated due to inertia and surface adhesion.

吐出ガスから分離された潤滑油の一部は、上部軸受の摺
動面を潤滑した後、残りの潤滑油と共に冷却通路35を
通り、モータ3を冷却しながら下部の吐出室油溜34に
収集される。
A part of the lubricating oil separated from the discharge gas lubricates the sliding surface of the upper bearing, and then passes through the cooling passage 35 along with the remaining lubricating oil, and is collected in the lower discharge chamber oil sump 34 while cooling the motor 3. be done.

吐出室油溜34の潤滑油は、駆動軸4の下部軸部4mの
表面に設けられた螺線状油溝41のネジポンプ作用によ
り、スラスト玉軸受13へ給油され、下部軸部4aの端
部の微少軸受隙間を潤滑油が通過する際に、その油膜の
シール作用により、モータ室6の吐出冷媒ガス雰囲気と
主軸受12の上流側空間とが遮断される。
The lubricating oil in the discharge chamber oil sump 34 is supplied to the thrust ball bearing 13 by the screw pump action of the spiral oil groove 41 provided on the surface of the lower shaft portion 4m of the drive shaft 4, and is supplied to the thrust ball bearing 13 at the end of the lower shaft portion 4a. When the lubricating oil passes through the minute bearing gap, the sealing action of the oil film blocks the discharged refrigerant gas atmosphere of the motor chamber 6 from the upstream space of the main bearing 12.

吐出室油溜34の溶解吐出冷媒ガスを含んだ潤滑油は、
主軸受12の微少隙間を通過する際に、吐出圧力と吸入
圧力との中間圧力に減圧され、背圧室39に流入する。
The lubricating oil containing the dissolved discharged refrigerant gas in the discharge chamber oil sump 34 is
When passing through the small gap in the main bearing 12, the pressure is reduced to an intermediate pressure between the discharge pressure and the suction pressure, and the fluid flows into the back pressure chamber 39.

その後、偏心軸受14の油溝A 40 a 1偏心軸受
室間36、旋回スクロール18を通る油室A38を経て
外周部空間37に流入し、更に間欠的に開口する油室C
38c、インジェクション溝54、インジェクション穴
52a。
Thereafter, the oil groove A 40 a of the eccentric bearing 14 flows into the outer circumferential space 37 via the oil chamber A 38 that passes through the eccentric bearing chamber 36 and the orbiting scroll 18, and then the oil chamber C that opens intermittently.
38c, injection groove 54, injection hole 52a.

52bを経て第2圧縮室5ta、51bに流入し、その
通路途中の各摺動面を潤滑する。
It flows into the second compression chambers 5ta and 51b via 52b, and lubricates each sliding surface in the middle of the passage.

また、吐出室油溜34は、環状溝28やレリース隙間2
7とも通じているので、スラスト軸受20はその背圧力
により付勢されてスペーサ21の端部に当接する。そし
て、旋回スクロール18のラップ支持円板18cは、ス
ラスト軸受20と固定スクロール15の鏡板15bとの
間で微少隙間を保持されて円滑に摺動すると共に、固定
スクロールラップ15aの端面とラップ支持円板18c
との間、ならびに、旋回スクロールラップ18aの端面
と鏡板15bとの間の隙間も微少に保持されて隣接する
圧縮室間の気体漏れを少なくする。
In addition, the discharge chamber oil reservoir 34 is connected to the annular groove 28 and the release gap 2.
7, the thrust bearing 20 is urged by the back pressure and comes into contact with the end of the spacer 21. The lap support disk 18c of the orbiting scroll 18 slides smoothly with a slight gap maintained between the thrust bearing 20 and the end plate 15b of the fixed scroll 15, and the end surface of the fixed scroll wrap 15a and the lap support disk 18c. Board 18c
Also, the gaps between the end face of the orbiting scroll wrap 18a and the end plate 15b are kept small to reduce gas leakage between adjacent compression chambers.

第2圧縮室51g、51bのインジェクション穴52a
、52b開口部は、第13図の如くの圧力変化64をし
、吐出室2の圧力に追従して変化する背圧室圧力68よ
りも瞬時的に高いが平均圧力が低い。そのため背圧室3
9からの潤滑油は、間欠的に第2圧 室51a、51b
に流入し、また正常運転時の背圧室圧力68よりも瞬時
的に高い第2圧縮室51m、51b内の圧縮冷媒ガスは
、細径のインジェクション穴52m、52bど減衰され
て瞬時的なインジェクション溝54への逆流が少なく、
インジェクション溝54内の圧力が背圧室圧力68より
も高くならない。
Injection holes 52a of second compression chambers 51g and 51b
, 52b, the pressure changes 64 as shown in FIG. 13, and the average pressure is lower than the back pressure chamber pressure 68, which changes in accordance with the pressure in the discharge chamber 2, although it is instantaneously higher. Therefore, back pressure chamber 3
The lubricating oil from 9 is intermittently supplied to the second pressure chambers 51a and 51b.
The compressed refrigerant gas in the second compression chambers 51m, 51b, which flows into the back pressure chamber 68 during normal operation and which is instantaneously higher than the back pressure chamber pressure 68 during normal operation, is attenuated by the small diameter injection holes 52m, 52b and instantaneously injected. There is less backflow to the groove 54,
The pressure within the injection groove 54 does not become higher than the back pressure chamber pressure 68.

第2圧縮室51m、51bにインジェクションされた潤
滑油は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と
合流し、隣接する圧縮室間の微少隙間を油膜により密封
して圧縮気体漏れを防ぎ、圧縮室間の摺動面を潤滑しな
がら圧縮気体と共に吐出室2に再び吐出される。
The lubricating oil injected into the second compression chambers 51m and 51b joins with the lubricating oil that has flowed into the compression chambers together with the suction refrigerant gas, and the minute gaps between adjacent compression chambers are sealed with an oil film to prevent compressed gas leakage. The compressed gas is again discharged into the discharge chamber 2 while lubricating the sliding surfaces between the compression chambers.

また、背圧室39に差圧給油された潤滑油は、シールリ
ング70の弾性力と共に中間圧力の付勢力を旋回スクロ
ール18に作用させて、ラップ支持円板18aを鏡板1
5bとの摺動面に押圧油膜シールし、外周部空間37と
吸入室17との間の連通を遮断すると共に、スラスト軸
受20とラップ支持円板18aとの摺動面の隙間も潤滑
シールする。
In addition, the lubricating oil supplied to the back pressure chamber 39 exerts an intermediate pressure urging force on the orbiting scroll 18 together with the elastic force of the seal ring 70 to move the lap support disk 18a onto the end plate 1.
A pressure oil film is sealed on the sliding surface between the thrust bearing 20 and the lap support disk 18a, thereby blocking communication between the outer peripheral space 37 and the suction chamber 17, and sealing the gap between the sliding surface between the thrust bearing 20 and the lap support disk 18a with lubrication. .

また、圧縮機の冷時始動後しばらくの間は、第12図、
第13図から理解できるように、吐出室2の圧力が第2
圧縮室51m、51bの圧力よりも低く、圧縮途中の冷
媒ガスが第2圧縮室51a。
In addition, for a while after the compressor starts cold, as shown in Fig. 12,
As can be understood from Fig. 13, the pressure in the discharge chamber 2 is
The refrigerant gas is in the second compression chamber 51a, which is lower than the pressure in the compression chambers 51m and 51b and is in the middle of being compressed.

51bからインジェクション通路55を経て背圧室39
に逆流しようとするが、逆止弁58の逆止作用にて外周
部空間37への逆流が阻止され、吐出室油溜34の潤滑
油は吐出室2の圧力上昇と共に背圧室39、外周部空間
37にまで差圧給油される。
51b to the back pressure chamber 39 via the injection passage 55.
However, the backflow to the outer circumferential space 37 is prevented by the non-return action of the check valve 58, and as the pressure in the discharge chamber 2 increases, the lubricating oil in the discharge chamber 2 flows into the back pressure chamber 39 and the outer circumference. Differential pressure oil is supplied to the inner space 37.

したがって、冷時始動初期のスラスト軸受20への背圧
付勢力が圧縮室圧力により生じ、旋回スクロール18を
固定スクロール15から離反させようとするスラスト荷
重に抗しながらスラスト軸受20が微少に後退して、旋
回スクロール18と固定スクロール15との間の軸方向
隙間を拡大する。これにより圧縮空間に漏れを生じて圧
縮室圧力を下げ、始動初期の圧縮負荷を軽減する。
Therefore, a back pressure urging force is generated on the thrust bearing 20 by the compression chamber pressure at the initial stage of cold start, and the thrust bearing 20 moves slightly backward while resisting the thrust load that tends to separate the orbiting scroll 18 from the fixed scroll 15. As a result, the axial clearance between the orbiting scroll 18 and the fixed scroll 15 is expanded. This causes leakage in the compression space, lowering the compression chamber pressure and reducing the compression load at the initial stage of startup.

その後、吐出室2の圧力上昇に伴い、外周部空間21の
潤滑油は、コイルスプリング5′9の付勢力に抗してイ
ンジェクション穴52a、52bから第2圧縮室51a
、51bへインジェクションされる。
Thereafter, as the pressure in the discharge chamber 2 increases, the lubricating oil in the outer peripheral space 21 flows from the injection holes 52a and 52b into the second compression chamber 51a against the urging force of the coil spring 5'9.
, 51b.

また、冷時始動初期や定常運転時に、瞬時的な液圧縮が
生じた場合の圧縮室圧力は、第12図の点線63のよう
に異常な圧力上昇と過圧縮が生じるが、吐出室2とそれ
に連通ずる高圧空間容積が大きいため、吐出室圧力の上
昇は極めて小さい。
In addition, when instantaneous liquid compression occurs at the initial stage of a cold start or during steady operation, the pressure in the compression chamber will be abnormally increased and overcompressed as shown by the dotted line 63 in Fig. 12. Since the volume of the high-pressure space communicating therewith is large, the rise in the discharge chamber pressure is extremely small.

また、液圧縮により第2圧縮室51m、51bに連通ず
るインジェクション溝54なども異常圧力上昇するが、
細径の油室C38cの絞り効果と逆止弁58の逆止作用
により、゛外周部空間37とインジェクション溝54と
の間は遮断される。その結果、背圧室39の圧力は変わ
らず、スラスト軸受20の背面に作用する背圧付勢力に
も変動がない。その結果、液圧縮時には、旋回スクロー
ル18に作用する過大なスラスト力によって上述のよう
にスラスト軸受20が後退し、圧縮室圧力が降下してそ
の後は正常運転を継続する。
Furthermore, due to liquid compression, the pressure in the injection groove 54 communicating with the second compression chambers 51m and 51b also increases abnormally.
Due to the throttling effect of the small diameter oil chamber C38c and the check action of the check valve 58, the space between the outer peripheral space 37 and the injection groove 54 is cut off. As a result, the pressure in the back pressure chamber 39 does not change, and the back pressure urging force acting on the back surface of the thrust bearing 20 does not change. As a result, during liquid compression, the thrust bearing 20 retreats as described above due to the excessive thrust force acting on the orbiting scroll 18, the pressure in the compression chamber decreases, and normal operation continues thereafter.

なお、液圧縮途中でスラスト軸受20が後退することに
より、圧縮室圧力は第12図の一点鎖線63mの如く途
中で降圧する。
In addition, as the thrust bearing 20 retreats during liquid compression, the pressure in the compression chamber drops midway as shown by the dashed line 63m in FIG.

圧縮機停止後は、圧縮室内圧力により旋回スクロール1
8に逆旋回トルクが生じ、旋回スクロール18が逆旋回
して吐出冷媒ガスが吸入側に逆流する。この吐出冷媒ガ
スの逆流に追従して、逆止弁50が第6図の位置から第
7図の位置に移動し、逆止弁50の表面に施されたテフ
ロン被膜により、吸入管端面48を密封して吐出冷媒ガ
スの逆流を制止し、旋回スクロール18の逆旋回が停止
し、吸入通路42と吐出ポート16との間の空間は吐出
圧力を保持する。
After the compressor stops, the orbiting scroll 1
A reverse rotation torque is generated at 8, the orbiting scroll 18 rotates in the reverse direction, and the discharged refrigerant gas flows back to the suction side. Following this backflow of the discharged refrigerant gas, the check valve 50 moves from the position shown in FIG. 6 to the position shown in FIG. The airtight seal prevents the reverse flow of the discharged refrigerant gas, the reverse rotation of the orbiting scroll 18 is stopped, and the space between the suction passage 42 and the discharge port 16 maintains the discharge pressure.

また、インジェクション通路の逆止弁58を境にして圧
縮室に連通する通路は、吐出圧力になるが、外周部空間
37と背圧室a9との間の空間はしばらくの間、中間圧
力を保持し、吐出室油溜34からの潤滑油微少流入によ
り、次第に吐出圧力に近づく。圧縮機停止時、旋回スク
ロール18は逆転し、第3圧縮室60a、sobが拡大
した位置に停止し、油水C38cの外周部空間37への
開口部は、ラップ支持円板18cにより遮断される。圧
縮機停止後は、コイルスプリング59の付勢力によって
も逆止弁58がインジェク通路55を遮断するので、外
周部空間37から圧縮室への潤滑油流入がない。
In addition, the passage communicating with the compression chamber with the check valve 58 of the injection passage as a border has a discharge pressure, but the space between the outer peripheral space 37 and the back pressure chamber a9 maintains an intermediate pressure for a while. However, due to the slight inflow of lubricating oil from the discharge chamber oil reservoir 34, the pressure gradually approaches the discharge pressure. When the compressor is stopped, the orbiting scroll 18 reverses and stops at a position where the third compression chamber 60a and sob are enlarged, and the opening of the oil/water C38c to the outer peripheral space 37 is blocked by the lap support disk 18c. After the compressor is stopped, the check valve 58 blocks the injection passage 55 due to the biasing force of the coil spring 59, so no lubricating oil flows into the compression chamber from the outer peripheral space 37.

また、圧縮機運転中、主軸受12の給油上流側は、吐出
室油溜a4に連通し、給油下流側は中間圧力状態の背圧
室39に連通してその間に差圧が生じ、モータ3の回転
子3aを固定した駆動軸4力旋回スクロール18の方向
へ付勢される。この付勢力は、スラスト玉軸受13を介
して本体フレーム5に支持され、駆動軸4が上部軸受1
o、主軸受12との間の隙間の範囲内で倒れるのを規制
し、軸受の片当りを防止する。
Also, during compressor operation, the oil supply upstream side of the main bearing 12 communicates with the discharge chamber oil sump a4, and the oil supply downstream side communicates with the back pressure chamber 39 in an intermediate pressure state, and a pressure difference is generated between them, and the motor 3 The drive shaft to which the rotor 3a of the rotor 3a is fixed is urged in the direction of the four-power orbiting scroll 18. This biasing force is supported by the main body frame 5 via the thrust ball bearing 13, and the drive shaft 4 is supported by the upper bearing 1.
o. To prevent the bearing from falling down within the gap between it and the main bearing 12, and to prevent uneven bearing contact.

また、圧縮機運転時の温変上昇により、アルミニウム合
金製の本体フレーム5は熱膨張して鉄製のライナー8を
拡管し、ライナー8の外周面と密閉ケース1の内壁との
密着を強めて吐出室油溜34と吐出室2との間の気密を
向上させると共に、本体フレーム5と密閉ケース1との
固定を強めて互いの剛性向上に役立つ。
Furthermore, due to temperature fluctuations during compressor operation, the aluminum alloy body frame 5 thermally expands and expands the iron liner 8, which strengthens the close contact between the outer peripheral surface of the liner 8 and the inner wall of the sealed case 1, and discharges. This improves the airtightness between the chamber oil reservoir 34 and the discharge chamber 2, and strengthens the fixation between the main body frame 5 and the sealed case 1, which helps to improve the rigidity of each other.

また、上記実施例では吐出室油溜34の潤滑油を第2圧
縮室51m、51bに油インジェクションしたが、圧縮
機使用条件などにより吸入室17に通じる第1圧縮室6
1m、61bに油インジェクションしてもよい。
In the above embodiment, the lubricating oil in the discharge chamber oil sump 34 was injected into the second compression chambers 51m and 51b.
Oil injection may be performed at 1 m and 61b.

また、上記実施例ではスラスト軸受22の背面に設けた
レリース隙間27や環状溝28に吐出室油溜34の潤滑
油を導入したが、モータ室6の吐出冷媒ガスや第2圧縮
室51m、51bなどから中間圧力冷媒ガスを導入して
もよい。
Furthermore, in the above embodiment, the lubricating oil from the discharge chamber oil reservoir 34 is introduced into the release gap 27 and the annular groove 28 provided on the back surface of the thrust bearing 22, but the lubricating oil from the discharge chamber oil sump 34 and the discharged refrigerant gas from the motor chamber 6 and the second compression chambers 51m and 51b are An intermediate-pressure refrigerant gas may be introduced from, for example.

また、上記実施例ではスラスト軸受22への予圧付勢力
をシールリング70の弾性力を利用したが、スラスト軸
受22の背圧面積が不足する場合などは、バネ装置など
で付勢力を付加してもよい。
Furthermore, in the above embodiment, the elastic force of the seal ring 70 is used to preload the thrust bearing 22, but if the back pressure area of the thrust bearing 22 is insufficient, a spring device or the like may be used to apply the biasing force. Good too.

次に、第14図、第15図により、本発明の他の実施例
の動作について説明する。
Next, the operation of another embodiment of the present invention will be explained with reference to FIGS. 14 and 15.

第14図、第15図において、モータ103によって駆
動軸104が回転駆動を始めると、旋回スクロール11
8が旋回運動をし、圧縮機に接続した冷凍サイクルから
吸入冷媒ガスが吸入管147を通して駆動室に流入し、
その中に含まれる潤滑油の一部が分離された後、吸入通
路を経て吸入室11−7に吸入される。この吸入冷媒ガ
スは、旋回スクロール118と固定スクロール115と
の間に形成され、吸入室117に通じる第1圧縮室を経
て圧縮室内に閉じ込められ、旋回スクロール118の旋
回運動に伴って第2圧縮室151m。
14 and 15, when the drive shaft 104 starts rotating by the motor 103, the orbiting scroll 11
8 makes a rotating motion, and suction refrigerant gas flows into the drive chamber through the suction pipe 147 from the refrigeration cycle connected to the compressor.
After a part of the lubricating oil contained therein is separated, it is sucked into the suction chamber 11-7 through the suction passage. This suction refrigerant gas is formed between the orbiting scroll 118 and the fixed scroll 115, passes through a first compression chamber communicating with the suction chamber 117, and is confined in the compression chamber. 151m.

151b、第3圧縮室へと順次移送圧縮され、中央部の
吐出ポート116を経て吐出室102へと吐出される。
151b, and is sequentially transferred and compressed to the third compression chamber, and is discharged to the discharge chamber 102 through the discharge port 116 in the center.

吐出冷媒ガス中に含まれる潤滑油の一部は、その自重お
よびパンチングメタル133の***や細樹脂線から成る
フィルタ183を通過する際にその表面などに付着など
して吐出冷媒ガスから分離し、吐出室油溜134に収集
される。残りの潤滑油は、吐出冷媒ガスと共に吐出管1
31を経て外部の冷凍サイクルへ搬出され、吸入冷媒ガ
スと共に吸入管147を通って圧縮機内に帰還する。
A part of the lubricating oil contained in the discharged refrigerant gas is separated from the discharged refrigerant gas due to its own weight and adheres to the surface of the punched metal 133 when passing through the small holes of the punching metal 133 and the filter 183 made of thin resin wire. The oil is collected in the discharge chamber oil sump 134. The remaining lubricating oil flows into the discharge pipe 1 along with the discharged refrigerant gas.
31 to the external refrigeration cycle, and returns to the compressor through the suction pipe 147 together with the suction refrigerant gas.

圧縮機の冷時始動後しばらくの間は、上述のように吐出
室102の圧力が第2圧縮室151m。
For a while after the cold start of the compressor, the pressure in the discharge chamber 102 remains at the second compression chamber 151m as described above.

151bの圧力よりも低いので、吐出室油溜134の潤
滑油は第1給油通路を通じて差圧給油されず、また、逆
止弁効果によって第2圧縮室151m。
151b, the lubricating oil in the discharge chamber oil reservoir 134 is not supplied under differential pressure through the first oil supply passage, and due to the check valve effect, the lubricating oil in the discharge chamber oil sump 134 is supplied to the second compression chamber 151m.

151bから圧縮途中気体が吐出室油溜134に逆流も
せず、スラスト軸受120のレリース隙間127や旋回
スクロール118の背圧室139に流入することもなく
、各摺動部の残留潤滑油によって各摺動面が潤滑される
The gas during compression does not flow back into the discharge chamber oil reservoir 134 from 151b, nor does it flow into the release gap 127 of the thrust bearing 120 or the back pressure chamber 139 of the orbiting scroll 118, and the residual lubricating oil in each sliding part Moving surfaces are lubricated.

また、背圧室139やレリース隙間127の圧力が低い
ので上述のように始動初期にはスラスト軸受120が微
少に後退して始動初期負荷を軽減する。
In addition, since the pressure in the back pressure chamber 139 and the release gap 127 is low, the thrust bearing 120 moves back slightly at the initial stage of startup to reduce the initial startup load as described above.

圧縮機の冷時始動後しばらくの後、吐出室102の圧力
が第2圧縮室151a、151bの圧力以上に上昇した
後、吐出室油溜134の潤滑油は、給油通路制御弁装置
182のリード弁186の付勢力に抗して第1給油通路
を経由する。そして漸次減圧され、第2圧縮室151m
、151bに差圧給油されると共に、第1給油通路の途
中から分岐して構成される第2給油通路の油室138m
After a while after the cold start of the compressor, the pressure in the discharge chamber 102 rises above the pressure in the second compression chambers 151a and 151b, and then the lubricating oil in the discharge chamber oil sump 134 is transferred to the lead of the oil supply passage control valve device 182. The oil passes through the first oil supply passage against the biasing force of the valve 186. Then, the pressure is gradually reduced, and the second compression chamber 151m
, 151b, and an oil chamber 138m of a second oil supply passage which is branched from the middle of the first oil supply passage.
.

138b、138aを経て漸次減圧され、吐出側圧力と
吸入側圧力との中間圧力に調整されてレリース隙間12
7と背圧室139に差圧給油される。
The pressure is gradually reduced through 138b and 138a, and the pressure is adjusted to an intermediate pressure between the discharge side pressure and the suction side pressure, and the release gap 12
7 and the back pressure chamber 139 are supplied with differential pressure oil.

第2圧縮室151m(151b)に差圧給油された潤滑
油は、吸入ガスと共に圧縮室に流入した潤滑油と合流し
、隣接する圧縮室間の微小隙間を油膜により密封して圧
縮気体漏れを防ぎ、圧縮室間の摺動面を潤滑しながら圧
縮気体と共に吐出室102に再び吐出される。
The lubricating oil supplied to the second compression chamber 151m (151b) at a differential pressure merges with the lubricating oil that has flowed into the compression chamber together with the suction gas, and the minute gap between adjacent compression chambers is sealed with an oil film to prevent compressed gas leakage. The compressed gas is then discharged into the discharge chamber 102 again together with the compressed gas while lubricating the sliding surfaces between the compression chambers.

レリース隙間127と背圧室139に給油された中間圧
力の潤滑油は、旋回スクロール118へ背圧力による付
勢力を与えて圧縮室内圧力により、固定スクロール11
5から離反しようとする旋回スクロフル118に作用す
る下向きのスラスト力を軽減し、旋回スクロール118
とスラスト軸受120との間の摺動面に作用するスラス
ト荷重を小さくすると共に、スラスト軸受120を付勢
して仕切り板に当接させ、固定スクロール115とスラ
スト軸受120との間に旋回スクロール118を微少隙
間で挾み、旋回スクロール118の円滑な旋回運動を可
能にする。また、背圧室139の背圧力は旋回スクロー
ル118がスラスト軸受120から離反しないように調
整されているので、背圧室139と吸入室117とは常
時密接し、潤滑油はこの摺動面を通過する際に減圧され
た後、オルダムリング124の摺動面を潤滑して吸入冷
媒ガスに混入し、再び圧縮室に流入する。
The intermediate pressure lubricating oil supplied to the release gap 127 and the back pressure chamber 139 applies an urging force to the orbiting scroll 118 due to the back pressure, and the pressure in the compression chamber causes the fixed scroll 11 to
The downward thrust force acting on the orbiting scroll 118 that is trying to move away from the orbiting scroll 118 is reduced, and the orbiting scroll 118
In addition to reducing the thrust load acting on the sliding surface between the fixed scroll 115 and the thrust bearing 120, the thrust bearing 120 is urged to contact the partition plate, and the orbiting scroll 118 is placed between the fixed scroll 115 and the thrust bearing 120. are sandwiched by a minute gap to enable smooth orbiting movement of the orbiting scroll 118. In addition, the back pressure in the back pressure chamber 139 is adjusted so that the orbiting scroll 118 does not separate from the thrust bearing 120, so the back pressure chamber 139 and the suction chamber 117 are always in close contact with each other, and the lubricating oil covers this sliding surface. After being depressurized as it passes through, it lubricates the sliding surface of the Oldham ring 124, mixes it into the suction refrigerant gas, and flows into the compression chamber again.

また、残りの潤滑油は、第1潤滑通路を通じて旋回軸1
18bと偏心°穴136との隙間、偏心穴136、偏心
油穴1901横油穴191を通る給油通路と主軸受11
2の隙間とを経て軸受油溜193に流入し、下部軸受1
92の微少隙間を通して最終減圧される。そして駆動室
106に流入し、その一部は吸入冷媒ガスに混入して再
び圧縮室へ流入するが、残りの潤滑油はモータ室油溜1
84に収集される。モータ室油溜184の潤滑油は、密
閉ケース101bを介して自然放熱により冷却され、′
その油面がある程度高くなると、モータ103の回転子
の下端部に拡散されて駆動室106内の吸入冷媒ガスに
混入し、再び圧縮室へ流入して最終的には吐出室油溜1
34に収集される。
In addition, the remaining lubricating oil is passed through the first lubricating passage to the pivot shaft 1.
18b and the eccentric hole 136, the oil supply passage passing through the eccentric hole 136, the eccentric oil hole 1901, the horizontal oil hole 191, and the main bearing 11
The oil flows into the bearing oil reservoir 193 through the gap in the lower bearing 1.
The final pressure is reduced through 92 minute gaps. The lubricating oil then flows into the drive chamber 106, and part of it mixes with the suction refrigerant gas and flows into the compression chamber again, but the remaining lubricating oil flows into the motor chamber oil sump 106.
Collected at 84. The lubricating oil in the motor chamber oil sump 184 is cooled by natural heat radiation through the sealed case 101b.
When the oil level rises to a certain level, it is diffused to the lower end of the rotor of the motor 103, mixed with the suction refrigerant gas in the drive chamber 106, flows into the compression chamber again, and finally ends up in the discharge chamber oil sump 1.
Collected on 34th.

また、冷時始動初期や定常運転時に瞬時的な液圧縮が生
じて第2圧縮室151@、151b内が異常圧力上昇し
た場合は、上述と同様にリード弁186の逆止弁作用に
より、圧縮冷媒ガスが吐出室油溜134へ逆流せず、ま
た、レリース隙間127や背圧室139への流入もなく
、背圧力の上昇もないことから、スラスト軸受120が
孝退して継続的な異常圧力上昇を防ぐ。
In addition, if instantaneous liquid compression occurs during the initial stage of cold start or steady operation and abnormal pressure rises inside the second compression chambers 151@, 151b, the check valve action of the reed valve 186 prevents compression. Since the refrigerant gas does not flow back into the discharge chamber oil sump 134, nor does it flow into the release gap 127 or the back pressure chamber 139, nor does the back pressure increase, the thrust bearing 120 retires and continues to malfunction. Prevent pressure rise.

圧縮機停止後は吸入室117と駆動室106との間の吸
入通路に設けられた逆止弁(図示なし)により、吸入通
路を塞ぎ、吐出室102から吸入室117までの圧力は
圧縮空間の隙間を通じて吐出室102ρ圧力に等しくな
り、油吸い込み穴185の開口端をリード弁186が塞
ぐ。その結果、圧縮機停止直後の吐出室油溜134の潤
滑油は、第2圧縮室151m、151bと背圧室139
へ差圧給油されず、背圧室139の潤滑油は、第1給油
通路を通じて駆動室106にその差圧が一定値以下にな
るまで僅かづつ戻される。
After the compressor is stopped, a check valve (not shown) provided in the suction passage between the suction chamber 117 and the drive chamber 106 closes the suction passage, and the pressure from the discharge chamber 102 to the suction chamber 117 is reduced to the pressure in the compression space. The pressure becomes equal to the pressure in the discharge chamber 102 through the gap, and the reed valve 186 closes the open end of the oil suction hole 185. As a result, the lubricating oil in the discharge chamber oil sump 134 immediately after the compressor stops is transferred to the second compression chambers 151m, 151b and the back pressure chamber 139.
The lubricating oil in the back pressure chamber 139 is not supplied with differential pressure to the drive chamber 106 through the first oil supply passage until the differential pressure becomes below a certain value.

なお、上記実施例では、レリース隙間127や背圧室1
39へ吐出室油溜134の潤滑油を中間圧力にまで減圧
したが、スラスト軸受120や背圧室139の寸法構成
などにより゛減圧しなくともよい。
In addition, in the above embodiment, the release gap 127 and the back pressure chamber 1
Although the lubricating oil in the discharge chamber oil reservoir 134 is reduced to an intermediate pressure, it may not be necessary to reduce the pressure depending on the dimensions of the thrust bearing 120 and the back pressure chamber 139.

以上のように上記実施例によれば旋回スクロール18は
駆動軸4を支承する本体フレーム5と固定スクロール1
5との間に配置され、本体フレーム5の側に設けられて
軸方向にのみ移動が可能なスラスト軸受20と固定スク
ロール15との間に微少隙間(約0.020mm)を設
けて挾まれており、スラスト軸受20は本体フレーム5
との間に適当なレリース隙間27を維持しながら吐出室
油溜34の潤滑油圧力を利用して、常に旋回スクロ−ル
15の方向に背圧付勢されることにより、圧縮室圧力が
正常な運転時には、固定スクロール15とスラスト軸受
20との間に微少隙間で挾まれた旋回スクロール1Bは
倒れやジャンピングに起因する摺動面との衝突や片当り
のない円滑な旋回運動をする。
As described above, according to the above embodiment, the orbiting scroll 18 includes the main body frame 5 supporting the drive shaft 4 and the fixed scroll 1.
5, and is sandwiched with a small gap (approximately 0.020 mm) between the thrust bearing 20, which is provided on the main body frame 5 side and is movable only in the axial direction, and the fixed scroll 15. The thrust bearing 20 is attached to the main body frame 5.
By using the lubricating oil pressure in the discharge chamber oil sump 34 and always applying back pressure in the direction of the orbiting scroll 15 while maintaining an appropriate release gap 27 between the During normal operation, the orbiting scroll 1B, which is sandwiched between the fixed scroll 15 and the thrust bearing 20 with a small gap, performs a smooth orbiting motion without collisions with sliding surfaces or uneven contact caused by falling or jumping.

その結果、圧縮室間の軸方向微少隙間を確保して圧縮冷
媒ガス漏れを防いで高圧縮効率の維持と騒音や振動の少
ない耐久性に優れた圧縮機を提供することは当然ながら
、冷時始動初期などに冷凍サイクルから多量の液冷媒が
圧縮機内に帰還し、圧縮過程で液圧縮が生じて圧縮室圧
力が異常上昇を始め、固定スクロール15から離反する
方向fζ旋回スクロール18に作用するスラスト力が一
時的に過大になる場合でも、スラスト軸受20がモータ
室6の方へ後退するので、旋回スクロール18が固定ス
クロール15との軸方向隙間を広げて圧縮室間の密封を
解除し、圧縮室圧力が瞬時に降圧して圧縮機負荷が軽減
され、耐久性を高めることができる。
As a result, it is natural to secure a small axial gap between compression chambers to prevent compressed refrigerant gas leakage, maintain high compression efficiency, and provide a highly durable compressor with less noise and vibration. A large amount of liquid refrigerant returns to the compressor from the refrigeration cycle at the beginning of startup, etc., and liquid compression occurs during the compression process, and the pressure in the compression chamber begins to rise abnormally, causing a thrust that acts on the orbiting scroll 18 in the direction fζ away from the fixed scroll 15. Even if the force becomes temporarily excessive, the thrust bearing 20 retreats toward the motor chamber 6, so the orbiting scroll 18 widens the axial gap with the fixed scroll 15, releases the seal between the compression chambers, and reduces the compression. The chamber pressure drops instantly, reducing the load on the compressor and increasing durability.

また、液圧縮が生じない場合でも、圧縮比が一定なため
、始動時は吸入圧力が比較的高く、圧縮室圧力は安定運
転時よりも極めて高くなるが、スラスト軸受2oの常時
付勢力の適正設定により、起動負荷を軽減することがで
きる。
In addition, even when liquid compression does not occur, the compression ratio is constant, so the suction pressure is relatively high at startup, and the compression chamber pressure is much higher than during stable operation, but the constant biasing force of the thrust bearing 2o is appropriate. Depending on the settings, the startup load can be reduced.

また、h記実施例によればラップ支持円板18cのスラ
スト軸受20の側に旋回スクロール18の背圧室39を
形成し、背圧室39と吐出室油溜34とを主軸受12の
微少隙間を介して連通ずることにより、背圧室39を中
間圧力にしその背圧力により旋回スクロール18を圧縮
空間の側へ常時付勢してスラスト軸受20に作用させる
背圧による付勢力を小さくできる。その結果、液圧縮な
どで、圧縮空間が異常圧力上昇して旋回スクロール18
が固定スクロール15から離反する場合のスラスト軸受
20の後退応答性が良く、異常圧縮時の圧縮空間圧力を
迅速に降下させることができる。また、スラスト軸受2
0の小形化によって圧縮機の小型化を図ることもできる
Further, according to the embodiment h, the back pressure chamber 39 of the orbiting scroll 18 is formed on the side of the thrust bearing 20 of the lap support disk 18c, and the back pressure chamber 39 and the discharge chamber oil sump 34 are By communicating through the gap, the back pressure chamber 39 is set to an intermediate pressure, and the back pressure constantly urges the orbiting scroll 18 toward the compression space, thereby reducing the urging force due to the back pressure acting on the thrust bearing 20. As a result, due to liquid compression, etc., the pressure in the compression space increases abnormally and the orbiting scroll 18
When the thrust bearing 20 separates from the fixed scroll 15, the backward response of the thrust bearing 20 is good, and the compression space pressure at the time of abnormal compression can be quickly lowered. In addition, thrust bearing 2
By reducing the size of the compressor, the compressor can also be made smaller.

また、上記実施例によればスラスト軸受20にシールリ
ング70やバネ装置(図示なし)の弾性力を利用して予
圧付勢すること(こより、圧縮室圧力が一時的に上昇し
、背圧室39の圧力が低い圧縮機始動初期でも、旋回ス
クロール18に作用するスラスト力によってスラスト軸
受20が大きく後退せず、固定スクロール15と旋回ス
クロール18との間の隙間を適正に保つ。したがって、
圧縮室隙間過大による圧縮不能を防止すると共にスラス
ト軸受20のレリース隙間27を大きく設定でき、液圧
縮時の負荷軽減連応性を良くすることもできる。
In addition, according to the above embodiment, the thrust bearing 20 is preloaded using the elastic force of the seal ring 70 and the spring device (not shown) (thereby, the pressure in the compression chamber temporarily increases, and the pressure in the back pressure chamber increases). Even in the early stages of compressor startup when the pressure at 39 is low, the thrust bearing 20 does not move back significantly due to the thrust force acting on the orbiting scroll 18, and the gap between the fixed scroll 15 and the orbiting scroll 18 is maintained appropriately.
In addition to preventing the inability to compress due to an excessive compression chamber gap, the release gap 27 of the thrust bearing 20 can be set large, and load reduction coordination during liquid compression can be improved.

また、上記実施例によれば、スラスト軸受20と本体フ
レーム5との間に設けたスラスト軸受背圧室形成のため
のゴム製のシールリング70の弾性力を利用して予圧付
勢することにより、安価な圧縮負荷@減装置を実現でき
る。
Further, according to the above embodiment, preload is applied by utilizing the elastic force of the rubber seal ring 70 for forming the thrust bearing back pressure chamber provided between the thrust bearing 20 and the main body frame 5. , it is possible to realize an inexpensive compression load @ reduction device.

また、上記実施例では冷媒圧縮機について説明したが、
潤滑油を使用する酸素、窒素、ヘリウムなどの他の斌体
圧縮機の場合も同様の作用効果を期待できる。
Furthermore, in the above embodiment, the refrigerant compressor was explained, but
Similar effects can be expected in the case of other gas compressors such as oxygen, nitrogen, and helium compressors that use lubricating oil.

発明の効果 以上のように本発明は、旋回スクロールが駆動軸を支承
する本体フレームと固定スクロールとの間に配置され、
本体フレームの側に設けられて軸方向にのみ移動が可能
なスラスト軸受と固定スクロールとの間に微少隙間を設
けて挾まれており、スラスト軸受は本体フレームとの間
に適当な軸方向隙間を維持しながら吐出流体圧力または
吐出圧力と吸入圧力との間の中間流体圧力を利用して常
に旋回スクロールの方向に付勢されることにより、圧縮
室圧力が正常安定状態の運転時には、固定スクロールと
スラスト軸受との間に微少隙間で挾まれた旋回スクロー
ルは、圧縮作用や慣性力、摺動抵抗などに基づく旋回ス
クロールを転覆させようとするモーメントやジャンピン
グ現象を受けずに、摺動面との衝突や片当りのない静粛
で振動の少ない旋回運動をする。これにより、圧縮室間
の軸方向の微少隙間を確保して圧縮流体漏れを防ぎ、圧
縮効率を高め、騒音や振動特性をより一層改善すること
ができる。また圧縮過程での液圧縮などにより、圧縮室
圧力が異常上昇を始め、固定スクロールから離反する方
向に旋回スクロールに作用するスラスト荷重が一時的に
過大になる場合は、スラスト軸受が本体フレームとの隙
間を狭める方向に後退するので、旋回スクロールが固定
スクロールとの軸方向隙間を広げて圧縮室間の密封を解
除し、圧縮室圧力を降圧し、圧縮負荷を軽減して耐久性
を高めることができる。
Effects of the Invention As described above, the present invention has an orbiting scroll disposed between a main body frame supporting a drive shaft and a fixed scroll,
The thrust bearing, which is installed on the side of the main body frame and can move only in the axial direction, is sandwiched between the fixed scroll with a small gap, and the thrust bearing has an appropriate axial gap between it and the main body frame. By constantly biasing the orbiting scroll in the direction of the orbiting scroll using the discharge fluid pressure or the intermediate fluid pressure between the discharge pressure and the suction pressure while maintaining the compression chamber pressure, when the compression chamber pressure is in a normal and stable state, the fixed scroll and The orbiting scroll, which is sandwiched between the thrust bearing and the sliding surface with a small gap, is free from the moment or jumping phenomenon that tends to overturn the orbiting scroll due to compression action, inertia force, sliding resistance, etc. It performs quiet turning motion with less vibration and no collisions or uneven hits. Thereby, it is possible to secure a minute gap in the axial direction between the compression chambers, prevent leakage of compressed fluid, increase compression efficiency, and further improve noise and vibration characteristics. In addition, if the pressure in the compression chamber begins to rise abnormally due to liquid compression during the compression process, and the thrust load acting on the orbiting scroll in the direction away from the fixed scroll becomes temporarily excessive, the thrust bearing may Since the orbiting scroll moves backward in the direction of narrowing the gap, the orbiting scroll widens the axial gap with the fixed scroll, releases the seal between the compression chambers, lowers the compression chamber pressure, reduces the compression load, and increases durability. can.

また、液圧縮が生じない場合でも、圧縮比が一定なため
に、閉配管系で使用される圧縮機の始動初期は、吸入圧
力が比較的高く、圧縮負荷も安定運転時よりも極めて高
くなるが、スラスト軸受への常時付勢力を適切設定する
ことにより、起動負荷も軽減できるなど、圧縮効率、振
動・騒音特性、耐久性に優れた効果を有するスクロール
圧縮機を提供することができる。
In addition, even when liquid compression does not occur, the compression ratio is constant, so the suction pressure is relatively high at the beginning of the startup of a compressor used in a closed piping system, and the compression load is also much higher than during stable operation. However, by appropriately setting the constant biasing force on the thrust bearing, it is possible to provide a scroll compressor that has excellent effects in compression efficiency, vibration and noise characteristics, and durability, such as reducing the startup load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるスクロール冷媒
圧縮機の縦断面図、第2図は同圧縮機における主要部品
の分解図、第3図は同圧縮機におけるスラスト軸受のシ
ール部詳細部分断面図、第4図は同圧縮機におけるオル
ダムリングの外観図、第5図は同圧縮機におけるオルダ
ム機構部の組み立て外観図、第6図は第1図におけるA
−A線に沿った横断面図、第7図は同圧縮機の吸入管接
続部における逆止弁の位置説明図、第8図は第7図にお
けるB−8線に沿った部分断面図、第9図は同圧縮機の
給油通路に用いる逆止弁の外観図、第10図、第11図
はそれぞれ同圧縮機の吐出ポート付近における圧縮室の
移動説明図、第12図は同圧縮機の吸入行程から吐出行
程までの冷媒ガスの圧力変化を示す特性図、第13図は
各圧縮室における定点の圧力変化を示す特性図、第14
図は本発明の第2の実施例におけるスクロール冷媒圧縮
機の縦断面図、第15図は同圧縮機における給油通路制
御弁装置のリード弁取り付は外観図、第16図、第18
図はそれぞれ異なる従来例を示すスクロール圧縮機の縦
断面図、第17図は第16図の部分拡大図である。 2・・・・・・吐出室、3・・・・・・モータ、4・・
・・・・駆動軸、5・・・・・・本体フレーム、15・
・・・・・固定スクロール、15m・・・・・・固定ス
クロールラップ、15b・・・・・・鏡板、16・・・
・・・吐出ポート、17・・・・・・吸入室、18・・
・・・・旋回スクロール、18a・・・・・・旋回スク
ロールラップ、18G・・・・・・ラップ支持円板、2
0・・・・・・スラスト軸受、34・・・・・・吐出室
油溜、39・・・・・・背圧室、70・・・・・シール
リング、105・・・・・・本体フレーム、115・・
・・・・固定スクロール、118・・・・・・旋回スク
ロール、120・・・・・・スラスト軸受、139・・
・・・・背圧室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ノ5
−リ固定スクロール 第6図 6/1) 9−m−逆止弁 第8図 四儒 ノXZ−−−油穴A 第16図
Fig. 1 is a vertical cross-sectional view of a scroll refrigerant compressor according to the first embodiment of the present invention, Fig. 2 is an exploded view of the main parts of the compressor, and Fig. 3 is details of the seal portion of the thrust bearing in the compressor. FIG. 4 is an external view of the Oldham ring in the same compressor, FIG. 5 is an assembled external view of the Oldham mechanism in the same compressor, and FIG. 6 is A in FIG. 1.
- A cross-sectional view taken along line A, FIG. 7 is an explanatory diagram of the position of the check valve at the suction pipe connection part of the same compressor, and FIG. 8 is a partial cross-sectional view taken along line B-8 in FIG. 7. Figure 9 is an external view of a check valve used in the oil supply passage of the compressor, Figures 10 and 11 are explanatory diagrams of movement of the compression chamber near the discharge port of the compressor, and Figure 12 is of the same compressor. 13 is a characteristic diagram showing the pressure change of refrigerant gas from the suction stroke to the discharge stroke, FIG. 13 is a characteristic diagram showing the pressure change at a fixed point in each compression chamber, and FIG.
The figure is a vertical sectional view of a scroll refrigerant compressor according to a second embodiment of the present invention, FIG. 15 is an external view of the reed valve installation of the oil supply passage control valve device in the same compressor, and FIGS. 16 and 18 are
The figures are longitudinal sectional views of scroll compressors showing different conventional examples, and FIG. 17 is a partially enlarged view of FIG. 16. 2...Discharge chamber, 3...Motor, 4...
... Drive shaft, 5 ... Body frame, 15.
...Fixed scroll, 15m...Fixed scroll wrap, 15b... End plate, 16...
...Discharge port, 17...Suction chamber, 18...
...Orbiting scroll, 18a...Orbiting scroll wrap, 18G...Wrap support disk, 2
0...Thrust bearing, 34...Discharge chamber oil sump, 39...Back pressure chamber, 70...Seal ring, 105...Main body Frame, 115...
... Fixed scroll, 118 ... Orbiting scroll, 120 ... Thrust bearing, 139 ...
...Back pressure chamber. Name of agent: Patent attorney Toshio Nakao and 1 other person No.5
- Fixed scroll Fig. 6 6/1) 9-m - Check valve Fig. 8 Four Confucian XZ --- Oil hole A Fig. 16

Claims (3)

【特許請求の範囲】[Claims] (1) 固定スクロールの一部をなす鏡板の一面に形成
された渦巻き状の固定スクロールラップに対して旋回ス
クロールの一部をなすラップ支持円板上の旋回スクロー
ルラップを揺動回転自在に噛み合わせ、両スクロール間
に渦巻き形の圧縮空間を形成し、前記固定スクロールラ
ップの中心部には吐出ポートを設け、前記固定スクロー
ルラップの外側には吸入室を設け、前記圧縮空間は吸入
側より吐出側に向けて連続移行する複数個の圧縮室に区
画されて流体を圧縮するスクロール圧縮機構を形成し、
前記旋回スクロールは駆動軸を支承する本体フレームと
前記固定スクロールとの間に配置され、前記本体フレー
ムの側に設けられて軸方向にのみ移動が可能なスラスト
軸受と前記固定スクロールとの間に微小隙間を設けて挾
まれており、前記スラスト軸受は前記本体フレームとの
間に適当な軸方向隙間を維持しながら吐出流体圧力また
は吐出圧力と吸入圧力との間の中間流体圧力を利用して
常に前記旋回スクロールの方向に付勢されたスクロール
圧縮機。
(1) The orbiting scroll wrap on the wrap support disk, which is part of the orbiting scroll, is engaged with the spiral fixed scroll wrap formed on one surface of the end plate, which is part of the fixed scroll, so that it can swing and rotate freely. , a spiral compression space is formed between both scrolls, a discharge port is provided in the center of the fixed scroll wrap, a suction chamber is provided on the outside of the fixed scroll wrap, and the compression space is arranged from the suction side to the discharge side. Forms a scroll compression mechanism that compresses fluid by partitioning into a plurality of compression chambers that continuously move toward
The orbiting scroll is disposed between a main body frame that supports a drive shaft and the fixed scroll, and a minute roller is disposed between the fixed scroll and a thrust bearing provided on the side of the main body frame and capable of moving only in the axial direction. The thrust bearing always maintains an appropriate axial clearance with the main body frame by utilizing the discharge fluid pressure or the intermediate fluid pressure between the discharge pressure and the suction pressure. A scroll compressor biased in the direction of the orbiting scroll.
(2) ラップ支持円板のスラスト軸受側に旋回スクロ
ールの背圧室を形成し、前記背圧室と圧縮空間または吐
出室に通じる空間とを連通した特許請求の範囲第1項記
載のスクロール圧縮機。
(2) Scroll compression according to claim 1, wherein a back pressure chamber of the orbiting scroll is formed on the thrust bearing side of the wrap support disk, and the back pressure chamber is communicated with a compression space or a space communicating with a discharge chamber. Machine.
(3) スラスト軸受に予圧付勢した特許請求の範囲第
1項または第2項記載のスクロール圧縮機。(4) ス
ラスト軸受と本体フレームとの間に設けたスラスト軸受
背圧室形成シール部材の弾性力を利用して予圧付勢した
特許請求の範囲第3項記載のスクロール圧縮機。
(3) A scroll compressor according to claim 1 or 2, wherein the thrust bearing is preloaded. (4) The scroll compressor according to claim 3, wherein the scroll compressor is preloaded using the elastic force of the thrust bearing back pressure chamber forming seal member provided between the thrust bearing and the main body frame.
JP62332005A 1987-12-28 1987-12-28 Scroll compressor Expired - Fee Related JPH07117049B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62332005A JPH07117049B2 (en) 1987-12-28 1987-12-28 Scroll compressor
KR1019880017493A KR950008694B1 (en) 1987-12-28 1988-12-26 Scroll type compressor
US07/291,233 US4958993A (en) 1987-12-28 1988-12-28 Scroll compressor with thrust support means
EP88121792A EP0322894B1 (en) 1987-12-28 1988-12-28 Scroll compressor
CA000587150A CA1329183C (en) 1987-12-28 1988-12-28 Delivery pressure operated thrust control system for working contact surfaces in a scroll compressor
DE3888147T DE3888147T2 (en) 1987-12-28 1988-12-28 Scroll compressor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332005A JPH07117049B2 (en) 1987-12-28 1987-12-28 Scroll compressor

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP7105470A Division JP2674562B2 (en) 1995-04-28 1995-04-28 Scroll refrigerant compressor with refueling control means
JP8304375A Division JP2870509B2 (en) 1996-11-15 1996-11-15 Scroll gas compressor
JP30437696A Division JP2785819B2 (en) 1996-11-15 1996-11-15 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH01177482A true JPH01177482A (en) 1989-07-13
JPH07117049B2 JPH07117049B2 (en) 1995-12-18

Family

ID=18250073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332005A Expired - Fee Related JPH07117049B2 (en) 1987-12-28 1987-12-28 Scroll compressor

Country Status (1)

Country Link
JP (1) JPH07117049B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006768A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006763A1 (en) * 1989-10-31 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006773A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006770A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006767A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006772A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006766A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compression
US5213489A (en) * 1989-11-02 1993-05-25 Matsushita Electric Industrial Co., Ltd. Scroll compressor with axial vibration prevention for a shaft bearing
US5340287A (en) * 1989-11-02 1994-08-23 Matsushita Electric Industrial Co., Ltd. Scroll-type compressor having a plate preventing excess lift of the crankshaft
US5395222A (en) * 1989-11-02 1995-03-07 Matsushita Electric Industrial Co., Ltd. Scroll compressor having recesses on the scroll wraps
US5829959A (en) * 1994-09-16 1998-11-03 Hitachi, Ltd. Scroll compressor
US7163386B2 (en) 2004-04-12 2007-01-16 Hitachi Appliances, Inc. Scroll compressor having a movable auxiliary portion with contact plane of a stopper portion to contact a pane of the fixed scroll through elastic pressure of high pressure fluid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142902A (en) * 1979-04-25 1980-11-07 Hitachi Ltd Scroll fluid machine
JPS55177089U (en) * 1979-06-05 1980-12-19
JPS5929790A (en) * 1982-08-11 1984-02-17 Hitachi Ltd Scroll type hydraulic machine
JPS60166781A (en) * 1984-02-09 1985-08-30 Matsushita Refrig Co Scroll type compressor
JPS61223288A (en) * 1985-03-28 1986-10-03 Matsushita Electric Ind Co Ltd Scroll compressor
JPS62218678A (en) * 1986-03-18 1987-09-26 Hitachi Ltd Scroll compressor
JPH01138387A (en) * 1987-11-26 1989-05-31 Hitachi Ltd Scroll compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142902A (en) * 1979-04-25 1980-11-07 Hitachi Ltd Scroll fluid machine
JPS55177089U (en) * 1979-06-05 1980-12-19
JPS5929790A (en) * 1982-08-11 1984-02-17 Hitachi Ltd Scroll type hydraulic machine
JPS60166781A (en) * 1984-02-09 1985-08-30 Matsushita Refrig Co Scroll type compressor
JPS61223288A (en) * 1985-03-28 1986-10-03 Matsushita Electric Ind Co Ltd Scroll compressor
JPS62218678A (en) * 1986-03-18 1987-09-26 Hitachi Ltd Scroll compressor
JPH01138387A (en) * 1987-11-26 1989-05-31 Hitachi Ltd Scroll compressor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263822A (en) * 1989-10-31 1993-11-23 Matsushita Electric Industrial Co., Ltd. Scroll compressor with lubrication passages to the main bearing, revolving bearing, back-pressure chamber and compression chambers
WO1991006763A1 (en) * 1989-10-31 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5520526A (en) * 1989-10-31 1996-05-28 Matsushita Electric Industrial Co., Ltd. Scroll compressor with axially biased scroll
WO1991006765A1 (en) * 1989-10-31 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006764A1 (en) * 1989-10-31 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
JPH03149387A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Scroll compressor
US5217359A (en) * 1989-11-02 1993-06-08 Matsushita Electric Industrial Co., Ltd. Scroll compressor with regulated oil flow to the back pressure chamber
WO1991006772A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006766A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compression
JPH03149380A (en) * 1989-11-02 1991-06-25 Matsushita Electric Ind Co Ltd Scroll compressor
WO1991006768A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5213489A (en) * 1989-11-02 1993-05-25 Matsushita Electric Industrial Co., Ltd. Scroll compressor with axial vibration prevention for a shaft bearing
US5213490A (en) * 1989-11-02 1993-05-25 Matsushita Electric Industrial Co., Ltd. Scroll-type compressor with discharge opening above the lubricant reservoir
US5215452A (en) * 1989-11-02 1993-06-01 Matsushita Electric Industrial Co., Ltd. Compressor having an oil pump ring associated with the orbiting shaft
WO1991006767A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5217360A (en) * 1989-11-02 1993-06-08 Matsushita Electric Industrial Co., Ltd. Scroll compressor with swirling impeller biased by cooled lubricant
WO1991006770A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5340287A (en) * 1989-11-02 1994-08-23 Matsushita Electric Industrial Co., Ltd. Scroll-type compressor having a plate preventing excess lift of the crankshaft
US5395222A (en) * 1989-11-02 1995-03-07 Matsushita Electric Industrial Co., Ltd. Scroll compressor having recesses on the scroll wraps
WO1991006773A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5829959A (en) * 1994-09-16 1998-11-03 Hitachi, Ltd. Scroll compressor
US6174150B1 (en) 1994-09-16 2001-01-16 Hitachi, Ltd. Scroll compressor
US7163386B2 (en) 2004-04-12 2007-01-16 Hitachi Appliances, Inc. Scroll compressor having a movable auxiliary portion with contact plane of a stopper portion to contact a pane of the fixed scroll through elastic pressure of high pressure fluid

Also Published As

Publication number Publication date
JPH07117049B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
KR950008694B1 (en) Scroll type compressor
JP2782858B2 (en) Scroll gas compressor
JPH01177482A (en) Scroll compressor
JPH08303365A (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
JP3019770B2 (en) Scroll gas compressor
JPH0765580B2 (en) Scroll gas compressor
JPH08303364A (en) Scroll gas compressor
JPH029978A (en) Scroll gas compressor
JP2785805B2 (en) Scroll gas compressor
JPH01177481A (en) Scroll compressor
JP2820137B2 (en) Scroll gas compressor
JP2785806B2 (en) Scroll gas compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP2870490B2 (en) Scroll gas compressor
JP2785819B2 (en) Scroll compressor
JP2692097B2 (en) Scroll gas compressor
JPH08303369A (en) Scroll gas compressor
JP2870488B2 (en) Scroll gas compressor
JPH01170780A (en) Scroll gas compressor
JPH02185685A (en) Checking device for scroll compressor from rotating round its own axis
JP2615527B2 (en) Scroll gas compressor
JP2870509B2 (en) Scroll gas compressor
JPH01177484A (en) Scroll gas compressor
JP2980045B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees