JPH01176905A - Method for measuring insulating metal wire group interval - Google Patents

Method for measuring insulating metal wire group interval

Info

Publication number
JPH01176905A
JPH01176905A JP33380587A JP33380587A JPH01176905A JP H01176905 A JPH01176905 A JP H01176905A JP 33380587 A JP33380587 A JP 33380587A JP 33380587 A JP33380587 A JP 33380587A JP H01176905 A JPH01176905 A JP H01176905A
Authority
JP
Japan
Prior art keywords
magnetic flux
gap
pointed ends
pulse signal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33380587A
Other languages
Japanese (ja)
Other versions
JPH0769134B2 (en
Inventor
Toji Kin
東治 金
Fumihiko Abe
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62333805A priority Critical patent/JPH0769134B2/en
Publication of JPH01176905A publication Critical patent/JPH01176905A/en
Publication of JPH0769134B2 publication Critical patent/JPH0769134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To accurately obtain intervals of metallic wires by providing a magnetic head with acute pointed ends and making the magnetic flux density distribution in a gap uneven, and measuring the interval time of a pulse signal generated by cross- linking the magnetic flux of the pointed ends with a metallic wire group. CONSTITUTION:A high frequency exciting coil 6 produces a high frequency magnetic field in the gap 2 of the magnetic head 1, the converged magnetic flux is produced at the pointed ends 3 and 4 by making the magnetic flux density distribution in the gap 2 uneven, and the density of magnetic flux crossing center metallic wires positioned right below the pointed ends 3 and 4 in the metallic wire group placed in the gap 2 is maximized. When the metallic wire group moves crossing the magnetic flux in the gap 2 which has said magnetic flux distribution, the converged magnetic flux at the pointed ends 3 and 4 is cross-linked with a metallic wire every time the metallic wire passes right below the pointed ends 3 and 4 to generate a pulse signal, which is detected by a pulse signal detection coil 7. Thus, the interval time of respective pulse signals detected by the metallic wires is measured and the intervals of respective metallic wires are calculated from this interval time measured value and a relative moving speed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラットケーブルの心線導体のように絶縁導体
が平帯状に並置された金属線群の金属線間隔を測定する
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the distance between metal wires of a metal wire group in which insulated conductors are arranged side by side in a flat strip shape, such as the core conductor of a flat cable. .

[従来の技術] 多数の絶縁心線導体を平行に並べて平帯状に形成したフ
ラットケーブルは0Atll器等の普及にともなって需
要が増大しているが、そのケーブル端末の接続作業に際
し、密接して並ぶ多数の細い心線導体の端末をコネクタ
に接続する作業は手数を要し容易でないので接続作業を
自動化することが望まれている。このような多数のフラ
ットケーブルのコネクタ接続作業が自動化されるために
は各心線導体間の間隔が規定値になっていることが必要
なので、各心線導体間の間隔を正確に測定しなければな
らないが、従来はこの心線導体間の間隔を目視によって
測定していた。
[Prior Art] Demand for flat cables, which are formed by arranging a large number of insulated core conductors in parallel and forming a flat strip, is increasing with the spread of 0Atll devices, etc., but when connecting the cable terminals, it is difficult to connect them closely. Since the work of connecting the terminals of a large number of thin core conductors lined up in a row to a connector is laborious and not easy, it is desired to automate the connection work. In order to automate the connector connection work for such a large number of flat cables, the spacing between each core conductor must be a specified value, so the spacing between each core conductor must be accurately measured. However, conventionally, the spacing between the core wire conductors was measured visually.

[発明が解決しようとする問題点] 前記のようにフラットケーブルの密接する多数の細い心
線導体間の間隔を目視により測定するのでは、効率が悪
いばかりでなく、機器の精密化にともない高精度が要求
されるのに正確な測定結果を得ることが困難であり、コ
ネクタ接続作業の自動化が容易でないという問題点があ
った。
[Problems to be Solved by the Invention] Visually measuring the spacing between a large number of closely spaced thin core conductors of a flat cable as described above is not only inefficient, but also increases in cost as equipment becomes more precise. Although precision is required, it is difficult to obtain accurate measurement results, and there are problems in that it is not easy to automate the connector connection work.

そこで本発明はフラットケーブルの心線導体のような絶
縁金属線群の金属線間の間隔を正確にかつ効率良く測定
することができる方法を提供するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a method for accurately and efficiently measuring the distance between metal wires of a group of insulated metal wires, such as a core conductor of a flat cable.

[問題点を解決するための手段] 前記の問題点を解決するために本発明は、磁気ヘッドに
鋭角尖端3.4を設け、この磁気ヘッドに高周波励磁コ
イル6を設けて鋭角尖端3.4間のギャップに磁束密度
分布の不均一な高周波磁界を形成し、平帯状の絶縁金属
線群を前記のギャップに置いて磁束が金属線群を横切る
方向に磁気ヘッドと金属線群を相対的に移動させ、磁気
ヘッドに設けたパルス信号検出コイル7により検出され
る各パルス信号の時間間隔を測定することにより金属線
間の間隔を測定するようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a magnetic head with an acute-angled tip 3.4, and a high-frequency excitation coil 6 is provided on the magnetic head to form an acute-angled tip 3.4. A high frequency magnetic field with non-uniform magnetic flux density distribution is formed in the gap between them, and a group of flat insulated metal wires is placed in the gap, and the magnetic head and the metal wire group are moved relative to each other in a direction in which the magnetic flux crosses the metal wire group. The distance between the metal wires is measured by moving the metal wires and measuring the time interval of each pulse signal detected by a pulse signal detection coil 7 provided on the magnetic head.

[作用] 前記の高周波励磁コイルは磁気ヘッドのギャップに高周
波磁界を形成し、鋭角尖端3.4は、ギャップにおける
磁束密度分布を不均一な分布にしてその鋭角尖端に集中
磁束を生じさせるとともに、ギャップに置かれた金属線
群のうち鋭角尖端3.4の直下に位置する中央の金属線
を横切る磁束の密度を最大にする。
[Function] The high-frequency excitation coil forms a high-frequency magnetic field in the gap of the magnetic head, and the sharp tip 3.4 makes the magnetic flux density distribution in the gap non-uniform, producing concentrated magnetic flux at the sharp tip, Among the metal wires placed in the gap, the density of the magnetic flux across the central metal wire located directly below the acute tip 3.4 is maximized.

このような磁束分布のギャップにおいて金属線群が磁束
を横切るように相対移動すると、鋭角尖端直下を各金属
線が横切るごとに鋭角尖端の集中磁束がその金属線と鎖
交してパルス信号が生じ、この各パルス信号はパルス信
号検出コイルに検出される。
When a group of metal wires moves relative to each other to cross the magnetic flux in such a gap in the magnetic flux distribution, each time each metal wire crosses directly under the sharp tip, the concentrated magnetic flux at the sharp tip interlinks with the metal wire, producing a pulse signal. , each of these pulse signals is detected by a pulse signal detection coil.

このように各金属線ごとに検出された各パルス信号の間
隔時間を測定し、この間隔時間測定値と前記相対移動速
度とにより金属線間の間隔が算定される。
The interval time of each pulse signal detected for each metal wire is thus measured, and the interval between the metal wires is calculated from this interval time measurement value and the relative movement speed.

[実施例] 以下本発明の実施例を図面により説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法によりフラットケーブルの心線導
体である金属線間の距離を測定する例を示したものであ
る。
FIG. 1 shows an example of measuring the distance between metal wires that are core conductors of a flat cable by the method of the present invention.

第1図において、1はフェライト製の磁気ヘッドであり
、そのギャップ2のヘッド対向先端は円錐形のような鋭
角尖端3.4に形成する。
In FIG. 1, reference numeral 1 denotes a magnetic head made of ferrite, and the tip of the gap 2 facing the head is formed into an acute-angled point 3.4 like a cone.

5はヨーク部であり、このヨーク部5には高周波励磁コ
イル6、およびパルス信号検出コイル7を巻回する。8
はこの高周波励磁コイル6に接続された高周波発振回路
、9はパルス信号検出コイル7に接続された検出信号処
理回路である。
Reference numeral 5 denotes a yoke portion, around which a high frequency excitation coil 6 and a pulse signal detection coil 7 are wound. 8
9 is a high frequency oscillation circuit connected to this high frequency excitation coil 6, and 9 is a detection signal processing circuit connected to the pulse signal detection coil 7.

前記の高周波励磁コイル6に高周波励m電流たとえば5
00KHzの励磁電流を通ずると、磁気ヘッド1の鋭角
尖tIM3.4間のギャップ2には高周波磁界が形成さ
れるが、この鋭角尖r@3.4には大量の漏れ磁束が集
中しギャップ2にはきわめて不均一な磁束密度分布が生
ずる。
A high frequency excitation current m, for example 5 m, is applied to the high frequency excitation coil 6.
When an excitation current of 00 KHz is passed through, a high frequency magnetic field is formed in the gap 2 between the acute cusps tIM3.4 of the magnetic head 1, but a large amount of leakage magnetic flux concentrates on this acute cusps [email protected], and the gap 2 An extremely non-uniform magnetic flux density distribution occurs.

これはフェライトのような強磁性体と非磁性体との交界
面では非磁性体における磁束は交界面にほぼ垂直になる
ことによるものであり、第2図示のように、透磁率がμ
mの非磁性体とμ2の強磁性体(μm(μ2)の交界面
A−Aにおいて磁束Φが通る角度を01、θ2とすると tanθ1/lanθ2= μm/μ2 となりμ2=
6000μm で θ2=89°のときはθ1=0.5
4″′ となる、このようにギャップ2における鋭角尖
端3.4には大量の漏れ磁束が集中し磁束密度の分布は
きわめて不均一となる。
This is because at the interface between a ferromagnetic material such as ferrite and a non-magnetic material, the magnetic flux in the non-magnetic material is almost perpendicular to the interface, and as shown in the second figure, the magnetic permeability is μ.
If the angle through which the magnetic flux Φ passes through A-A at the interface A-A of m non-magnetic material and μ2 ferromagnetic material (μm (μ2)) is 01 and θ2, then tanθ1/lanθ2= μm/μ2 and μ2=
When θ2=89° at 6000μm, θ1=0.5
4"', a large amount of leakage magnetic flux concentrates at the sharp tip 3.4 in the gap 2, and the distribution of magnetic flux density becomes extremely non-uniform.

第3図はこのような磁気ヘッドの鋭角尖端3.4の磁束
密度の分布状態を示したものである。
FIG. 3 shows the distribution of magnetic flux density at the acute tip 3.4 of such a magnetic head.

前記の高周波磁界が形成された鋭角尖端3.4間のギャ
ップ2にフラットケーブルBを置いて磁気ヘッド1もし
くはフラットケーブルBを動かして両者を心線導体Cの
直角方向に相対的に動かすと、このギャップ2の磁束を
導電性金属線の心線導体Cが横切るので e=dφ/d
t  の起電力が生じ、この起電力は磁束の変化スピー
ドに比例し周波数が一定の場合は磁束密度が大きいほど
大なる起電力が生ずる。これによりパルス信号検出コイ
ル7の検出信号が検出信号処理回路9に出力される。
When the flat cable B is placed in the gap 2 between the acute points 3 and 4 where the high-frequency magnetic field is formed and the magnetic head 1 or the flat cable B is moved to move both relatively in the direction perpendicular to the core conductor C, Since the core conductor C of the conductive metal wire crosses the magnetic flux of this gap 2, e=dφ/d
An electromotive force of t is generated, and this electromotive force is proportional to the speed of change of the magnetic flux, and when the frequency is constant, the greater the magnetic flux density, the greater the electromotive force is generated. As a result, the detection signal of the pulse signal detection coil 7 is output to the detection signal processing circuit 9.

このようにギャップ2における高周波磁界中におかれた
フラットケーブルBの各心線導体Cと鎖交する磁束は、
第3図示のように各心線導体Cのうち鋭角尖端3.4の
直下に位置する中央の心線導体coを横切る磁束の密度
が最も大となる。
The magnetic flux interlinking with each core conductor C of the flat cable B placed in the high-frequency magnetic field in the gap 2 is as follows:
As shown in FIG. 3, the density of the magnetic flux that crosses the central core conductor co located directly below the acute tip 3.4 among the core conductors C is the highest.

そこで磁気ヘッド1を第1図示の左向矢示方向に移動速
度■で移動させて鋭角尖端3.4の磁束がフラットケー
ブルBを速度■で横切ると、パルス信号検出コイル7の
検出信号が検出信号処理回路9において増幅、検波され
て第4図示のような信号波形po1、p02、p03・
・・が得られることになる。この信号を適当なしきい値
(e)を持つコンパレータにより第5図示のようなパル
ス信号P1、p2 、p3・・・にする。
Therefore, when the magnetic head 1 is moved in the leftward arrow direction shown in the first figure at a moving speed ■ and the magnetic flux of the acute tip 3.4 crosses the flat cable B at a speed ■, a detection signal from the pulse signal detection coil 7 is detected. The signal processing circuit 9 amplifies and detects the signal to produce signal waveforms po1, p02, p03, and the like shown in FIG.
... will be obtained. These signals are converted into pulse signals P1, p2, p3, . . . as shown in FIG. 5 by a comparator having an appropriate threshold value (e).

前記のパルス信号pi 、P2 、p3・・・の間隔は
フラットケーブルBの各心線導体Cの間隔に比例するか
ら、このパルス信号pi 、p2 、p3・・、の間隔
時間を測定することにより各心線導体間の間隔を測定す
ることができる。
Since the interval between the pulse signals pi, P2, p3, etc. is proportional to the interval between the core conductors C of the flat cable B, by measuring the interval time of the pulse signals pi, p2, p3,... The spacing between each core conductor can be measured.

この間隔時間測定の一層正確な測定値を得るために各パ
ルス信号p1 、p2 、p3・・・のそれぞれの立上
るときの時間差t1と立下るときの時間差t2を測定す
れば、各導体心線間の間隔りは、tlとt2の平均値と
磁気ヘッドの移動速度■から式 D=V・ (t−1+
t2 )/2  により算定できる。なおこの各時間差
の測定値と上式の算定値は’tbIJL機により迅速に
得ることができる。
In order to obtain a more accurate measurement value of the interval time, if the time difference t1 at the time of rise and time difference t2 at the time of fall of each pulse signal p1, p2, p3... is measured, each conductor core wire The interval between tl and t2 is determined by the formula D=V・(t-1+
It can be calculated by t2 )/2. Note that the measured values of each time difference and the calculated values using the above formula can be quickly obtained using a 'tbIJL machine.

前記のようにしてフラットケーブルの心線導体である導
電性金属線の間の間隔が正確に効率良く測定されるので
、多数のフラットケーブルのコネクタ接続作業を自動化
することが可能となる。
As described above, the distance between the conductive metal wires, which are the core conductors of the flat cables, can be accurately and efficiently measured, making it possible to automate the connector connection work of a large number of flat cables.

なおこのように鋭角尖端3.4を設けた磁気ヘッド1に
より金属線の位置を検出して測定する方法は、前記のフ
ラットケーブルの心線導体の測定のように導電性を持つ
長尺金属線の位置を測定するだけでなく、金属球体の位
置の測定にも利用することができる。
Note that the method of detecting and measuring the position of a metal wire using the magnetic head 1 provided with the acute-angled tip 3.4 is similar to the measurement of the core conductor of a flat cable described above. It can be used not only to measure the position of a metal sphere, but also to measure the position of a metal sphere.

[発明の効果] 前述のように本発明は、磁気ヘッドに鋭角尖端を設けて
ギャップにおける磁束密度分布を不均一にし、この鋭角
尖端の磁束を金属線群に鎖交させて生ずるパルス信号の
間隔時間を測定して金属線間の間隔を測定するようにし
たので、正確な測定値を容易に得ることができるもので
ある。
[Effects of the Invention] As described above, the present invention provides a magnetic head with an acute tip to make the magnetic flux density distribution uneven in the gap, and links the magnetic flux of the acute tip to a group of metal wires to improve the interval between pulse signals. Since the distance between the metal wires is measured by measuring time, accurate measured values can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明図、第2図および第3
図は磁束分布の説明図、第4図および第5図はパルス信
号の説明図である。 1:磁気ヘッド    2:ギャップ 3.4:鋭角尖端 6:高周波励磁コイル 7:パルス信号検出コイル C:金属線 特許出願人  古河電気工業株式会社 代理人  弁理士 岡1)喜久治 第3図      第1図 第4図 第5図
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIGS.
The figure is an explanatory diagram of magnetic flux distribution, and FIGS. 4 and 5 are explanatory diagrams of pulse signals. 1: Magnetic head 2: Gap 3.4: Acute point 6: High frequency excitation coil 7: Pulse signal detection coil C: Metal wire Patent applicant Furukawa Electric Co., Ltd. agent Patent attorney Oka 1) Kikuji Figure 3 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 鋭角尖端を形成した磁気ヘッドに高周波励磁コイルを設
けて前記鋭角尖端間のギャップに磁束密度分布の不均一
な高周波磁界を形成し、平帯状に平行する絶縁金属線群
を前記ギャップに置いて磁束が金属線群を横切る方向に
相対移動させ、前記磁気ヘッドに設けたパルス信号検出
コイルで検出される各パルス信号の間隔時間を測定する
ことにより金属線間の間隔を測定することを特徴とする
絶縁金属線群間隔測定方法。
A high-frequency excitation coil is provided on a magnetic head having acute-angled tips to form a high-frequency magnetic field with a non-uniform magnetic flux density distribution in the gap between the acute-angled tips, and a group of insulated metal wires parallel to each other in a flat band shape are placed in the gap to increase the magnetic flux. is relatively moved in a direction across the group of metal wires, and the distance between the metal wires is measured by measuring the interval time of each pulse signal detected by a pulse signal detection coil provided in the magnetic head. Method for measuring insulated metal wire group spacing.
JP62333805A 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method Expired - Lifetime JPH0769134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333805A JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333805A JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Publications (2)

Publication Number Publication Date
JPH01176905A true JPH01176905A (en) 1989-07-13
JPH0769134B2 JPH0769134B2 (en) 1995-07-26

Family

ID=18270148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333805A Expired - Lifetime JPH0769134B2 (en) 1987-12-30 1987-12-30 Insulated metal wire group spacing measurement method

Country Status (1)

Country Link
JP (1) JPH0769134B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349627A (en) * 2005-06-20 2006-12-28 Yokohama Rubber Co Ltd:The Method and device for detecting wire position
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method
US9065306B2 (en) 2009-10-20 2015-06-23 Sumitomo Electric Industries, Ltd. Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524262A (en) * 1975-06-28 1977-01-13 Ono Sokki Co Ltd Method to detect disposition pitches
JPS5880518U (en) * 1981-11-28 1983-05-31 株式会社 小野測器 electromagnetic induction detector
JPS61149822U (en) * 1985-03-11 1986-09-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524262A (en) * 1975-06-28 1977-01-13 Ono Sokki Co Ltd Method to detect disposition pitches
JPS5880518U (en) * 1981-11-28 1983-05-31 株式会社 小野測器 electromagnetic induction detector
JPS61149822U (en) * 1985-03-11 1986-09-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349627A (en) * 2005-06-20 2006-12-28 Yokohama Rubber Co Ltd:The Method and device for detecting wire position
US9065306B2 (en) 2009-10-20 2015-06-23 Sumitomo Electric Industries, Ltd. Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method

Also Published As

Publication number Publication date
JPH0769134B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
EP1730542B1 (en) Fluxgate magnetometer
JP6712455B2 (en) Current measuring device and method
ATE39768T1 (en) DEVICE FOR MAGNETIC PRObing.
GB1526807A (en) Optical fibre deflection device
US10801999B2 (en) Rope damage diagnostic testing apparatus
JPH01176905A (en) Method for measuring insulating metal wire group interval
JPH10197468A (en) Critical current measuring method of superconductor wire and measuring apparatus therefor
GB1529101A (en) Magnetoelastic shape measuring equipment
JP2019526805A (en) Apparatus and method for measuring the current intensity of one individual conductor of a multiconductor system
JP2532123B2 (en) Metal distance measurement method
JPS6166104A (en) Method for measuring thickness of thin metal film
JP2599438B2 (en) How to measure the distance between metal wires
JPH01176906A (en) Method for measuring insulating metal wire group interval
JP2547247B2 (en) Metal distance measuring sensor
CN114608431A (en) Double-layer sinusoidal time grating linear displacement sensor
US2838614A (en) Magnetic recording head
JPH02218902A (en) Eddy current type displacement sensor
JPH0236302A (en) Dimension measuring method for flat cable
CN211086485U (en) Annular opening PCB Rogowski coil of sectional type wiring
CN219830966U (en) Space three-dimensional surrounding type electromagnetic ultrasonic longitudinal wave linear phased array probe
SU979981A2 (en) Ferromagnetic article physical mechanical parameters checking method
JPH0143265B2 (en)
JPS6033369Y2 (en) displacement converter
JPS582743A (en) Ultrasonic probe
JPH01148901A (en) Method for measuring pitch between conductors in flat cable

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13