JPH01175784A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPH01175784A
JPH01175784A JP62334384A JP33438487A JPH01175784A JP H01175784 A JPH01175784 A JP H01175784A JP 62334384 A JP62334384 A JP 62334384A JP 33438487 A JP33438487 A JP 33438487A JP H01175784 A JPH01175784 A JP H01175784A
Authority
JP
Japan
Prior art keywords
optical
semiconductor laser
wavelength
waveguide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334384A
Other languages
Japanese (ja)
Inventor
Akimoto Serizawa
晧元 芹澤
Yoshikazu Hori
義和 堀
Yasushi Matsui
松井 康
Jiyun Odani
順 雄谷
Tomoaki Uno
智昭 宇野
Hiroaki Yamamoto
博昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62334384A priority Critical patent/JPH01175784A/en
Publication of JPH01175784A publication Critical patent/JPH01175784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To solve the problem of wavelength dependency of an optical integrated device composed of elements greatly dependent on an associated wavelength such as a semiconductor laser, an optical waveguide, a thin film waveguide lens, and a grating by disposing on a waveguide an electrode capable of wavelength control by electrical control on an extension of the semiconductor laser optical waveguide. CONSTITUTION:The title optical integrated circuit comprises a semiconductor laser 3 including means of longitudinal single mode oscillation, and an electrode disposed on an extension of an optical waveguide part of the semiconductor laser 3, the electrode being capable of wavelength control by electrical control. The semiconductor laser 3 having the function of the wavelength control and other optical thin film function elements 4-6, 6' are integrated. For example, laser light, which is emitted from the AlGaAs semiconductor laser part 3 formed on a GaAs substrate 1 in a monolithic form, propagates through a three-layered dielectric waveguide 2, and is radiated and focused externally of the waveguide at a focusing grating coupler 5, and further the light reflected on a disk medium penetrates the focusing grating coupler 5, and is branched at a grating beam splitter and received by optical detectors 6, 6'.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光導積回路に関し、具体的には半導体レーザ光
導波路、グレーティング、光フィルターなどのよりなる
光学機器に関するものであり、特に、光情報処理用の光
ピツクアップに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical integrated circuit, and specifically relates to an optical device comprising a semiconductor laser optical waveguide, a grating, an optical filter, etc., and in particular, to an optical device for optical information processing. The invention relates to optical pickup.

従来の技術 近年オプトエレクトロニクスデバイスの急速な進展に伴
い、光産業分野は工業的に大きな地位を築いてきている
。特に半導体レーザが低価格で量産されるようになり、
光フアイバ通信のみならず、光ディスク等の光源として
広(利用されている。特にコンパクトディスクは一般家
庭に普及するまでに至っている。
BACKGROUND OF THE INVENTION In recent years, with the rapid development of optoelectronic devices, the optoelectronic industry has gained a major industrial position. In particular, semiconductor lasers began to be mass-produced at low prices.
It is widely used not only for optical fiber communications, but also as a light source for optical discs, etc. Compact discs in particular have reached the point where they have become widespread in ordinary households.

さてこのような光ディスクは性能的には今後より大容量
化、高速化が必要であり、製造面からはさらに小型軽量
化、工程簡略化2歩留り向上による高信頼化が重要とな
っている。従来光ディスク装置においても、最も工程的
に複雑で信頼性の低いのはピックアップと呼ばれるもの
であった。
Now, in terms of performance, such optical disks will need to have larger capacities and higher speeds in the future, and from a manufacturing standpoint, it is important to make them smaller and lighter, and to increase reliability by simplifying the process and improving yield. Even in conventional optical disk devices, the most complicated process and the least reliable component was the pickup.

ピックアップとは光源としての半導体レーザ光を光ディ
スク上に集光し、光ディスク盤からの反射光を情報とし
て読みだす部分のことであるが、半導体レーザ光を1μ
m以下のスポットに結像しまた高精度にレンズ等の部品
を光学的にアライメントする必要があるため、その製造
工程は複雑であった。
A pickup is a part that focuses semiconductor laser light as a light source onto an optical disc and reads out the reflected light from the optical disc as information.
The manufacturing process was complicated because it required focusing on a spot of less than m in size and optically aligning parts such as lenses with high precision.

このような問題を解決するためにLSI製造と同様なバ
ッチ・プロセスにより作れる可能性のある集積化光ディ
スク用ピックアップが提案されている(参考文献日経エ
レクトロニクス、Nn386pp、104−105.1
986)。このような集積化ピックアップの実現により
更に小型化が図られ、歩留り向上が期待できる。しかし
ながら上記参考文献に明記されているようにこの提案さ
れた集積化ピックアップでは従軍−モードで安定して動
作する半導体レーザが必要である。従ってより今後大容
量化、高速化を実現するために半導体レーザの波長も精
密に制御する必要があり例えばDFB (分布帰還型)
レーザ等を用いることが可能である。しかしながらそれ
ぞれの発振波長を所望通りに設定することは製造技術的
に極めて困難である。
To solve these problems, an integrated optical disk pickup has been proposed that can be manufactured using a batch process similar to LSI manufacturing (References Nikkei Electronics, Nn386pp, 104-105.1
986). By realizing such an integrated pickup, further miniaturization can be achieved, and an improvement in yield can be expected. However, as specified in the above reference, this proposed integrated pickup requires a semiconductor laser that operates stably in the military-mode. Therefore, in order to achieve higher capacity and higher speed in the future, it is necessary to precisely control the wavelength of semiconductor lasers, such as DFB (distributed feedback type).
It is possible to use a laser or the like. However, it is extremely difficult in manufacturing technology to set each oscillation wavelength as desired.

このように光集積化ピックアップ等の提案がなされ、半
導体レーザの性能向上の必要性が言われていても、具体
的にどの程度の性能が必要とされ、どのように解決して
い(がは示されていなかった。
Although proposals such as optical integrated pickups have been made and it is said that there is a need to improve the performance of semiconductor lasers, it is unclear exactly how much performance is required and how to solve the problem. It had not been done.

先導波路、導波路型レンズ、グレーティングなどにおい
ては特性に及ぼす波長の依存性が大きく、光ピツクアッ
プにおいては絞れないとか位置づれなどの障害を起す。
The characteristics of leading waveguides, waveguide lenses, gratings, etc. are highly dependent on wavelength, which causes problems such as inability to focus or misalignment in optical pickup.

このように薄膜集積化に対して大きな課題とすることが
予想される。
Thus, it is expected that thin film integration will pose a major challenge.

発明が解決しようとする問題点 そこで、本発明が解決しようとする問題点は、薄膜化光
ピツクアップに代表されるように半導体レーザ、先導波
路、薄膜導波路レンズ、グレーティングなど波長依存性
の強い要素素子よりなる光集積化素子において、この波
長依存性を解決しようとするものである。
Problems to be Solved by the Invention Therefore, the problems to be solved by the present invention are as follows: The problems to be solved by the present invention are as follows: The present invention attempts to solve this wavelength dependence in an optical integrated device made up of elements.

ちなみに、導波路型光ピックアップの構成を半導体レー
ザ、先導波路、導波路型集光性グレーティングレンズで
構成し、そのときの集光特性を第3図に示す。半導体レ
ーザの入射位置、光導波路の膜厚、屈折率が所望の値に
設定できたとしても入射半導体レーザの波長λ=800
nmがシフトしたときの数値解析の結果の1例を示して
いる。設定波長(800n m )より数Aのズレで2
〜3μmのスポットの位置づれを生ずるほか1μmφ以
下に絞ることができなくなるほか、サイドバンドの発光
が生じて(ることかわかった。にもかかられず現在の半
導体レーザ(たとえばDFBレーザ)の製造上の波長制
御可能範囲は士数+A程度であり、1桁以上の波長シフ
トが必要となる。
Incidentally, the structure of the waveguide type optical pickup is composed of a semiconductor laser, a leading waveguide, and a waveguide type light condensing grating lens, and the light condensing characteristics at that time are shown in FIG. Even if the incident position of the semiconductor laser, the film thickness of the optical waveguide, and the refractive index are set to the desired values, the wavelength of the incident semiconductor laser is λ=800.
An example of the results of numerical analysis when nm is shifted is shown. 2 with a deviation of several A from the set wavelength (800nm)
In addition to causing a positional shift of the spot of ~3 μm, making it impossible to focus the spot to less than 1 μmφ, and causing sideband emission (it was found that the production of current semiconductor lasers (such as DFB lasers) is difficult. The above wavelength controllable range is about 1+A, and requires a wavelength shift of one order of magnitude or more.

問題点を解決するための手段 本発明は上記の問題点を解決するために薄膜導波路型光
ピックアップにおいて、半導体レーザに接して波長制御
用デバイスを配置しようとするものである。すなはち、
単一モード発振を行なう手段を有する半導体レーザとそ
の半導体レーザの光導波踏部延長上に電気的制御によっ
て波長制御を行うことが可能な電極を導波路上に配し、
さらに、この波長制御機能をもつ半導体レーザと他の光
機能素子とを集積化することを特徴とする薄膜型光集積
回路である。
Means for Solving the Problems In order to solve the above problems, the present invention attempts to arrange a wavelength control device in contact with a semiconductor laser in a thin film waveguide type optical pickup. Sunahachi,
A semiconductor laser having means for performing single mode oscillation, and an electrode capable of controlling the wavelength by electrical control arranged on the waveguide on the extension of the optical waveguide section of the semiconductor laser,
Furthermore, the present invention is a thin film type optical integrated circuit characterized by integrating the semiconductor laser having this wavelength control function and other optical functional elements.

さらに、温度、注入電流などの波長シフトを生ずる要因
を電気信号に交換し、波長制御用電極へ帰属することに
よって波長の制御精度を上げようとするものである。
Furthermore, it attempts to increase the accuracy of wavelength control by exchanging factors that cause wavelength shifts, such as temperature and injection current, into electrical signals and assigning them to wavelength control electrodes.

作   用 上記手段の作用としては化合物半導体に電流注入を行な
りと化合物半導体の屈折率が変化する効果によっである
いはp−n接合に逆バイアスの電界をかけると同様に屈
折率が変化する効果(ポッケルス効果、カー効果)によ
って、半導体レーザの共振器内屈折率を変化させたのと
等価となり発振波長がシフトするものである。さらに、
温度や、注入電流によって実効的屈折率が変化し、波長
のシフトが生ずるため、この変化を波長1tiIJIR
I用電極に帰還して波長制御度を上げようとするもので
ある。
Function The above means has the effect that the refractive index of the compound semiconductor changes when current is injected into the compound semiconductor, or that the refractive index changes similarly when a reverse bias electric field is applied to the p-n junction. (Pockels effect, Kerr effect), this is equivalent to changing the refractive index within the cavity of a semiconductor laser, and the oscillation wavelength shifts. moreover,
The effective refractive index changes depending on temperature and injection current, causing a wavelength shift.
This is intended to increase the degree of wavelength control by returning to the I electrode.

実施例 第1図にモノリシックに集積化された薄膜光ピックアッ
プの1例を示す。
Embodiment FIG. 1 shows an example of a monolithically integrated thin film optical pickup.

GaAs基板1上にモノリシックにAe GaAs半導
体レーザし3がとりつけられており、発振したレーザ光
は3層誘電体導波路2を伝播し、フォーカシンググレー
ティングカプラ5にて導波路外に放射、集光される。ま
たディスク媒体より反射された光はフォーカシンググレ
ーティングカプラ5を通り、グレーティングビームスプ
リッタで分岐され、6および6゛の受光素子にて受信さ
れる。
An Ae GaAs semiconductor laser 3 is monolithically mounted on a GaAs substrate 1, and the oscillated laser light propagates through a three-layer dielectric waveguide 2, and is emitted and focused outside the waveguide by a focusing grating coupler 5. Ru. Further, the light reflected from the disk medium passes through the focusing grating coupler 5, is split by the grating beam splitter, and is received by the 6 and 6'' light receiving elements.

この時の半導体レーザ3部分の拡大斜視図を第2図aに
その断面構造を第2図すに示す。本レーザは埋込み型の
半導体レーザで示す。n−GaAs基板1上にn−Ae
GaAsクラッド層11、光導波n−AeGaAs層1
2、さらにn−Ae GaAs中間クラッド層13、G
aAs活性層14が形成され、23はp−Ae GaA
sクラッド層、17はp−GaAsコンタクト層、15
.16は各々pおよびnのAe GaAsとじ込め層で
ある。n−AeGaAsクラッド層上には回折格子18
が形成されている。19.20.21は波長制御部1位
相制御部、活性層部の電極を各々示す。
An enlarged perspective view of the semiconductor laser 3 portion at this time is shown in FIG. 2a, and its cross-sectional structure is shown in FIG. This laser is shown as a buried type semiconductor laser. n-Ae on n-GaAs substrate 1
GaAs cladding layer 11, optical waveguide n-AeGaAs layer 1
2, further n-Ae GaAs intermediate cladding layer 13, G
An aAs active layer 14 is formed, and 23 is made of p-Ae GaA
s cladding layer, 17 is a p-GaAs contact layer, 15
.. 16 are p and n Ae GaAs confinement layers, respectively. A diffraction grating 18 is placed on the n-AeGaAs cladding layer.
is formed. Reference numerals 19, 20, and 21 indicate electrodes of the wavelength control section 1, the phase control section, and the active layer section, respectively.

いま、活性層部電極21より電流注入することによって
、単一縦モードのレーザ発振を行うことが可能であり、
このときの発振波長は活性層組成、厚さのみならず主に
回折格子18のビットによって決められる。発振レーザ
光は光導波路2゜フォーカシンググレーティングカプラ
5を通して1点に集束される。このときの波長は880
nmであった。このとき、波長制御電極19に電流注入
を行うと電流増加とともに波長は短波長側にシフトし、
約100mAの電流注入で約10nmの波長シフトが得
られた。一方、波長制御型電極19に逆バイアスを印加
したときには数十Vの印加で1〜2Aの波長シフトが得
られた。本実施例は位相制御部を設けであるが、なくて
も制御可能であり、位相制御電極に電圧印加するもとに
よって微細な波長の制御が可能となった。
Now, by injecting current from the active layer electrode 21, it is possible to perform laser oscillation in a single longitudinal mode.
The oscillation wavelength at this time is determined not only by the composition and thickness of the active layer but also mainly by the bits of the diffraction grating 18. The oscillated laser light is focused to one point through an optical waveguide 2° focusing grating coupler 5. The wavelength at this time is 880
It was nm. At this time, when current is injected into the wavelength control electrode 19, the wavelength shifts to the shorter wavelength side as the current increases.
A wavelength shift of about 10 nm was obtained by injecting a current of about 100 mA. On the other hand, when a reverse bias was applied to the wavelength control type electrode 19, a wavelength shift of 1 to 2 A was obtained by applying several tens of V. Although a phase control section is provided in this embodiment, control is possible even without it, and fine wavelength control is possible by applying a voltage to the phase control electrode.

このように波長制御用電極に電流を流した状態で、ベル
チェ素子にて温度を変化させることによって波長シフト
量を増減することが可能でああり、活性領域への注入電
流の増減によってもシフト量が変化することが観測され
た。さらに、波長制御型電極への注入電流を変化させる
ともとの波長に制御することが可能であることかたしか
められた。即ち、温度、注入電流の変化による波長シフ
トを波長制御電極へ電気信号の帰還を行うことで波長の
より安定化がはかれる。
In this way, with current flowing through the wavelength control electrode, it is possible to increase or decrease the amount of wavelength shift by changing the temperature with the Bertier element, and the amount of shift can also be changed by increasing or decreasing the current injected into the active region. was observed to change. Furthermore, it was confirmed that the wavelength can be controlled to the original wavelength by changing the current injected into the wavelength-controlled electrode. That is, the wavelength can be further stabilized by feeding back an electric signal to the wavelength control electrode to compensate for the wavelength shift caused by changes in temperature and injection current.

次に第2の実施例を述べる。Next, a second embodiment will be described.

第4図に示す光ピツクアップ構成において、グレーティ
ングカプラは2次の回折格子の平行グレーティング50
で形成されている。半導体レーザ3は単一モードの性の
強いファプリー・ペロー型レーザーを配置しており回折
格子への入射前に平行ビームとされており、ピックアッ
プ外に平行ビームとして取り出せる。このとき、グレー
ティングカプラ上に透明電極を形成し、基板1との間に
電流を印加した。この時も半導体レーザ部は第1の実施
例に示されているような波長制御電極は有していないが
、波長をシフトさせることが可能であった。60はビー
ムスプリッタ、30は光ディスク、40は集光レンズで
ある。本実施例は一度薄膜レンズ60にて平行ビームと
し、平行グレーティングカプラの場合であるが、薄膜レ
ンズなしで、同心円状のグレーティングの場合も同様な
効果を示すことができることは言うまでもない。
In the optical pickup configuration shown in FIG. 4, the grating coupler connects the parallel grating 50 of the second-order diffraction grating.
It is formed of. The semiconductor laser 3 is a Fapley-Perot laser with a strong single mode property, and is made into a parallel beam before entering the diffraction grating, and can be taken out as a parallel beam outside the pickup. At this time, a transparent electrode was formed on the grating coupler, and a current was applied between it and the substrate 1. Even in this case, although the semiconductor laser section did not have a wavelength control electrode as shown in the first embodiment, it was possible to shift the wavelength. 60 is a beam splitter, 30 is an optical disk, and 40 is a condenser lens. Although this embodiment uses a parallel grating coupler in which the beam is made parallel by the thin film lens 60, it goes without saying that the same effect can be obtained in the case of a concentric grating without a thin film lens.

本実施例のレーザとして埋込み型のレーザを用いたが、
他の構造のレーザであっても同様な効果を持つとことが
できる。分布帰還型レーザ(DFB)においても活性領
域の電極を分割することによって波長シフトの効果を持
たすことが可能である。
Although an embedded laser was used as the laser in this example,
Lasers with other structures can also have similar effects. Even in a distributed feedback laser (DFB), it is possible to have a wavelength shift effect by dividing the active region electrode.

また、薄膜ピックアップを例にとって示したが、光導波
路、グレーティングなどによって構成される集積化素子
においても同様に波長、伝播位置などを制御あるいはシ
フトさせることが可能であることは言うまでもない。
Further, although a thin film pickup has been shown as an example, it goes without saying that it is also possible to control or shift the wavelength, propagation position, etc. in the same way in an integrated element constituted by an optical waveguide, a grating, or the like.

発明の効果 本発明によれば波長制御用素子を有する半導体レーザと
先導波路素子、グレーティングなどとの集積化によって
波長安定化及びシフトが可能となり、 (1)  外部へのとり出したレーザ光のスポットサイ
ズを制御できる、 (2)スポット集光位置を制御できる、(3)導波路や
グレーティング作製条件のバラツキ、あるいは半導体レ
ーザの波長のバラツキなどを吸収することができるなど
の効果を有する。
Effects of the Invention According to the present invention, wavelength stabilization and shifting are possible by integrating a semiconductor laser having a wavelength control element, a guiding waveguide element, a grating, etc., and (1) a spot of laser light taken out to the outside. (2) It is possible to control the spot focusing position; (3) It is possible to absorb variations in waveguide and grating manufacturing conditions, variations in the wavelength of semiconductor lasers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施゛例の集積化光ピツクアップの
斜視図、第2図1(a)、 (bJは集積化光ピツクア
ップ用波長制御機能は半導体レーザの斜視図および断面
図、第3図は集積化光ピツクアップの集光特性の波長シ
フト依存性を示す図、第4図は第2図の集積化光ピツク
アップの斜視図である。 l・・・・・・GaAs基板、2・・・・・・導波路、
3・・・・・・半導体レーザ部、5・・・・・・グレー
ティングカプラ、6.6°・・・・・・受光素子、19
.20.21・・・・・・電極。 代理人の氏名 弁理士 中尾敏男 ほか1名区 tS3e           二 INTEN、5rTγ
FIG. 1 is a perspective view of an integrated optical pickup according to an embodiment of the present invention, FIG. Figure 3 is a diagram showing the wavelength shift dependence of the light focusing characteristics of the integrated optical pickup, and Figure 4 is a perspective view of the integrated optical pickup of Figure 2.l...GaAs substrate, 2. ... Waveguide,
3... Semiconductor laser section, 5... Grating coupler, 6.6°... Light receiving element, 19
.. 20.21... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person Ward tS3e 2INTEN, 5rTγ

Claims (4)

【特許請求の範囲】[Claims] (1)半導体レーザを含む複数の薄膜光要素素子を備え
、単一縦モード発振を行なう手段を有する半導体レーザ
とこの半導体レーザの光導波路部の延長上に電気的制御
によって波長制御を行なうことが可能な電極を光導波部
上に配し、前記波長制御機能を有する半導体レーザと他
の光薄膜機能素子とを集積化してなる光集積回路。
(1) A semiconductor laser that is equipped with a plurality of thin film optical elements including a semiconductor laser and has a means for performing single longitudinal mode oscillation, and a wavelength control that can be performed by electrical control on the extension of the optical waveguide section of this semiconductor laser. 1. An optical integrated circuit in which a semiconductor laser having a wavelength control function and another optical thin film functional element are integrated by disposing a flexible electrode on an optical waveguide.
(2)温度、半導体レーザの活性領域への注入電流、圧
力などの変動量を、電気信号に変換し、波長制御用電極
に帰還する特許請求範囲第1項に記載の光集積回路。
(2) The optical integrated circuit according to claim 1, which converts fluctuations in temperature, current injected into the active region of the semiconductor laser, pressure, etc. into electrical signals and feeds them back to the wavelength control electrode.
(3)半導体レーザ、光導波路、グレーティングカプラ
、受光素子を含み光ディスク用薄膜ピックアップを形成
した特許請求範囲第1項記載の光集積回路。
(3) The optical integrated circuit according to claim 1, which includes a semiconductor laser, an optical waveguide, a grating coupler, and a light receiving element and forms a thin film pickup for an optical disc.
(4)波長制御用電極が、外部とり出し用2次グレーテ
ィング上に形成される特許請求範囲第3項記載の光集積
回路。
(4) The optical integrated circuit according to claim 3, wherein the wavelength control electrode is formed on a secondary grating for external extraction.
JP62334384A 1987-12-29 1987-12-29 Optical integrated circuit Pending JPH01175784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334384A JPH01175784A (en) 1987-12-29 1987-12-29 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334384A JPH01175784A (en) 1987-12-29 1987-12-29 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPH01175784A true JPH01175784A (en) 1989-07-12

Family

ID=18276770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334384A Pending JPH01175784A (en) 1987-12-29 1987-12-29 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPH01175784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414274A (en) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd Stabilized wavelength laser equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100628A (en) * 1975-03-03 1976-09-06 Hitachi Ltd
JPS62106686A (en) * 1985-11-01 1987-05-18 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS62244185A (en) * 1986-04-16 1987-10-24 Mitsubishi Electric Corp Semiconductor laser
JPS6472583A (en) * 1987-09-11 1989-03-17 Fujitsu Ltd Wavelength tunable semiconductor laser
JPH01152784A (en) * 1987-12-10 1989-06-15 Sony Corp Electrode structure of semiconductor laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100628A (en) * 1975-03-03 1976-09-06 Hitachi Ltd
JPS62106686A (en) * 1985-11-01 1987-05-18 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS62244185A (en) * 1986-04-16 1987-10-24 Mitsubishi Electric Corp Semiconductor laser
JPS6472583A (en) * 1987-09-11 1989-03-17 Fujitsu Ltd Wavelength tunable semiconductor laser
JPH01152784A (en) * 1987-12-10 1989-06-15 Sony Corp Electrode structure of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414274A (en) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd Stabilized wavelength laser equipment

Similar Documents

Publication Publication Date Title
US5276745A (en) Integrated optic read/write head for optical data storage incorporating second harmonic generator, electro-optic tracking error actuator, and electro-optic modulator
US5235589A (en) Apparatus for recording and reproducing optical information and prism coupler
US4861128A (en) Optical pickup using a waveguide
US4978187A (en) Optical element, optical disc and rotary encoder with the optical element
US4760568A (en) Optical information processing device
KR100456984B1 (en) Semiconductor laser device
US4858215A (en) Integrated optical disc pickup that allows variations in the wavelength of the laser beam
US20040170110A1 (en) Light emitting module, optical detecting module, optical pickup apparatus and manufacturing methods thereof
JP3350789B2 (en) Optical head and optical disk device
JPH01175784A (en) Optical integrated circuit
JPS61265742A (en) Optical head
US5757029A (en) Triangular pyramidal semiconductor structure and optical device using the same
JP2001155366A (en) Optical head and its manufacturing method
JP2849190B2 (en) Light switch
JP3533273B2 (en) Optical device
JPS62293527A (en) Optical pickup
JP3146653B2 (en) Optical information processing device
JPS63164036A (en) Optical head
JPH07153111A (en) Optical head
JPH0547023A (en) Optical pickup device
JPS63163409A (en) Optical integrated circuit
JPS62133423A (en) Phase modulator for optical circuit
JPS61168286A (en) Semiconductor laser
Uemukai et al. Monolithic integrated‐optic sensors using waveguide gratings and QW‐DFB laser
JP2001102692A (en) Light switch and method for driving semiconductor laser with selectable polarized light