JPH01175206A - Rare-earth element-iron-based permanent magnet - Google Patents

Rare-earth element-iron-based permanent magnet

Info

Publication number
JPH01175206A
JPH01175206A JP62335682A JP33568287A JPH01175206A JP H01175206 A JPH01175206 A JP H01175206A JP 62335682 A JP62335682 A JP 62335682A JP 33568287 A JP33568287 A JP 33568287A JP H01175206 A JPH01175206 A JP H01175206A
Authority
JP
Japan
Prior art keywords
less
iron
alloy
cast
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335682A
Other languages
Japanese (ja)
Other versions
JP2631380B2 (en
Inventor
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Toshiaki Yamagami
利昭 山上
Tatsuya Shimoda
達也 下田
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP62335682A priority Critical patent/JP2631380B2/en
Publication of JPH01175206A publication Critical patent/JPH01175206A/en
Application granted granted Critical
Publication of JP2631380B2 publication Critical patent/JP2631380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To simplify a manufacturing process as compared with a conventional sintering method and a conventional quenching method by a method wherein an alloy, which is composed of B, Co, Al, Cu, Ga, including R and Y, of specific atomic % and a remaining part such as iron and others, is melted and cast and it is then hot-worked at higher than a specific temperature. CONSTITUTION:For a rare-earth element-iron-based permanent magnet, an alloy, which is composed of 8-30atomic% R, 2-28atomic% B, 50atomic% or less Co, 15atomic% or less Al, 6.0atomic% or less Cu, 6.0atomic% or less Ga and a remaining part such as iron and other impurities which are inevitable for a manufacturing process, is melted and cast; after that, its cast ingot is hot-worked at a temperature of 500 deg.C or higher; its crystal particle is made fine; its crystal axis is oriented in a specific direction; the cast alloy is made magnetically anisotropic. Especially in order to enhance a coercive force, the alloy is composed of 8-25atomic% or less Co, 15atomic% or less Al, 6.0atomic% or less Cu, 6atomic% Ga and a remaining part such as iron and others; it is heat-treated at a temperature of 250 deg.C or higher; a cast magnet alloy which is hardened magnetically can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−鉄系永久磁石に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron permanent magnets.

〔従来の技術〕[Conventional technology]

従来、売上閏−鉄系の磁石には次の3通りの方法による
磁石か報告されている。
Conventionally, the following three methods have been reported for iron-based magnets.

(1)粉末冶金法に基づく焼結法による磁石(参考文献
1) (2)アモルファス合金を製造するに用いる急冷薄帯製
造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂で結合する磁石、(参考文献2) (3)(2)の方法で使用した同じ薄片を、2段階のホ
ットプレス法で機械的配向処理を施した磁石、(参考文
献2) 参考文献1 : M、 Sagawa、 S、 Fuj
inura、 N、 T。
(1) Magnet made by sintering method based on powder metallurgy method (Reference 1) (2) A quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon manufacturing device used to manufacture amorphous alloy, and the thin piece is coated with resin. Coupling magnet, (Reference 2) (3) Magnet obtained by mechanically aligning the same flakes used in method (2) using a two-step hot press method, (Reference 2) Reference 1: M , Sagawa, S., Fuji
inura, N, T.

gawa、   H,Yanalloto  and 
   Y、   Hatuura;J、   Appl
、Phys、  Vol 、55((3)、15 Ma
rch 1984.P2O83参考文献2 : R,W
、 Lee;^ppl、Phys、 1ett、 V。
Gawa, H. Yanalloto and
Y, Hatuura; J, Appl
, Phys, Vol. 55 ((3), 15 Ma
rch 1984. P2O83 Reference 2: R,W
, Lee;^ppl, Phys, 1ett, V.

1、46(8)、15Aprol 1985. P79
0文獄に文献て上記の従来技術を説明する。まず(1)
の焼結磁石では、溶解、鋳造により合金インゴットを作
製し、粉砕されて3μmくらいの粒径を有する磁石粉に
される。磁石粉は成形助剤となるバインダーと混練され
、磁場中でプレス成形されて、成形体ができあがる。成
形体はアルゴン中で1100℃前後の温度で1時間焼結
され、その後室温まで急冷される。焼結後、600℃前
後の温度で熱処理すると保磁力はさらに向上する。
1, 46(8), 15Aprol 1985. P79
The above-mentioned prior art will be explained based on the literature. First (1)
In the case of the sintered magnet, an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 3 μm. Magnetic powder is kneaded with a binder, which serves as a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is further improved by heat treatment at a temperature of around 600°C.

(2)の磁石ではまず急冷薄帯製造装置の最適な回転数
でR−Fe−8合金の急冷薄帯を作る。
In the magnet (2), first, a quenched ribbon of R-Fe-8 alloy is made at the optimum rotation speed of the quenched ribbon manufacturing device.

得られた薄帯は厚さ30μmのリボン状をしており、直
径が1000Å以下の多結晶が集合している。薄帯は脆
くて割れやすく、結晶粒は等方向に分布しているので磁
気的にも等方性である。この薄帯を適度な粒度にして、
樹脂と混練してプレス成形ずれば7 ton/j程度の
圧力で、約85体積%の充填が可能となる。
The obtained thin strip has a ribbon shape with a thickness of 30 μm, and includes a collection of polycrystals with a diameter of 1000 Å or less. The ribbon is brittle and easily cracked, and since the crystal grains are distributed in the same direction, it is also magnetically isotropic. This thin strip is made into an appropriate particle size,
If it is kneaded with a resin and press-molded, it becomes possible to fill it to about 85% by volume at a pressure of about 7 tons/j.

(3)の磁石では、初めにリボン状の急冷薄帯あるいは
薄帯の片を、真空中あるいは不活性雰囲気中で約700
℃で予備加熱したグラファイトあるいは他の耐熱用プレ
ス型に入れる。該リボンが所望の温度に到達したとき一
軸の圧力が加えられる。温度、時間は特定しないが、充
分な塑性が出る条件としてT=725±250℃、圧力
はP〜1 、4 ton/−程度が適している。この段
階で磁石はわずかにプレス方向に配向しているとはいえ
、全体的には等方性である0次のホットプレスは、大面
積を有する型で行なわれる。最も一般的には700℃で
0.7tonで数秒間プレスする。すると試料は最初の
厚みの172になるプレス方向と平行に磁化容易軸が配
向してきて、合金は異方性化する。これらの工程は、二
段階ホットプレス法(two−staae hot−p
ress procedure >と呼ばれている。こ
の方法により緻密で異方性を有するR−Fe−R磁石が
製造できる。なお、最初のメルトスピニング法で作られ
るリボン薄帯の結晶粒は、それが最大の保磁力を示す時
の粒径よりも小さめにしておき、後にホットプレス中に
結晶粒の粗大化が生じて最適の粒径になるようにしてお
く。
In the case of the magnet (3), a ribbon-like quenched ribbon or a piece of ribbon is first heated in a vacuum or in an inert atmosphere for about 700 min.
Place in graphite or other heat-resistant press mold preheated at ℃. Uniaxial pressure is applied when the ribbon reaches the desired temperature. Although the temperature and time are not specified, T=725±250° C. and pressure of about P˜1,4 ton/− are suitable as conditions for sufficient plasticity to occur. Although the magnets are slightly oriented in the pressing direction at this stage, the zero-order hot pressing is generally isotropic and is performed in a mold having a large area. Most commonly, it is pressed at 700° C. and 0.7 ton for several seconds. Then, the axis of easy magnetization of the sample becomes oriented parallel to the pressing direction to reach the initial thickness of 172, and the alloy becomes anisotropic. These steps are performed using a two-step hot-press method.
It is called ``res procedure''. By this method, a dense and anisotropic R-Fe-R magnet can be manufactured. It should be noted that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit their maximum coercive force, so that coarsening of the crystal grains occurs later during hot pressing. Make sure the particle size is optimal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術で、希土類−鉄系の磁石は一応作製で
きるのであるが、これらの技術を利用した磁石は次のよ
うな欠点を有している。(1)の焼結磁石では合金を粉
末にするのが必須であるが、TL −F e −B系合
金はたいへん酸素に対して活性であるので、粉末化する
と余計酸化が激しくなり、焼結体中の酸素濃度はどうし
ても高くなってしまう、また粉末を成形するときに、例
えばステリアン酸亜鉛のような成形助剤を使用しなけれ
ばならず、これは焼結工程で前もって取り除かれるので
あるが、数割は磁石体の中に炭素の形で残ってしまう、
この炭素は著しくR−Fe−Bの磁気性能を低下させる
。成形助剤を加えてプレス成形した後の成形体はグリー
ン体と言われる。これはたいへん脆く、ハンドリングが
鉗しい。従って焼結炉にきれいに並べて入れるのには、
相当の手間がかかることも大きな欠点である。これらの
欠点があるので一般的に言ってR−Fe−B径の焼結磁
石の製造には、高価な設備が必要になるばかりでなく、
生産効率が悪く、磁石の製造費が高くなってしまう。従
って、R−F e −[3光磁石の原料費の安さを充分
に引き出す磁石とは言い難い。
Although rare earth-iron magnets can be manufactured using the above-mentioned conventional techniques, magnets using these techniques have the following drawbacks. For the sintered magnet (1), it is essential to turn the alloy into powder, but since TL-F e -B alloys are very active against oxygen, turning them into powder will result in even more intense oxidation, which can lead to sintering. The oxygen concentration in the body is inevitably high, and when the powder is compacted, a compacting aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process. , several tenths of it remains in the form of carbon inside the magnet.
This carbon significantly reduces the magnetic performance of R-Fe-B. The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle. Therefore, in order to arrange them neatly in the sintering furnace,
Another major disadvantage is that it requires considerable effort. Because of these drawbacks, generally speaking, manufacturing sintered magnets with R-Fe-B diameter not only requires expensive equipment;
Production efficiency is poor and the manufacturing cost of the magnet increases. Therefore, it is difficult to say that this is a magnet that fully takes advantage of the low raw material costs of the R-Fe-[3-optical magnet.

(2)と(3)の磁石は真空メルトスピニング装置を使
う、この装置は現在では、ないへん生産性が悪くしかも
も高価である。(2)では原理的に等方性であるので低
エネルギー積であり、ヒスプリシスループの角形性もよ
くないので温度特性に対しても、使用する面においても
不利である。
Magnets (2) and (3) use vacuum melt spinning equipment, which is currently very unproductive and expensive. In (2), since it is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage.

(3)の方法は、ホットプレスを2段階に使うというユ
ニークな方法であるが、実際に量産を考えるとたいへん
非効率になることは否めないであろう。
Method (3) is a unique method that uses a hot press in two stages, but it cannot be denied that it is extremely inefficient when considering actual mass production.

本発明による希土類−鉄系永久磁石はこれらの欠点を解
決するものであり、その目的とするところは高性能低コ
ストな希土類−鉄系永久磁石を得ることにある。
The rare earth-iron permanent magnet according to the present invention solves these drawbacks, and its purpose is to obtain a high-performance, low-cost rare earth-iron permanent magnet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石は、希土類−鉄系永久磁石に関するも
のであり、具体的にはRが8〜30原子%、Bが2〜2
8原子%、Co50原子%以下、Al15原子%以下、
Cu6.O原子%以下、Ga6.0原子%以下及び残部
が跣及びその他の製造上不可避な不純物からなる合金を
溶解及び鋳造後、該鋳造インゴットを500℃以上の温
度で熱間加工することにより結晶粒を微細化し、またそ
の結晶軸を特定の方向に配向せしめて、該鋳造合金を磁
気的に異方性化することを特徴とする。
The permanent magnet of the present invention relates to a rare earth-iron permanent magnet, and specifically, R is 8 to 30 atomic % and B is 2 to 2 atomic %.
8 at%, Co50 at% or less, Al15 at% or less,
Cu6. After melting and casting an alloy consisting of O atomic % or less, Ga 6.0 atomic % or less, and the balance being impurities that are unavoidable in manufacturing, crystal grains are formed by hot working the cast ingot at a temperature of 500°C or higher. It is characterized by making the cast alloy magnetically anisotropic by making it finer and orienting its crystal axis in a specific direction.

さらに磁気特性、特に保磁力の向上のためには、前記組
成中でもRが8〜25原子%、Bが2〜8原子%、Co
40原子%以下、Al15原子%以下、Cu6.0%以
下、Ga6%以下及びその残部が鉄及びその他の製造上
不可避な不純物がらなり、250℃以上の温度で熱処理
することにより、磁気的に硬化する鋳造磁石合金を使用
することを特徴とする。また樹脂結合化のためには、熱
間加工により粒子が緻密化する性質を利用し、樹脂結合
のための粉砕を施した後にも各粉末内に、磁性相R,F
e、、B粒子を複数個含むような粉末を作製し、有機物
バインダーとともに混練・硬化させて、樹脂結合磁石と
することを特徴とする。
Furthermore, in order to improve the magnetic properties, especially the coercive force, R is 8 to 25 atomic %, B is 2 to 8 atomic %, and Co
40 atomic% or less, Al 15 atomic% or less, Cu 6.0% or less, Ga 6% or less, and the balance consists of iron and other impurities that are unavoidable in manufacturing, and is magnetically hardened by heat treatment at a temperature of 250°C or higher. It is characterized by the use of a cast magnetic alloy. In addition, for resin bonding, we take advantage of the property that particles become densified by hot processing, and even after pulverization for resin bonding, magnetic phases R and F remain in each powder.
e. A powder containing a plurality of B particles is prepared, and is kneaded and hardened with an organic binder to form a resin-bonded magnet.

前記のように現存の希土類−鉄系永久磁石の製造方法で
ある焼結法、急冷法はそれぞれ粉砕による粉末管理の困
難さ、生産性の悪さといった大きな欠点を有している8
本発明者らは、これらの欠点を改良するため、バルクの
状態での磁石化の研究に着手し、まず特許請求の範囲第
1項の組成域で熱間加工による結晶粒の微細化と異方化
ができ、組成域を特許請求の範囲第2項にまでせばめれ
ば、鋳造状態のまま熱処理するだけで十分な保磁力が得
られ、また熱間加工後のインゴットの粉砕によって樹脂
結合型磁石が作製できることを発明した。
As mentioned above, the existing methods of producing rare earth-iron permanent magnets, the sintering method and the quenching method, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity.
In order to improve these shortcomings, the present inventors started research on magnetization in the bulk state, and first, in the composition range of claim 1, grain refinement and differences due to hot working were conducted. If the composition range is narrowed to the second claim, sufficient coercive force can be obtained by simply heat-treating the cast state, and resin-bonded molding can be achieved by crushing the ingot after hot working. Invented the ability to create magnets.

この方法では、熱間加工による異方化は参考文献2に示
した急冷法のように2段階ではなく、−段19Iのみで
よく、加工後の保磁力は粒子の微細化により大幅に増加
するという全く異った現象を呈する。また鋳造インゴッ
トを粉砕する必要がないので、焼結法はどの厳密な雰囲
気管理を行なう必要はなく、設備費が大きく低減される
。さらに樹脂結合磁石においても、急冷法によった磁石
のような原理的に等方性があるといった問題点がなく、
異方性の樹脂結合磁石が得られ、R−F’ e −8磁
石の高性能、低コストという特徴を生かすことができる
In this method, the anisotropy due to hot working is not done in two stages as in the quenching method shown in Reference 2, but only in -stage 19I, and the coercive force after working increases significantly due to the refinement of the particles. This is a completely different phenomenon. Furthermore, since there is no need to crush the cast ingot, the sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced. Furthermore, resin-bonded magnets do not have the problem of being isotropic in principle, unlike magnets made using the rapid cooling method.
An anisotropic resin-bonded magnet can be obtained, and the characteristics of high performance and low cost of the RF' e -8 magnet can be utilized.

バルク状態で磁石化するという研究には、参考文献3、
三保広晃他(日本金属学会、昭和60年度秋期講演会、
講演番号(544))があるが同研究はNd16.2 
 Fe50.7  Co22゜6  Vl、3  B9
.2という組成でのアルゴンガス吹き付は大気中溶解で
吸い上げた小型サンプルによるものであり、小量採取の
ために結晶粒の急冷微細化効果が出たものと考えられる
。この組成では通常の鋳造用は主相であるNd2Fez
B相が粗大化してしまい、熱間加工による異方化は可能
だが、永久磁石として十分な保磁力が得にくいことを我
々は実験的に確めた0通常の鋳造で十分な保磁力を得る
には、本発明の特許請求の範囲2にしるしたような低B
組成であることが必須である。
For research on magnetization in the bulk state, see Reference 3,
Hiroaki Miho et al. (Japan Institute of Metals, 1985 Autumn Lecture,
There is a lecture number (544)), but the research is Nd16.2
Fe50.7 Co22゜6 Vl, 3 B9
.. The argon gas spraying at composition 2 was due to a small sample taken up by dissolution in the atmosphere, and it is thought that the rapid cooling and refinement of the crystal grains was produced due to the small amount collected. With this composition, the main phase for normal casting is Nd2Fez
We have experimentally confirmed that the B phase becomes coarse, and although it is possible to make it anisotropic through hot working, it is difficult to obtain sufficient coercive force as a permanent magnet. For example, low B as described in claim 2 of the present invention
composition is essential.

従来のR−Fe−B光磁石の組成は、参考文献1に代表
されるようなR+sF e 77B sが最適とされて
いた。この組成は主相R2Fe14B化合物を原子百分
率にした組成R11,7Fe82.4B5.9に比して
R−Bに富む側に移行している。このことは保磁力を得
るためには、主相のみでなく、Rrich相−B  r
ich相という非磁性相が必要であるという点から説明
されている。ところが本発明による組成では逆にBが少
ない側に移行したところに保磁力のピーク値が存在する
。この組成域では、焼結法の場合、保磁力が激減するの
で、これまであまり問題にされていなかった。しかし通
常のa速決では、本発明の特許請求の範囲第2項の組成
範囲でのみ、高保磁力が得られ、逆に焼結法の主流組成
であるBに富む側では十分な保磁力は得られない。
The optimal composition of conventional R-Fe-B photomagnets was R+sFe 77Bs as typified by Reference 1. This composition shifts to the side rich in R--B compared to the composition R11,7Fe82.4B5.9 in which the main phase R2Fe14B compound is expressed as an atomic percentage. This means that in order to obtain coercive force, not only the main phase but also the Rrich phase -Br
This is explained from the point that a non-magnetic phase called ich phase is required. However, in the composition according to the present invention, on the contrary, the peak value of the coercive force exists where the B content shifts to the side where there is less B. In this composition range, the coercive force is drastically reduced in the case of the sintering method, so it has not been much of a problem so far. However, in normal a-speed determination, a high coercive force can be obtained only in the composition range defined in claim 2 of the present invention, and on the contrary, a sufficient coercive force cannot be obtained in the B-rich side, which is the mainstream composition of the sintering method. I can't.

これらの点は以下のように考えられる。まず焼結法を用
いても鋳造法を用いても、保磁力機構そのものはnuc
If!ation、 1odelに従っている。これは
、両者の初磁化曲線がS m Co sのように急峻な
立ち上がりを示すことかられかる。このタイプの磁石の
保磁力は基本的には単磁区モデルによっている。すなわ
ちこの場合、大きな結晶磁気異方性を有するR2Fe+
4B化合物が、大きすぎると粒内に磁壁を有するように
なるため、磁化の反転が磁壁の移動によって容易に起き
て、保磁力は小さい、一方、粒子が小さくなって、ある
寸法以下になると、粒子内に磁壁を有さなくなり、磁化
の反転は回転のみによって進行するため、保磁力は大き
くなる。つまり適切な保磁力を得るには、R2F 81
48相が適切な粒径を有することが必要である。この枝
糸としては10μm前後が適当であり、焼結タイプの場
合は、焼結前の粒末粒度の調整によって粒径を適合させ
ることができる。ところが鋳造法の場合、R2Fet<
Fl化合物の大きさは溶融から凝固する段階で決定され
るため、組成と凝固過程に注意を払う必要がある。特に
組成の意味合いは大きく、Bか8原子%以り含むと、鋳
造上がりのR2Fe+nB相の大きさが容易に100μ
mを越えてしまい、参考文献2のような急冷装置を用い
ないと鋳造状態では保磁力を得ることは困難である。こ
れに対して、特許請求の範囲2項で述べたような低ボロ
ン領域では、鋳型・鋳込温度等の工夫で容易に粒径をf
i411化できる。しかしいずれの場合でも、熱間加工
を施せば主相R2Fe+4B相が微細化するので、加工
前よりは保磁力は増大する。鋳造状態で保磁力を得られ
る領域は、見方を変えればR2Fe、43に比してFe
に富んだ組成とも言え、凝固段階ではまず初晶としては
Feが出現し、続いて包晶反応によってR2F 614
B相が現われる。このとき冷却スピードは平衡反応に比
してはるかに速いため、初晶FeのまわりをR2F 6
14B相が取り囲むような形で凝固する。この組成域で
は低Bな領域であるため、当然のことながら焼結タイプ
の代表組成FZ+5Fe7フBaの磁石にに見るられる
ようなり  rich相は量的にほとんど無視できる。
These points can be considered as follows. First of all, whether a sintering method or a casting method is used, the coercive force mechanism itself is nuc.
If! ation, according to the model. This is because the initial magnetization curves of both exhibit a steep rise like S m Co s. The coercive force of this type of magnet is basically based on a single domain model. That is, in this case, R2Fe+ having large magnetocrystalline anisotropy
If the 4B compound is too large, it will have domain walls within the grains, so reversal of magnetization will easily occur due to the movement of the domain walls, and the coercive force will be small.On the other hand, if the particles become small and below a certain size, Since the particles no longer have domain walls and the reversal of magnetization proceeds only by rotation, the coercive force increases. In other words, to obtain an appropriate coercive force, R2F 81
It is necessary that the 48 phase has an appropriate particle size. Appropriately, the branch yarn has a diameter of about 10 μm, and in the case of a sintered type, the particle size can be adjusted by adjusting the particle size before sintering. However, in the case of the casting method, R2Fet<
Since the size of the Fl compound is determined during the stage from melting to solidification, it is necessary to pay attention to the composition and solidification process. In particular, the composition has a great significance, and if B is included at 8 atomic percent or more, the size of the R2Fe+nB phase after casting can easily increase to 100 μm.
m, and it is difficult to obtain a coercive force in the cast state unless a quenching device such as that described in Reference 2 is used. On the other hand, in the low boron region as stated in claim 2, it is easy to reduce the particle size f by adjusting the mold and casting temperature.
Can be converted to i411. However, in any case, hot working makes the main phase R2Fe+4B finer, so the coercive force increases compared to before working. From a different perspective, the region where coercive force can be obtained in the cast state is Fe compared to R2Fe and 43.
It can be said that the composition is rich in Fe, and in the solidification stage, Fe first appears as a primary crystal, and then R2F 614 is formed by a peritectic reaction.
Phase B appears. At this time, the cooling speed is much faster than the equilibrium reaction, so R2F 6
It solidifies in such a way that the 14B phase surrounds it. Since this composition range is a low B range, naturally the rich phase, as seen in the typical sintered type magnet of FZ+5Fe7F-Ba, can be almost ignored in quantity.

特許請求の範囲第2項で述べた熱処理は初晶Feを拡散
させ、平衡状態に到達させるためのもので保磁力は、こ
のFeの相の拡散に大きく依存している。
The heat treatment described in claim 2 is for diffusing primary Fe to reach an equilibrium state, and the coercive force largely depends on the diffusion of this Fe phase.

次に特許請求の範囲第3項の樹脂結合化について説明す
る。前記参考文献2の急冷法でも確かに樹脂結合磁石は
作成できる。しかし急冷法で作成される粉末は、直径が
100OA以下の多結晶が等方向に集合したものである
ため磁気的にも等方性であり、異方性磁石は作成できず
、R−Fe−B径の低コスト・高性能という特徴が生か
せない。
Next, resin bonding according to claim 3 will be explained. It is true that resin-bonded magnets can also be produced using the rapid cooling method described in Reference 2. However, the powder created by the rapid cooling method is magnetically isotropic because it is a collection of polycrystals with a diameter of 100 OA or less in the same direction, and an anisotropic magnet cannot be created. The characteristics of low cost and high performance of the B diameter cannot be utilized.

また、これまで焼結るR−F e−B磁石を粉砕して樹
脂結合型磁石が製造できなかった原因には主として2つ
ある。まずR2Fe+i8相の単磁区臨界半径がSmC
o5等に比して1桁小さく、サブミクロオーダである点
に注目する必要がある。
Furthermore, there are two main reasons why resin-bonded magnets could not be manufactured by crushing sintered R-Fe-B magnets. First, the single domain critical radius of R2Fe+i8 phase is SmC
It should be noted that it is one order of magnitude smaller than o5 etc., and is on the sub-micro order.

この粒度まで粉砕することは、通常の機械粉砕では非常
に困難であり、また粉末があまりに活性化してしまうの
で酸化がはげしく発火しやすくなり粒径の割りには保磁
力がでない。我々は粒径と保磁力の関係を調べたが、保
磁力は高々数KOeの域を出ず、表面処理によっても保
磁力はほとんど伸びなかった6次に問題となるのはIl
械加1による歪である6例えば、焼結状態で1OKOe
の保磁力を有する磁石を機械粉砕すると、粒径20〜3
0μmの粉末ではIKOe以下の保磁力しか有しなくな
る。同様な保磁力機1f4 (nucleation 
nodol)に従うとされるS m CO5磁石では、
この様な保磁力の激減は起こらず、容易に保磁力を有す
る粉末を製造できる。こういって現象原因としては、粉
砕時の加工歪等の影響がR−Fe−B系の場合、かなり
大きいことが予想できる。このことはウォッチ用ステッ
プモータのロータ磁石のような小物磁石を焼結ブロック
がら切り出し加工するときには大きな問題となる。
Grinding to this particle size is extremely difficult with ordinary mechanical grinding, and the powder becomes too activated, oxidizing rapidly and igniting easily, and the coercive force is not sufficient for the particle size. We investigated the relationship between grain size and coercive force, but found that the coercive force was no more than a few KOe, and the coercive force hardly increased even with surface treatment.
For example, 1OKOe in the sintered state is 6 which is the strain due to mechanical stress 1.
When a magnet with a coercive force of
A powder of 0 μm has a coercive force of less than IKOe. A similar coercive force machine 1f4 (nucleation
In the S m CO5 magnet, which is said to comply with
Such a drastic decrease in coercive force does not occur, and powder having coercive force can be easily produced. As for the cause of this phenomenon, it can be expected that the influence of processing strain during pulverization is quite large in the case of R-Fe-B. This becomes a big problem when cutting out small magnets such as rotor magnets for watch step motors from sintered blocks.

以上2つの理由、すなわち臨界半径の小さいこと、加工
歪の影響の大きいことが原因で、通常粉砕では、樹脂結
合型磁石ができながったわけである。保磁力を有する粉
末を得るなめには、参考文献2のように粒内にR2Fe
zB粒子を、多数有する粉末を作ればよい。しかし参考
文献2の急冷法は生産性に問題がある。また焼結後の粉
砕によりこの様な粉末を作ることは事実上不可能である
Due to the above two reasons, namely, the small critical radius and the large influence of processing strain, resin-bonded magnets cannot be produced by conventional crushing. In order to obtain powder with coercive force, R2Fe is added inside the grains as in Reference 2.
It is sufficient to produce a powder containing a large number of zB particles. However, the rapid cooling method of Reference 2 has a problem in productivity. Furthermore, it is virtually impossible to produce such a powder by pulverization after sintering.

何故なら、焼結中にも粒はある程度成長して大きくなる
ので、焼結前の粒度はその分を見込んでさらに小さくし
ておかなければならない、しかしそういった粒度では粉
末の酸素濃度が著しく高くなり期待するような性能は得
られない、そのため現状では焼結上がりのR2F e 
+aB相の粒度を10μm程度とするのが限界である。
This is because the grains grow to some extent and become larger during sintering, so the grain size before sintering must be made even smaller to account for this, but at such a grain size, the oxygen concentration in the powder becomes significantly high. It is not possible to obtain the expected performance, so currently sintered R2F e
The limit is that the particle size of the +aB phase is approximately 10 μm.

この程度の粒度では、粉砕後はほとんど保磁力を有しな
くなる。
With a particle size of this size, it hardly has any coercive force after being crushed.

そこで我々は、熱間加工による粒のfR細化を利用する
ことに着目した。鋳造上がりでR2Fe+*B相の粒径
を焼結るR−Fe−B磁石並にすることは比較的容易に
できる。そしてこのような粒度のFt2F’e+nB相
を有する鋳造ブロックを熱間加工して、粒を微細化・配
向させた後に粉砕するのである。この方法によれば樹脂
結合磁石粉末の粒度は20〜30μmであるから、粉末
中に多数のR2F”ezB粒子を含ませることができ、
保磁力を有する粉末が製造できる。さらにこの粉末は参
考文献2の急冷法のように等方性ではなく、磁場配向が
可能な粉末であるため異方性磁石とすることができる。
Therefore, we focused on utilizing fR refinement of grains by hot working. After casting, it is relatively easy to make the grain size of the R2Fe+*B phase comparable to that of a sintered R-Fe-B magnet. Then, a cast block having the Ft2F'e+nB phase having such a grain size is hot worked to refine and orient the grains, and then is crushed. According to this method, the particle size of the resin-bonded magnet powder is 20 to 30 μm, so a large number of R2F"ezB particles can be included in the powder,
Powders with coercive force can be produced. Further, this powder is not isotropic as in the quenching method of Reference 2, but is a powder that can be oriented in a magnetic field, so it can be made into an anisotropic magnet.

もちろんこのとき粉砕に水素粉砕を適用すれば、保磁力
はよりよく維持される。
Of course, if hydrogen pulverization is applied to the pulverization at this time, the coercive force can be better maintained.

以下、本発明による永久磁石の粗成形限定理由を説明す
る。希土類としては、Y、La、Ce、Pr、Nd、S
m、Eu、Gd、Tb、D3/、Mo、Eu、Tm、Y
b、Luが候補として挙げられ、このうちの1種あるい
は1種以上を組み合わせて用いられる。最も高い磁気性
能はPrで得られる。従って実用的にはPr、Nd、P
r−Nd合金、Ce−Pr−Nd合金等が用いられる。
The reasons for limiting the rough forming of the permanent magnet according to the present invention will be explained below. Rare earths include Y, La, Ce, Pr, Nd, and S.
m, Eu, Gd, Tb, D3/, Mo, Eu, Tm, Y
b, Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr. Therefore, Pr, Nd, P
An r-Nd alloy, a Ce-Pr-Nd alloy, etc. are used.

また小量の重希土元素Dy、Tb等は保磁力の向上に有
効である。R−Fe−B光磁石の主相はR2Fe+、B
である。従ってRが8原子%未満では、もはや上記化合
物を形成せずα鉄と同−構造の立方晶組織となるため高
磁気特性は得られない。−方Rが30原子%を越えると
非磁性のRrich相が多くなり磁気特性は著しく低下
する。よってTLの範囲は8〜30原子%が適当でる。
Further, small amounts of heavy rare earth elements Dy, Tb, etc. are effective in improving coercive force. The main phase of R-Fe-B photomagnet is R2Fe+, B
It is. Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and a cubic crystal structure having the same structure as α iron is formed, so that high magnetic properties cannot be obtained. - If R exceeds 30 atomic %, the nonmagnetic Rrich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range for TL is 8 to 30 atomic %.

しかし鋳造磁石とするため、好ましくはR8〜25原子
%が適当である。
However, in order to form a cast magnet, preferably R8 to 25 atomic % is appropriate.

Bは、R2Fe+<B相を形成するための必須元素であ
り、2原子%未満では菱面体の尾R−Fe系になるため
高保磁力は望めない、また28原子%を越えるとBに富
む非磁性相が多くなり、残留磁束密度は著しく低下して
くる。しかし鋳造磁石としてはB88原子以下がよく、
それ以上では特殊な冷却を施さないかぎり、微細なR2
Fe+J相を得ることができず、gA磁力は小さい。
B is an essential element for forming the R2Fe+<B phase, and if it is less than 2 atom%, it will become a rhombohedral tail R-Fe system, so high coercive force cannot be expected, and if it exceeds 28 atom%, it will become a B-rich non-B phase. As the magnetic phase increases, the residual magnetic flux density decreases significantly. However, for cast magnets, B88 atoms or less are good.
Above that, unless special cooling is applied, fine R2
The Fe+J phase could not be obtained and the gA magnetic force was small.

Coは水系磁石のキュリー点を増加させるのに有効な元
素であり、基本的にFeのサイトを置換しR2Co14
Bを形成するのだが、この化合物は結晶異方性磁界が小
さく、その量が増すにつれて磁石全体としての保磁力は
小さくなる。そのため永久磁石として考えられるI K
Oe以上の保磁力を与えるには50原子%以内がよい。
Co is an effective element for increasing the Curie point of water-based magnets, and basically replaces Fe sites to create R2Co14
B is formed, but this compound has a small crystal anisotropy magnetic field, and as the amount increases, the coercive force of the magnet as a whole becomes smaller. Therefore, IK can be considered as a permanent magnet.
In order to provide a coercive force of Oe or more, the content is preferably within 50 atomic %.

AIは参考文献4 1hangHaocai fl!!
ProceedinQS of the 8th In
ternational 14orkshopon R
are−Earth Magnet s、 1985.
 P541 4.:示されるよう保磁力の増大効果を有
している。同文献は焼結磁石に対する効果を示したもの
であるが、その効果は鋳造磁石でも同様に存在する。し
かしAlは非磁性元素であるため、その添加量を増すと
残留磁束密度が低下し、15原子%を越えるとハードフ
ェライト以下の残留磁束密度になってしまうので、希土
類磁石としての目的を果し得ない、よってAIの添加量
は15原子%以下がよい。
AI is reference 4 1hangHaocai fl! !
ProcedureinQS of the 8th In
international 14orkshopon R
are-Earth Magnets, 1985.
P541 4. : As shown, it has the effect of increasing coercive force. This document shows the effect on sintered magnets, but the same effect also exists on cast magnets. However, since Al is a non-magnetic element, increasing the amount added will reduce the residual magnetic flux density, and if it exceeds 15 at %, the residual magnetic flux density will be lower than that of hard ferrite, so it cannot fulfill its purpose as a rare earth magnet. Therefore, the amount of AI added is preferably 15 at % or less.

Cuは、参考文献5特開昭59−163803号等に示
されているように、これまで安価な鉄を使う時の不純物
元素として考えられてきた。しかし本発明に上る。鋳造
、熱間加工にかかわる製法では、Cuは保磁力の増大及
び熱間加工性の改善による磁気エネルギー積の向上に大
きな効果を有し、むしろ積極的に加えるべき元素となっ
ている。
Cu has been considered as an impurity element when using cheap iron, as shown in Reference 5 Japanese Patent Application Laid-open No. 59-163803. However, according to the present invention. In production methods involving casting and hot working, Cu has a great effect on increasing the magnetic energy product by increasing coercive force and improving hot workability, and is an element that should be actively added.

しかしCuは非磁性元素であるため、その添加量を増す
と残留磁束密度が低下するので6M子%以下がよい。
However, since Cu is a non-magnetic element, increasing the amount added lowers the residual magnetic flux density, so it is preferably 6 M% or less.

Gaは、焼結法では、参考文献6.遠藤実他(日本金属
冶金、昭和62年度春期講演会、講演番号(422))
に示されるように保磁力の増大効果を有する0本発明に
基づく製法においても同様な効果を有し、さらに熱間加
工性の改善による磁気エネルギー積の向上という効果が
付加される。
Ga is used in the sintering method as described in Reference 6. Minoru Endo et al. (Nippon Metal Yakiniku, 1985 Spring Lecture, Lecture number (422))
The manufacturing method based on the present invention, which has the effect of increasing coercive force as shown in Figure 1, has a similar effect, and has the additional effect of increasing the magnetic energy product due to improved hot workability.

しかしGaは非磁性元素であるため、その添加量を増す
と残留磁束密度が低下するので6原子%以下がよい。
However, since Ga is a non-magnetic element, increasing the amount added lowers the residual magnetic flux density, so it is preferably 6 at % or less.

〔実施例1〕 以下に本発明による製造法を説明する。[Example 1] The manufacturing method according to the present invention will be explained below.

まず所望の組成の合金を誘導炉で溶解し、鋳型に鋳造す
る。次に磁石に異方性を付与するために、各種の熱間加
工を施す0本実施例では、−船釣な鋳造法ではなく、特
殊鋳造法として急冷による結晶粒R細効果の大きな1i
quid dynaIIic coI′1pactiO
n法(参考文献7、T、 S、 Chin  他、J、
 Appl、 Phys、 59(4)、15 Feb
ruary1986.P1297 )を用いた。
First, an alloy with a desired composition is melted in an induction furnace and cast into a mold. Next, in order to impart anisotropy to the magnet, various types of hot working are performed.
quid dynaIIic coI'1pactiO
n method (Reference 7, T, S, Chin et al., J.
Appl, Phys, 59(4), 15 Feb.
ruary1986. P1297) was used.

本実施例では、熱間加工として■押し出し加工、■圧延
加工、■スタンプ加工、■プレス加工のいずれかを10
00℃で施した。押し出し加工については、等方向に部
が加えられるようにダイ側からも力が加わるよ工夫した
。圧延及びスタンプについては、極力ひずみ速度が小さ
くなるようにロール・スタンプの速度を調整した。いず
れの方法でも合金の押される方向に平行になるように結
晶の磁化容易軸は配向する。
In this example, any one of ■ extrusion processing, ■ rolling processing, ■ stamp processing, and ■ press processing is used as hot processing.
It was applied at 00°C. For the extrusion process, we devised a way to apply force from the die side so that parts are applied in the same direction. Regarding rolling and stamping, the speed of the roll and stamp was adjusted so that the strain rate was as low as possible. In either method, the axis of easy magnetization of the crystal is oriented parallel to the direction in which the alloy is pushed.

第1表の組成の合金を溶解し、第1図に示す方法で磁石
を作成した。ただし用いた熱間加工法は表中に併記した
。また熱間加工後のアニール処理はすべて1000℃X
24時間行った。
An alloy having the composition shown in Table 1 was melted and a magnet was produced by the method shown in FIG. However, the hot working method used is also listed in the table. In addition, all annealing treatments after hot processing are performed at 1000℃
I went for 24 hours.

第  1  表 次に結果を示す、参考データとして熱間加工を行なわな
い試料の残留磁束密度を示した。
Table 1 shows the results, and the residual magnetic flux density of the sample without hot working is shown as reference data.

第  2  表 第2表より、押し出し、ル延、スタンプ、プレスのすべ
ての熱間加工法で残留磁束密度が増加し磁気的に異方化
されたことがわかる。
Table 2 From Table 2, it can be seen that the residual magnetic flux density increased and magnetic anisotropy was achieved by all hot working methods of extrusion, rolling, stamping, and pressing.

(実施例2) ここでは、通常の鋳造法を用いた実施例を紹介する。ま
ず第3表のような組成を誘導炉で溶解鉄鋳型に鋳造し、
柱状晶を形成せしめる。加工率約50%以上の熱間加工
(本実施例ではプレス)を行った後、インゴットを磁気
的に破化さぜるため1000℃X24時間のアニール処
理を施した。
(Example 2) Here, an example using a normal casting method will be introduced. First, the composition shown in Table 3 is cast into a molten iron mold in an induction furnace.
Forms columnar crystals. After hot working (pressing in this example) at a processing rate of about 50% or more, an annealing treatment was performed at 1000° C. for 24 hours to magnetically break the ingot.

このときアニール後の平均粒径は約15μmであった。At this time, the average grain size after annealing was about 15 μm.

−8造タイプの場合は、熱間加工を行わず、所望形状に
加工すれば、柱状晶の異方性を利用した面内異方性磁石
となる。
In the case of the -8 structure type, if it is processed into a desired shape without hot working, it will become an in-plane anisotropic magnet that utilizes the anisotropy of columnar crystals.

第  3  表 次なる第4表に各組成に対して熱間加工をせずにアニー
ル処理したものと熱間加工後、アニール処理したものの
磁気特性を示す。
Table 3 and Table 4 show the magnetic properties for each composition, those obtained by annealing without hot working and those subjected to annealing after hot working.

第  4  表 ここで熱間加工によって(BH)max、1llCとも
大幅な増加を示している。これは加工より粒子が配向し
、B Hカーブの角形性が大幅に改善されたためである
。参考文献2の急冷法では、加工によりむしろiHcは
減る傾向にあり、iHcの大幅増加は本発明の大きな特
徴となっている。
Table 4 Here, both (BH)max and 1llC show a significant increase due to hot working. This is because the particles were oriented during processing and the squareness of the BH curve was greatly improved. In the quenching method of Reference 2, iHc tends to decrease due to processing, and the significant increase in iHc is a major feature of the present invention.

(実施例3) ここでは熱間加工後に粉砕して、樹脂結合化した実施例
を紹介する。実施例2の第3表のNo。
(Example 3) Here, we will introduce an example in which the material was crushed after hot processing and bonded with resin. No. in Table 3 of Example 2.

1.2.3.4.6.8.10、の試料をそれぞれ、ス
タンプミル・ディスクミルにて粒径的30μm(フィッ
シャーサブシープサイザーにて測定)にまで粉砕した。
Each sample of 1.2.3.4.6.8.10 was ground to a particle size of 30 μm (measured using a Fisher sub-seep sizer) using a stamp mill and a disc mill.

このとき粒内のR,FezBまたはR2(Feco )
14Bの粒径は2〜3μmであった。こうして出来た1
0種類の粉末のうち、No、1.3.4.8の粉末はそ
のままエポキシ樹脂2重1%と混練後、磁場成形・焼成
した。またN002.6、工0の粉末はシランカヅプリ
ン剤処理を行った後、堆積比で6:4の割合でナイロン
12と約250℃で混練した後、射出形成した。結果を
以下の第5表に示す。
At this time, R, FezB or R2 (Feco) in the grain
The particle size of 14B was 2-3 μm. This is how it was made 1
Among the powders of type 0, powders No. 1, 3, 4, and 8 were kneaded as they were with 1% double weight epoxy resin, followed by magnetic field molding and firing. Further, the N002.6, No. 0 powder was treated with a silane kadupurin agent and then kneaded with nylon 12 at a deposition ratio of 6:4 at about 250° C., followed by injection molding. The results are shown in Table 5 below.

第  5  表 〔実 施 例〕 実施例2における第3表に示した試料No、2.3.4
.6.8、TOを60℃×95%恒温度槽内にて耐候性
試験を行った。第6表にその結果を示す。
Table 5 [Example] Sample No. 2.3.4 shown in Table 3 in Example 2
.. 6.8. A weather resistance test was conducted on TO in a constant temperature bath at 60°C x 95%. Table 6 shows the results.

第  6  表 〔発明の効果〕 以−L述べたように本発明によれば、従来の焼結法のよ
うにインゴットを粉砕することなく、熱処理をするだけ
で保磁力を得ることができる。また熱間加工も急冷法の
ように2段階でなく、−段階でよく、その効果には単な
る異方性化効果だけでなく、保磁力の増大効果もある。
Table 6 [Effects of the Invention] As described below, according to the present invention, coercive force can be obtained only by heat treatment without pulverizing the ingot as in the conventional sintering method. Further, the hot working can be done in -steps instead of in two steps as in the quenching method, and the effect is not only an anisotropy effect but also an increase in coercive force.

このような特徴から、従来の焼結法、急冷法に比し、製
造工程が大きく単純化できる。さらに熱間加工後試料の
粉砕によれば異方性樹脂結合磁石も製造できる。
Due to these characteristics, the manufacturing process can be greatly simplified compared to conventional sintering methods and rapid cooling methods. Furthermore, an anisotropic resin bonded magnet can also be produced by crushing the sample after hot working.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種)8原子%〜30原子%、ボロン(B)2原子
%〜28原子%、Co50原子%以下、Al15原子%
以下、Cu6原子%以下、Ga6原子%以下及び残部が
鉄及びその他の製造上不可避な不純物からなる合金を溶
解および鋳造後、該鋳造インゴットを500℃以上の温
度で熱間加工することにより結晶粒を微細化しまたその
結晶軸を特定の方向に配向せしめて、該鋳造合金を磁気
的に異方性化することを特徴とする希土類−鉄系永久磁
石。
(1) R (R is at least one rare earth element including Y) 8 at% to 30 at%, boron (B) 2 to 28 at%, Co 50 at% or less, Al 15 at%
Hereinafter, after melting and casting an alloy consisting of Cu 6 atomic % or less, Ga 6 atomic % or less, and the balance being iron and other impurities unavoidable in manufacturing, the cast ingot is hot worked at a temperature of 500°C or higher to obtain crystal grains. 1. A rare earth-iron permanent magnet characterized by making the cast alloy magnetically anisotropic by refining the alloy and orienting its crystal axis in a specific direction.
(2)R(ただしRはYを含む希土類元素のうち少なく
とも1種)8原子%〜25原子%、ボロン(B)2原子
%〜8原子%、Co50原子%以下、Al15原子%以
下、Cu6原子%以下、Ga6原子%以下及び残部が鉄
及びその他の製造上不可避な不純物からなり、250℃
以上の温度で熱処理することにより、磁気的に硬化する
鋳造磁石合金を使用することを特徴とする特許請求の範
囲第1項記載の希土類−鉄系永久磁石。
(2) R (R is at least one rare earth element including Y) 8 at% to 25 at%, boron (B) 2 at% to 8 at%, Co 50 at% or less, Al 15 at% or less, Cu6 atomic% or less, Ga 6 atomic% or less, and the balance consists of iron and other impurities unavoidable during manufacturing, at 250°C
The rare earth-iron permanent magnet according to claim 1, characterized in that a cast magnet alloy is used which is magnetically hardened by heat treatment at a temperature above.
(3)熱間加工により粒子が微細化する性質を利用し、
樹脂結合のための粉砕を施した後にも各粉末内に、磁性
相R_2Fe_1_4B粒子を複数個、含むような粉末
を作製し、有機バインダーとともに混練、硬化させて、
樹脂結合磁石とすることを特徴とする特許請求の範囲第
1項記載の希土類−鉄系永久磁石。
(3) Utilizing the property that particles become finer through hot processing,
After pulverization for resin bonding, each powder contains a plurality of magnetic phase R_2Fe_1_4B particles, and is kneaded and hardened with an organic binder.
A rare earth-iron permanent magnet according to claim 1, which is a resin-bonded magnet.
JP62335682A 1987-12-28 1987-12-28 Rare earth-iron permanent magnet manufacturing method Expired - Lifetime JP2631380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335682A JP2631380B2 (en) 1987-12-28 1987-12-28 Rare earth-iron permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335682A JP2631380B2 (en) 1987-12-28 1987-12-28 Rare earth-iron permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01175206A true JPH01175206A (en) 1989-07-11
JP2631380B2 JP2631380B2 (en) 1997-07-16

Family

ID=18291322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335682A Expired - Lifetime JP2631380B2 (en) 1987-12-28 1987-12-28 Rare earth-iron permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2631380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276803A (en) * 1985-08-13 1987-12-01 Seiko Epson Corp Rare earth-iron permanent magnet
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276803A (en) * 1985-08-13 1987-12-01 Seiko Epson Corp Rare earth-iron permanent magnet
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64704A (en) * 1987-03-02 1989-01-05 Seiko Epson Corp Rare earth-iron system permanent magnet

Also Published As

Publication number Publication date
JP2631380B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US5597425A (en) Rare earth cast alloy permanent magnets and methods of preparation
JPH01704A (en) Rare earth-iron permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPS62276803A (en) Rare earth-iron permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JPH07176418A (en) High-performance hot-pressed magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH01175206A (en) Rare-earth element-iron-based permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPS63213317A (en) Rare earth iron permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPS63213322A (en) Rare earth iron permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH023210A (en) Permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63213323A (en) Rare earth iron permanent magnet
EP0599815B1 (en) Magnetic alloy and method of making the same
JPH01105503A (en) Rare earth-fe permanent magnet
JPH01175209A (en) Manufacture of permanent magnet