JPH0117074B2 - - Google Patents

Info

Publication number
JPH0117074B2
JPH0117074B2 JP56073721A JP7372181A JPH0117074B2 JP H0117074 B2 JPH0117074 B2 JP H0117074B2 JP 56073721 A JP56073721 A JP 56073721A JP 7372181 A JP7372181 A JP 7372181A JP H0117074 B2 JPH0117074 B2 JP H0117074B2
Authority
JP
Japan
Prior art keywords
container
firing
silicone resin
graphite
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073721A
Other languages
Japanese (ja)
Other versions
JPS57188822A (en
Inventor
Yoshio Enoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56073721A priority Critical patent/JPS57188822A/en
Publication of JPS57188822A publication Critical patent/JPS57188822A/en
Publication of JPH0117074B2 publication Critical patent/JPH0117074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は基板上に塗布された化合物半導体薄膜
を焼結させる際に用いて最適な焼成用容器に関す
るものであり、特に比較的大面積の基板を熱処理
する場合にその効果を発揮するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintering container that is most suitable for use in sintering a compound semiconductor thin film coated on a substrate. It is effective.

化合物半導体、たとえばCdSやCdTeなどの焼
結膜は単独で、或は複合層として光導電素子、光
増幅器、光起電力素子などに用いられる。このよ
うな焼結膜は通常CdSなどの高純度微粉末を融剤
としてのCdCl2やその他の微量添加物とともにガ
ラス磁器基板上に塗布、乾燥したのち、N2など
の不活性ガスを主体とした雰囲気中で焼成して作
られる。この場合、融剤としてのCdCl2は高温で
は揮発性があり、雰囲気中のCdCl2濃度が得られ
た焼結膜の性質を左右するので、焼成は通常容器
中で行なわれる。
Sintered films of compound semiconductors, such as CdS and CdTe, are used alone or as composite layers in photoconductive devices, optical amplifiers, photovoltaic devices, and the like. Such sintered films are usually made by coating a high-purity fine powder such as CdS on a glass porcelain substrate together with CdCl 2 as a fluxing agent and other trace additives, drying it, and then applying an inert gas such as N 2 as the main component. It is made by firing in an atmosphere. In this case, the calcination is usually carried out in a container, since CdCl 2 as a flux is volatile at high temperatures and the CdCl 2 concentration in the atmosphere influences the properties of the resulting sintered film.

このような焼成容器としては従来、緻密なアル
ミナ磁器で作られた容器が一般に用いられてい
た。それはアルミナ磁器は焼結膜の特性を損う不
純物が少いこと、腐食性の強いCdCl2蒸気に耐え
ること、空孔率が小さく、汚染されにくいことな
どの理由による。
Conventionally, containers made of dense alumina porcelain have generally been used as such firing containers. This is because alumina porcelain has fewer impurities that impair the properties of the sintered film, can withstand highly corrosive CdCl 2 vapor, has a small porosity, and is less susceptible to contamination.

しかし、基板の寸法が300〜500mm以上の大型基
板を焼成したい場合には、アルミナ磁器製容器に
は次のような大きな問題が発生する。まず、その
ような焼成容器を作ること自体極めて難しく、非
常に高価なものとなる。しかし更に根本的な問題
は、アルミナ磁器が耐熱衝撃性が小さいため、加
熱による破損を避けるためには昇温速度を極端に
遅くせざるを得ず、トンネル炉による焼成の場
合、焼結膜の特性と生産性の両面において相当の
制約を受けるということである。またアルミナ磁
器は熱伝達性が小さいため、容器が大型になると
内部の昇温の遅れが甚しく、焼成すべき基板に精
度の良い熱処理を加えることが難しいばかりでな
く、基板の中央部と周辺部とで甚だしい焼成むら
が起り、特性の不均一となつてあらわれることも
大きな問題である。そのほか容器の寸法精度をあ
げにくいとか、重量が大となり、取扱いにくいと
いうような問題も発生する。
However, when it is desired to fire a large substrate with dimensions of 300 to 500 mm or more, the following major problems occur with the alumina porcelain container. First, making such a firing container itself is extremely difficult and extremely expensive. However, a more fundamental problem is that alumina porcelain has low thermal shock resistance, so the temperature increase rate must be extremely slow to avoid damage due to heating, and when firing in a tunnel furnace, the characteristics of the sintered film This means that there are considerable constraints in terms of both productivity and productivity. In addition, alumina porcelain has low heat conductivity, so when the container becomes large, there is a significant delay in temperature rise inside the container, which not only makes it difficult to apply accurate heat treatment to the substrate to be fired, but also makes it difficult to heat the substrate in the center and surrounding areas. Another major problem is that severe unevenness in firing occurs between parts, resulting in non-uniform properties. Other problems arise, such as difficulty in improving the dimensional accuracy of the container, and the increased weight of the container, making it difficult to handle.

本発明はこのような点に鑑みて成されたもので
あり、上記した問題点を除去した焼成用容器を提
供するものである。本発明の焼成用容器は黒鉛を
用いて作られており、さらにその表面の必要部分
にはケイ素樹脂の炭化物の薄膜が設けられている
ことを特徴とするものである。この薄膜が目的と
するところは、黒鉛微粉の脱落による半導体焼結
膜の汚染の防止と焼成用容器の耐久性の向上にあ
る。本発明の焼成用容器の形状は図面にその断面
を示すように、浅い箱形の容器1と、それにゆる
く嵌合する蓋2より成る。蓋2には必要により1
個またはそれ以上の細孔3を設ける。また4はケ
イ素樹脂炭化物薄膜であつて、容器の内部底面を
除く全表面を被覆した例を示す。5は焼成用基板
である。この場合、容器1の内部底面は焼成用基
板5でそのほとんどが覆われてしまうので、ケイ
素樹脂炭化物薄膜4で内部底面が被覆されていな
くても、焼成用基板5の上面に形成されている化
合物半導体薄膜などが汚染されるようなことはな
い。黒鉛は熱伝導性、耐熱衝撃性ともアルミナ磁
器にくらべ桁ちがいに大きく、また硬度が高くな
いため機械加工は容易で寸法精度も出しやすく、
更にCdCl2などに対する耐蝕性も大きいというす
ぐれた特長をもつている。また耐酸化性について
もCdSの焼成が行なわれる600℃程度までは十分
あるが、通常CdS焼成はN2を主体とするガス中
で行なわれるため全く問題は起らない。しかし、
黒鉛の容器は取扱いの際に微粉が付着したり加
熱・冷却の過程で微粉が脱落したりする危険を伴
うので、本発明のケイ素樹脂炭化物の被覆がこの
ような問題発生防止に極めて有効である。
The present invention has been made in view of these points, and it is an object of the present invention to provide a baking container that eliminates the above-mentioned problems. The firing container of the present invention is made of graphite, and is further characterized in that a thin film of carbide of silicone resin is provided on necessary portions of its surface. The purpose of this thin film is to prevent contamination of the semiconductor sintered film due to shedding of fine graphite powder and to improve the durability of the firing container. The shape of the baking container of the present invention, as shown in its cross section in the drawing, consists of a shallow box-shaped container 1 and a lid 2 that fits loosely therein. 1 for lid 2 as necessary
or more pores 3 are provided. Reference numeral 4 shows an example in which a silicone resin carbide thin film covers the entire surface of the container except for the inner bottom surface. 5 is a substrate for firing. In this case, most of the internal bottom surface of the container 1 is covered with the baking substrate 5, so even if the internal bottom surface is not covered with the silicone resin carbide thin film 4, it is formed on the top surface of the baking substrate 5. There is no possibility of contamination of compound semiconductor thin films. Graphite has much higher thermal conductivity and thermal shock resistance than alumina porcelain, and because it is not hard, it is easy to machine and achieve dimensional accuracy.
Furthermore, it has the excellent feature of high corrosion resistance against substances such as CdCl 2 . In addition, the oxidation resistance is sufficient up to about 600°C, which is the temperature at which CdS is fired, but normally CdS is fired in a gas mainly composed of N2 , so no problems occur. but,
Graphite containers carry the risk of fine powder adhering to them when handled or falling off during heating and cooling processes, so the silicone resin carbide coating of the present invention is extremely effective in preventing such problems from occurring. .

本発明の焼成用容器は黒鉛ブロツクからの機械
的加工によるほか、コークス微粒子とピツチとの
〓合物を加圧成型したのち、焼成、ピツチ含浸、
焼成、黒鉛化したのち、表面被覆する方法によつ
ても製造することが出来る。
The baking container of the present invention is produced not only by mechanical processing from a graphite block, but also by pressure-molding a mixture of fine coke particles and pitch, followed by baking, pitch impregnation, and so on.
It can also be produced by a method in which the surface is coated after firing and graphitizing.

ケイ素樹脂炭化物による被覆する方法として
は、アルキルシロキサン系やフエニルシロキサン
系のケイ素樹脂の有機溶剤による希薄溶液を塗布
するが、溶液中に黒鉛製容器を浸漬したのち乾燥
し、硬化に必要な温度に加熱し、次に窒素などの
不活性雰囲気中で、800℃ないし1200℃程度の高
温で熱処理することが推奨される。このような処
理により、黒鉛表面に炭素、ケイ素および酸素を
主成分とするシリコカーボンと呼ばれるケイ素樹
脂の炭化物の薄膜が形成されると、容器に接触し
た時、黒鉛微粉末が付着したり、また、加熱・冷
却の過程で黒鉛微粉末が脱落したりすることは全
くなくなる。なお、ケイ素樹脂炭化物薄膜は膜厚
が極めて小さくても十分その効果を発揮する。ま
たこのような処理により、黒鉛の表面層の気孔が
ケイ素樹脂炭化物で充填されるため、焼成中に発
生するCdCl2蒸気が空孔中に拡散し、蓄積するの
を軽減することが出来る。
The method of coating with silicone resin carbide is to apply a dilute solution of alkylsiloxane-based or phenylsiloxane-based silicone resin in an organic solvent, but after immersing a graphite container in the solution, it is dried and then heated to the temperature required for curing. It is recommended to heat the material to 800°C to 1200°C in an inert atmosphere such as nitrogen. Through such treatment, a thin film of carbide of silicon resin called silicocarbon, whose main components are carbon, silicon, and oxygen, is formed on the graphite surface, and when it comes into contact with the container, fine graphite powder may adhere or This eliminates the possibility of fine graphite powder falling off during the heating and cooling process. Note that even if the silicone resin carbide thin film has an extremely small thickness, it can sufficiently exhibit its effects. Furthermore, by such treatment, the pores in the surface layer of graphite are filled with silicone resin carbide, so that it is possible to reduce the diffusion and accumulation of CdCl 2 vapor generated during firing into the pores.

次に、本発明の一実施例について述べる。 Next, an embodiment of the present invention will be described.

空孔率15%、灰分含有率1200ppmの黒鉛ブロツ
クを機械加工して外形寸法が360×360×45mmで、
図面に示すような形状とした。次にケイ素樹脂ワ
ニス(トーレ・シリコーン(株)製、SH805)をキシ
レンで希釈し、樹脂分が5%としたものを上記の
容器の表面に薄く塗布し、120℃で1時間乾燥し
たのち、温度を250℃に上げさらに2時間加熱し
た。次にこれを窒素ガス中で徐々に昇温し、1100
℃で2時間保つたのち冷却し、図面と同一の構造
の焼成用容器を作製した。
Machined from a graphite block with a porosity of 15% and an ash content of 1200ppm, the external dimensions are 360 x 360 x 45 mm.
The shape was as shown in the drawing. Next, silicone resin varnish (manufactured by Toray Silicone Co., Ltd., SH805) was diluted with xylene, and a resin content of 5% was applied thinly to the surface of the container, and after drying at 120°C for 1 hour, The temperature was raised to 250°C and heated for an additional 2 hours. Next, gradually raise the temperature in nitrogen gas to 1100
After being kept at ℃ for 2 hours, it was cooled to produce a firing container having the same structure as the drawing.

次に、99.99%の純度のCdS微粉末100g、
CdCl210g、プロピレングリコール30gよりなる
ペーストをスクリーン印刷法により300×300×3
mmのホウケイ酸ガラス基板上に塗布し、120℃で
3時間乾燥した。この基板を上記の焼成用容器に
入れ、全長4mのトンネル炉を通過させた。最高
温度は650℃、雰囲気はN299%、O21%であつた。
この焼成条件により得られたCdS焼結膜は黄色半
透明であり、導電性が大きくCdS−Cu2S系およ
びCdS−CdTe系太陽電池用として適することが
わかつた。
Next, 100g of CdS fine powder with 99.99% purity,
A paste consisting of 10 g of CdCl 2 and 30 g of propylene glycol was printed 300 x 300 x 3 using the screen printing method.
It was coated on a borosilicate glass substrate (mm) and dried at 120°C for 3 hours. This substrate was placed in the above-mentioned firing container and passed through a tunnel furnace having a total length of 4 m. The maximum temperature was 650°C, and the atmosphere was 99% N 2 and 1% O 2 .
It was found that the CdS sintered film obtained under these firing conditions was yellow and semitransparent, had high conductivity, and was suitable for use in CdS-Cu 2 S-based and CdS-CdTe-based solar cells.

比較のため上記実施例において、ケイ素樹脂炭
化物被覆を行なわず他は実施例と同一条件とした
場合には、容器の取扱いの際に手が黒く汚れ、ま
た得られたCdS焼結膜の面にはところどころに褐
色や黒色の斑点があらわれ、その部分は光透過率
や導電性が不十分で上記の太陽電池用として適当
でないことがわかつた。
For comparison, in the above example, when the silicone resin carbide coating was not performed and the other conditions were the same as in the example, hands were stained black when handling the container, and the surface of the obtained CdS sintered film was Brown or black spots appeared here and there, and it was found that these areas had insufficient light transmittance and conductivity, and were therefore unsuitable for the above-mentioned solar cell.

以上の説明から明らかなように本発明による焼
成用容器を用いることにより、大面積ですぐれた
特性の化合物半導体薄膜が得られる。なお、上記
実施例においてはCdS膜の焼成について記したが
本発明の焼成用容器はCdSe、CdTe、ZnS、
ZnSeあるいはそれらの固溶体についても同様に
適用することができる。
As is clear from the above description, by using the firing container according to the present invention, a compound semiconductor thin film with a large area and excellent properties can be obtained. In addition, although the above embodiment describes the firing of CdS film, the firing container of the present invention can be used for CdSe, CdTe, ZnS,
The same can be applied to ZnSe or solid solutions thereof.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の焼成用容器の一実施例を示す断
面図である。 1……容器本体、2……蓋、3……小孔、4…
…ケイ素樹脂の炭化物の薄膜、5……焼成すべき
基板。
The drawing is a sectional view showing one embodiment of the baking container of the present invention. 1... Container body, 2... Lid, 3... Small hole, 4...
... Thin film of carbide of silicone resin, 5 ... Substrate to be fired.

Claims (1)

【特許請求の範囲】[Claims] 1 黒鉛よりなる浅い箱形の容器と、この容器に
ゆるく嵌合する同材質の蓋とからなり、前記容器
の内部底面を除く内壁面および外壁面と、前記蓋
の内側表面および外側表面とが、ケイ素樹脂の炭
化物の薄膜で被膜されていることを特徴とする焼
成用容器。
1 Consisting of a shallow box-shaped container made of graphite and a lid made of the same material that fits loosely into the container, the inner and outer wall surfaces of the container, excluding the inner bottom surface, and the inner and outer surfaces of the lid are , a firing container characterized by being coated with a thin film of silicone resin carbide.
JP56073721A 1981-05-15 1981-05-15 Vessel for baking Granted JPS57188822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56073721A JPS57188822A (en) 1981-05-15 1981-05-15 Vessel for baking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56073721A JPS57188822A (en) 1981-05-15 1981-05-15 Vessel for baking

Publications (2)

Publication Number Publication Date
JPS57188822A JPS57188822A (en) 1982-11-19
JPH0117074B2 true JPH0117074B2 (en) 1989-03-28

Family

ID=13526365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56073721A Granted JPS57188822A (en) 1981-05-15 1981-05-15 Vessel for baking

Country Status (1)

Country Link
JP (1) JPS57188822A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228395Y2 (en) * 1981-06-15 1990-07-30
JPH07116715B2 (en) * 1992-01-10 1995-12-13 建設省北陸地方建設局長 Retaining wall construction method

Also Published As

Publication number Publication date
JPS57188822A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
US4426769A (en) Moisture getter for integrated circuit packages
US4846163A (en) Method of sealing capacitor bushings
KR850000706B1 (en) Method of providing a metal component with a thermally black surface
US2993814A (en) Heating conductor and method of making the same
JPS5928362A (en) Ceramic structure
US3253331A (en) Glass-metallizing technique
JP5741921B2 (en) Substrate processing apparatus, method for forming coating film on surface of reaction tube used in substrate processing apparatus, and method for manufacturing solar cell
US3833387A (en) Ceramic coating of high thermal expansion coefficient for thermoelectric materials
JPH0117074B2 (en)
JPH0228395Y2 (en)
US6054187A (en) Method of manufacturing a boron carbide film on a substrate
JP2004200462A (en) Electrostatic chuck and manufacturing method therefor
US4623556A (en) Method of forming a continuous glass coating over the surface of an electrical device
CA1040984A (en) Method for passivating chromium
US3617376A (en) Antisublimation coating and method for thermoelectric materials
US3605999A (en) Insulative coated metal substrates and apparatus for holding substrates
JPH0679444B2 (en) Electric film
US3806362A (en) Coating for thermoelectric materials
US3808044A (en) Production of defined surface resistance in ceramic bodies
US3499782A (en) Substrate protective oxidized coating process
US5352492A (en) Annealing process
KR940007272B1 (en) Jig for heat treatment
CN218025871U (en) Graphite assembly
JPH0543195B2 (en)
KR102088009B1 (en) Thermoelectric composite material and preparation method thereof