JPH01170361A - Power machine utilizing permanent magnet - Google Patents

Power machine utilizing permanent magnet

Info

Publication number
JPH01170361A
JPH01170361A JP32787587A JP32787587A JPH01170361A JP H01170361 A JPH01170361 A JP H01170361A JP 32787587 A JP32787587 A JP 32787587A JP 32787587 A JP32787587 A JP 32787587A JP H01170361 A JPH01170361 A JP H01170361A
Authority
JP
Japan
Prior art keywords
permanent magnets
magnets
magnetic
force
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32787587A
Other languages
Japanese (ja)
Inventor
Akiyoshi Yamamoto
晃義 山本
Toshitatsu Kure
久礼 俊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATLAS YOKO KK
Original Assignee
ATLAS YOKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATLAS YOKO KK filed Critical ATLAS YOKO KK
Priority to JP32787587A priority Critical patent/JPH01170361A/en
Publication of JPH01170361A publication Critical patent/JPH01170361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To provide power having high energy efficiency by utilizing a combination of a repelling force by the facing the same polarity poles of permanent magnets and a magnetic shield as the power. CONSTITUTION:A rotary disc 4 is rotatably supported around a vertical axial center (a) to a stationary coordinates 5. A plurality of rodlike permanent magnets 2 are secured at an equal interval in a rotating direction to the periphery of the disc 4. Further, rodlike permanent magnets 1 are positioned fixedly (by stationary magnets) at the same interval of rotating direction as that of the magnets 2 (movable magnets) at the side of the disc 4 on the stationary seat plate 5 on the outer periphery of the disc 4. The magnets 2, 1 form a repelling magnetic field, the same polarity poles faces, and facing distances are variably increased or decreased upon rotation of the disc 4. A rotatably annularly magnetic shield 3 formed with a through hole so interposed at the opposite centers of both the magnets 1 and 2 is provided. Thus, the shield 3 is coupled through a transmission tool 8 to a motor 7 mounted on the plate 5 outside the disc 4, and rotated at a predetermined rotating speed to be rotated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、永久磁石の磁気特性の1つである同極反発
力を回転力や往復運動力として取出す、さらには往復運
動力を回転力に変換して取出すように構成した永久磁石
利用の動力機に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention extracts homopolar repulsion, which is one of the magnetic properties of permanent magnets, as rotational force or reciprocating force, and further converts reciprocating force into rotational force. This invention relates to a power machine that uses permanent magnets and is configured to be converted into a permanent magnet and taken out.

(従来の技術) 永久磁石の持つ磁気特性である同極反発力、異極限着力
を利用して回転や往復運動のエネルギーを得る動力機の
研究開発は近年類に盛んである。
(Prior Art) Research and development of power machines that obtain rotational and reciprocating energy by utilizing the magnetic properties of permanent magnets, such as homopolar repulsion and different polar adhesion, have been active in recent years.

それは、永久磁石として例えば希土類磁石のように高保
磁力で、かつ磁束密度の大きなものが開発されているこ
とに大きな要因がある。
This is largely due to the development of permanent magnets with high coercive force and large magnetic flux density, such as rare earth magnets.

第11図(A)〜(C)に示すものは、永久磁石の吸着
特性と反発特性とを組合せて永久磁石の磁力を回転力に
変換する回転動力機として、例えば日刊工業新聞社発行
の〃トリガー//1987年4月号の50頁〜51頁に
掲載されたものの回転の原理説明図である。同図におい
て、(21)は回転盤、(22)は棒状の永久磁石で、
この永久磁石(22)は上記回転盤(21)の周部の内
側に等しい回転角を隔てて複数個取付けている。(23
)も棒状の永久磁石で、この永久磁石(23)は上記回
転盤(21)の外周の固定台座に、その内側の極が上記
回転盤(21)側の棒状永久磁石(22)の外側の極と
同極になるように固定保持されている。(24)は鉄な
どの吸着板で、この吸着板(24)は上記回転盤(21
)側の棒状永久磁石(22)と固定の棒状永久磁石(2
3)との内外対向極間の中間位置に介在されているとと
もに、この吸着板(24)に対して180°の回転角を
隔てた対向位置に配したセンサー(25)の感知動作に
応答して、ソレノイドなどの外部電動装置により上記両
枠状永久磁石(22) 、(23)間から下方などに退
避移動される。
The machines shown in Figures 11 (A) to (C) are rotary power machines that combine the attraction and repulsion characteristics of permanent magnets to convert the magnetic force of permanent magnets into rotational force. //This is a diagram explaining the principle of rotation as published on pages 50 to 51 of the April 1987 issue. In the figure, (21) is a rotary disk, (22) is a rod-shaped permanent magnet,
A plurality of permanent magnets (22) are attached to the inside of the circumference of the rotary disk (21) at equal rotation angles. (23
) is also a rod-shaped permanent magnet, and this permanent magnet (23) is mounted on a fixed pedestal on the outer periphery of the rotary disk (21), and its inner pole is connected to the outer pole of the rod-shaped permanent magnet (22) on the rotary disk (21) side. It is held fixed so that it is the same pole as the pole. (24) is a suction plate made of iron or the like, and this suction plate (24) is the rotary disk (21).
) side bar-shaped permanent magnet (22) and the fixed bar-shaped permanent magnet (2
3), and responds to the sensing operation of a sensor (25) placed at a position facing the suction plate (24) at a rotation angle of 180°. Then, it is retracted downward from between the frame-shaped permanent magnets (22) and (23) by an external electric device such as a solenoid.

次に、上記構成の回転動力機の回転動作について説明す
る。
Next, the rotational operation of the rotary power machine having the above configuration will be explained.

まず、第11図(A)に示す状態において、回転!(2
1)上の棒状永久磁石(22)が吸着板(24)の吸引
力によって矢印(a)方向に回転し始める。この回転に
より第11図(8)のように、両永久磁石(22)、 
(23)の内外同極が向き合う形になると、同極反発力
の影響で吸引力が減少し、これにより回転盤(21)が
惰性で吸着板(24)の所を通過しようとする。その瞬
間にセンサー(25)の感知動作にもとづいて上記吸着
板(4)が退避移動するため、上記両永久磁石(22)
、 (23)の同極が対向することになり、これによっ
て第11図(C)で示すように、磁気反発力が作用して
回転!(21)が矢印(a)方向に加速回転される。以
上の繰返しによって回転盤(21)が゛−力方向連続回
転するのである。
First, in the state shown in FIG. 11(A), rotate! (2
1) The upper rod-shaped permanent magnet (22) begins to rotate in the direction of arrow (a) due to the attraction force of the attraction plate (24). Due to this rotation, as shown in FIG. 11 (8), both permanent magnets (22),
When the inner and outer poles of (23) face each other, the attraction force decreases due to the influence of the same pole repulsion force, and as a result, the rotary disk (21) attempts to pass the suction plate (24) due to inertia. At that moment, the suction plate (4) is retracted based on the sensing operation of the sensor (25), so that both the permanent magnets (22)
, (23) will face each other, and as a result, as shown in Figure 11 (C), magnetic repulsion will act and rotate! (21) is accelerated and rotated in the direction of arrow (a). By repeating the above steps, the rotary disk (21) is continuously rotated in the -force direction.

[発明が解決しようとする問題点1 以上のように構成された従来の永久磁石利用の回転動力
機においては、回転盤(21)の連続回転を可能とする
ために永久磁石(22)、 (23)の同極対向による
反発力にて所定の回転方向の回転分力を得る(以下、反
発モードと称す)前の過程で、上記永久磁石(22)、
 (23)の同極対向による反発力にて発現される逆方
向の回転分力に打ち勝って、所定の回転方向の回転分力
が得られるような同極対向姿勢にまで回転させる手段が
必要であり、そのための手段として上記の従来例では、
鉄などの吸着板(24)を両永久磁石(22)、 (2
3)の内外対向極間の中間に介挿させるといった手段(
以下、吸引モードと称す)が採られている訳である。
[Problem to be Solved by the Invention 1] In the conventional rotary power machine using permanent magnets configured as described above, permanent magnets (22), (23) are used to enable continuous rotation of the rotary disk (21). ), the permanent magnet (22),
(23) A means is needed to overcome the rotational force in the opposite direction expressed by the repulsive force due to the same polarity and rotate it to the same polarity facing position where a rotational force in a predetermined rotational direction can be obtained. In the above conventional example, as a means for that purpose,
An adsorption plate (24) made of iron or the like is attached to both permanent magnets (22), (2
3) by inserting it between the inner and outer facing poles (
This is why a mode (hereinafter referred to as suction mode) is adopted.

ところで、永久磁石の磁力は距離の2乗に反比例すると
いう磁気特性があり、これは反発力、吸引力のいずれも
ほぼ同等である。この点から上記構成をもつ従来例のも
のをみてみると、吸引モードにおいて回転盤(21)側
の永久磁石(22)と吸着板(24)との距離が両永久
磁石(22)、 (23)の極間距離よりも小さく、こ
の距離からだけの判断では上記磁気特性により吸引力が
得られると考えられるが、実際にはその吸引力を1qる
ための一方の物質、つまり吸着板は永久磁石でなく、鉄
など磁場の中におかれた場合に磁気感応を起こして磁化
する常磁性材料であり、他方永久磁石は大きな磁気感応
を示し、磁場を取除いてもそのまま磁化が残留する硬質
磁性材料であり、かつ磁荷の強さも鉄などの常磁性材料
に比べて遥かに大きい。殊に、近年開発されたNd系の
希土類磁石の磁荷の強さは強大である。
By the way, the magnetic force of a permanent magnet has a magnetic property that is inversely proportional to the square of the distance, and this means that both the repulsive force and the attractive force are almost the same. Looking at the conventional example with the above configuration from this point of view, in the attraction mode, the distance between the permanent magnet (22) on the rotary disk (21) side and the adsorption plate (24) is ) is smaller than the distance between the poles of It is not a magnet, but a paramagnetic material such as iron that causes a magnetic response and becomes magnetized when placed in a magnetic field.On the other hand, a permanent magnet is a hard material that exhibits a large magnetic sensitivity and remains magnetized even when the magnetic field is removed. It is a magnetic material, and the strength of its magnetic charge is far greater than that of paramagnetic materials such as iron. In particular, Nd-based rare earth magnets developed in recent years have a strong magnetic charge.

そのため、磁力といった機械的力が上述のように距離の
2乗に反比例するのみでなく、磁荷の強さに比例するこ
とを考え合わせてみると、吸引モードにおいて回転盤(
21)を永久磁石(22)、 (23)間の反発力に打
ち勝って、所定の方向に回転させるのは相当に困難であ
る。
Therefore, considering that the mechanical force such as magnetic force is not only inversely proportional to the square of the distance as mentioned above, but also proportional to the strength of the magnetic charge, in the attraction mode the rotary disk (
It is quite difficult to overcome the repulsive force between the permanent magnets (22) and (23) and rotate the magnet (21) in a predetermined direction.

また、上記吸着板(24)の構成材料として使用される
常磁性材料の代表例である所の鉄は導電率の高い導体で
あり、これが変化しつつある磁界中に存在するため、吸
着板(24)内に電磁誘導によってうず電流を生じ、こ
れが永久磁石(22)、即ち回転盤(2t)の回転を妨
げるような力として作用することになる。
In addition, iron, which is a typical example of the paramagnetic material used as the constituent material of the suction plate (24), is a conductor with high electrical conductivity, and since it exists in a changing magnetic field, the suction plate (24) An eddy current is generated within the permanent magnet (24) by electromagnetic induction, and this acts as a force that prevents the rotation of the permanent magnet (22), that is, the rotary disk (2t).

さらに、上記吸着板(24)を2つの永久磁石(22)
、 (23)の同極が最も近接対向した時点で退避移動
させることによって反発モードに切替えるとされている
が、この時点において吸着板(24)k:は強力な磁気
吸引力が働いているのであり、そのため、回転が成立す
ると仮定してみても、該吸着板(24)の退避移動に要
するエネルギーは磁力によって得られる回転エネルギー
以上となり、従って、刊行物に発表されているような効
果は達成できないものである。
Furthermore, the adsorption plate (24) is attached to two permanent magnets (22).
It is said that the mode is switched to the repulsion mode by retracting the same poles of (23) when they are closest to each other, but at this point, the adsorption plate (24) k: has a strong magnetic attraction force. Therefore, even if we assume that rotation is established, the energy required to retract the suction plate (24) is greater than the rotational energy obtained by magnetic force, and therefore, the effect announced in the publication cannot be achieved. It is something that cannot be done.

この発明は上記のような実情に鑑みたものであって、永
久磁石の同極対向による反発力と磁気遮蔽との組合せに
よってエネルギー効率の非常に高い動力を取り出し得る
永久磁石利用の動力機を提供する点に目的を有する。
This invention has been made in view of the above-mentioned circumstances, and provides a power machine using permanent magnets that can extract power with extremely high energy efficiency by combining the repulsive force caused by the same polarity of permanent magnets facing each other and magnetic shielding. Have a purpose in mind.

(問題点を解決するための手段) 上記の目的を達成するために、この発明に係る永久磁石
利用の動力機は、反発磁界を形成するように、同極を相
対向させて配置した永久磁石(1)。
(Means for Solving the Problems) In order to achieve the above object, a power machine using permanent magnets according to the present invention has permanent magnets ( 1).

(2)を相対的に遠近方向に位置変更自在に構成すると
ともに、上記両永久磁石(1)、(2)の対向同極間に
は磁気遮蔽具(3)を介在させ、かつこの磁気遮蔽具(
3)を少なくとも上記両永久磁石(1)、(2)の対向
同極が最も接近した時点でその対向箇所から退避移動さ
せる機構を設けたことを特徴とする。
(2) can be relatively changed in the distance direction, and a magnetic shielding device (3) is interposed between the opposite polarities of both the permanent magnets (1) and (2), and this magnetic shielding Ingredients (
3) is characterized in that a mechanism is provided for retracting the permanent magnets (1) and (2) from their opposing positions at least when the opposing same poles of the two permanent magnets (1) and (2) come closest to each other.

(作用) この発明によれば、同極を相対向させて配置した永久磁
石の対向同極間の距離が一定の状態において、その対向
同極間に磁気遮蔽具が存在するときに得られる反発力と
、磁気遮蔽具が退避した時に得られる反発力との差を動
力として取り出すことに基本原理がある。
(Function) According to the present invention, repulsion is obtained when a magnetic shield exists between the opposing same poles in a state where the distance between the opposing same poles of permanent magnets arranged with the same poles facing each other is constant. The basic principle is to derive power from the difference between the force and the repulsive force obtained when the magnetic shield is retracted.

上記の原理を第1図を参照して説明すると、同図におい
て、(1)、 (2)は反発磁界を形成するように、同
極を相対向させて配置した一対の永久磁石でその1方(
1)を位置固定し、他方(2)を直線的に往復移動可能
に構成する。(3)は磁気遮蔽具であって、上記一対の
永久磁石(1)、 (2)の同極対向空間距離(1)が
設定最小値(11)にあるとき、その2等分点位置を含
む面に沿って同極対向箇所に対して入退自在に構成され
ている。
The above principle will be explained with reference to Figure 1. In the figure, (1) and (2) are a pair of permanent magnets with the same poles facing each other so as to form a repulsive magnetic field. direction(
1) is fixed in position, and the other (2) is configured to be capable of linearly reciprocating movement. (3) is a magnetic shielding device, and when the same-polar facing spatial distance (1) of the pair of permanent magnets (1) and (2) is at the set minimum value (11), the bisecting point position is It is configured to be able to freely move in and out of the same polar opposite location along the including surface.

いま、第1図(A)で示すように、一対の永久磁石(I
L (2)の同極対向空間距離軸)が設定最小値(、l
1l)にあり、その中央位置に磁気遮蔽具(3)が突入
している状態で、両永久磁石(1)、(2)が静止して
いるときの反発力を(Fl)に仮定し、次に、第1図(
B)のように、上記磁気遮蔽具(3)を同極対向箇所か
ら退出させると、両永久磁石(1)、(2)間には(F
2)なる反発力が働いて一方の永久磁石(2)が移動し
、同極対向空間距離(fl)が(11)から(F12 
)に変化する。このときの反発力(F)の差(ΔF−[
2−Fl)を取り出し、これを動力とする。
Now, as shown in Figure 1 (A), a pair of permanent magnets (I
The homopolar opposing spatial distance axis of L (2)) is set to the minimum value (,l
Assuming that the repulsive force is (Fl) when both permanent magnets (1) and (2) are stationary with the magnetic shielding device (3) protruding into the center position, Next, Figure 1 (
As shown in B), when the magnetic shielding device (3) is removed from the point where the same polarity faces each other, there is a (F
2), one of the permanent magnets (2) moves, and the spatial distance (fl) between the same poles changes from (11) to (F12
). Difference in repulsive force (F) at this time (ΔF-[
2-Fl) and use it as power.

つぎに、上記のような動力を連続して得るためには、一
方の移動した永久磁石(2)を、同極対向空間距離(D
2)が(II)になるように復帰移動させる必要があり
、この場合、第1図(C)のように、磁気遮蔽具(3)
を同極対向箇所に突入させて復帰移動させれば、その復
帰移動に要する力の最大値(−Fl)は上記反発力(F
l)に相当する。故に、この復帰移動時に(Fl)なる
力を付与することにより第1図(A)の状態に復元でき
る。以上の動作を繰返すことによって連続した動力が(
qられるのである。
Next, in order to continuously obtain the above-mentioned power, one of the moved permanent magnets (2) must be moved with the same polarity facing spatial distance (D
It is necessary to return the magnetic shielding device (2) to (II), and in this case, as shown in Figure 1 (C), the magnetic shielding device (3)
If it rushes into the opposite point of the same polarity and moves back, the maximum value (-Fl) of the force required for the return movement is equal to the above repulsive force (F
Corresponds to l). Therefore, by applying a force (Fl) during this return movement, the state shown in FIG. 1(A) can be restored. By repeating the above operations, continuous power is generated (
It will be q.

第2図は可動側の永久磁石(2)を往復ともに反発力に
て直線往復移動させる場合の動作原理図を示し、この場
合は可動永久磁石(2)の移動方向の両側にそれぞれ固
定永久磁石(1)(1)を可動側永久磁石(2)の両側
にそれぞれ同極が対向する状態で配置するとともに、夫
々の同極対向空間距離(1)の設定最小値(11)、(
11)の中央位置に磁気遮蔽具(3)、(3’)を互い
に背反的に突入退出自在に設けたものであり、その動作
は第2図(A)〜(C)で示すように磁気遮蔽具(3)
、(3’)を突入退出移動させるだけで第1図(^)、
 (8)で示した反発力の差(ΔF)による移動が正負
両方向で交互に繰り返されたレシプロ運動が1qられる
。このレシプロ運動をそのまま動力として利用してもよ
いし、また、これをクランクなどを介して回転運動に変
換して回転動力として利用しても良い。
Figure 2 shows the principle of operation when the permanent magnet (2) on the movable side is moved back and forth in a straight line by repulsive force. (1) (1) are arranged on both sides of the movable permanent magnet (2) with the same poles facing each other, and the set minimum values (11), (
11), magnetic shielding devices (3) and (3') are installed in the center of the magnetic shielding device so that they can move in and out contrary to each other, and their operation is as shown in FIGS. Shielding equipment (3)
, (3') can be moved in and out of Figure 1 (^),
A reciprocating motion in which the movement due to the difference in repulsive force (ΔF) shown in (8) is repeated alternately in both positive and negative directions is performed 1q. This reciprocating motion may be used as it is as power, or it may be converted into rotational motion via a crank or the like and used as rotational power.

尚、以上の原理説明において、磁気遮蔽具(3)として
、その磁気遮蔽能が100%で、一対の永久磁石(1)
、 (2)又は(1’)、(2)との同極対向箇所に磁
気遮蔽具(3)が突入位置していれば、その同極対向空
間距離(1)の大きさに関係なく、反発力(Fl)がゼ
ロとなるようなものであれば(ΔF)は強大で、かつ磁
気遮蔽具(3)の入選移動に要する力も極く微小で済む
ので、非常に効率良い動力機が得られるが、仮りに磁気
遮蔽能が100%未満であっても、磁気遮蔽具(3)を
同極対向箇所に介挿することによって、動力として利用
できる反発力の差(ΔF)が得られることは第3図から
明らかである。
In the above principle explanation, the magnetic shielding device (3) is a pair of permanent magnets (1) whose magnetic shielding ability is 100%.
, (2) or (1'), if the magnetic shielding device (3) is placed in a protruding position at a point facing the same polarity as (2), regardless of the size of the same polarity facing spatial distance (1), If the repulsive force (Fl) is zero, (ΔF) is strong and the force required to move the magnetic shield (3) is extremely small, so a very efficient power machine can be obtained. However, even if the magnetic shielding ability is less than 100%, it is possible to obtain a difference in repulsion force (ΔF) that can be used as motive power by inserting the magnetic shielding device (3) at the same polar opposite location. This is clear from Figure 3.

即ち、第3図は横軸を同極対向空間距離(1)とし、縦
軸を反発力(F)として表現した磁気反発特性曲線で、
同図中の(X)は磁気遮蔽具(3)が介挿されていない
場合の特性曲線を示し、(×1)は磁気遮蔽具(3)が
介挿された場合の見掛は上の特性曲線を示す。両者を比
較してみると、同極対向空間距離(皇)の設定最小値(
il)での反発力が(F2)と(Fl)といった具合に
大きな差を有し、これが上記した反発力の差(ΔF)と
なる。
In other words, Figure 3 is a magnetic repulsion characteristic curve in which the horizontal axis represents the homopolar opposing spatial distance (1) and the vertical axis represents the repulsive force (F).
(X) in the figure shows the characteristic curve when the magnetic shield (3) is not inserted, and (x1) shows the characteristic curve when the magnetic shield (3) is inserted. Characteristic curves are shown. Comparing the two, we find that the minimum set value of the same polar opposing spatial distance (Ku)
There is a large difference in the repulsive forces at (F2) and (Fl), and this becomes the difference (ΔF) in the repulsive forces described above.

(実施例) 以下、上記の原理を応用した、この発明の実施例を図面
に基づいて説明する。
(Example) Hereinafter, an example of the present invention to which the above principle is applied will be described based on the drawings.

第1実施例 この実施例は磁気反発りを直接、回転盤(4)の回転力
として取り出すように構成したもので、第4図及び第5
図において、(4)は回転盤であり、この回転m(4)
は固定座板(5)に縦軸心(a)周りに回転のみ自在に
支承されている。(2)は棒状の永久磁石で、上記回転
盤(4)の周部に回転方向に等間隔を隔てて複数個固着
されている。(1)も棒状の永久磁石で、上記回転盤(
4)外周の固定座板(5)部分に上記回転盤(4)側の
永久磁石(2)(以下、可動磁石と記載する)と同一の
回転方向間隔を隔てて位置固定されている(以下、固定
磁石と記載する)。
1st Embodiment This embodiment is constructed so that the magnetic repulsion is directly extracted as the rotational force of the rotary disk (4).
In the figure, (4) is a rotating disk, and this rotation m(4)
is supported by a fixed seat plate (5) so as to be rotatable only around the vertical axis (a). A plurality of rod-shaped permanent magnets (2) are fixed to the circumference of the rotary disk (4) at equal intervals in the rotational direction. (1) is also a rod-shaped permanent magnet, and the rotating disk (
4) A fixed seat plate (5) on the outer periphery is fixed in position at the same rotational direction interval as the permanent magnet (2) (hereinafter referred to as a movable magnet) on the rotary disk (4) side (hereinafter referred to as a movable magnet). , fixed magnet).

上記可動磁石(2)と固定磁石(1)とは、反発磁界を
形成するように、同極が相対向されているとともに、回
転盤(4)の回転にともなって、その対向同極間の距離
が漸次連続的に増減変化するように相対的に遠近方向に
位置変更自在に構成され、かつ同極対向状態での反発力
によって上記回転盤(4)に回転方向の分力(f)を作
用させ得る姿勢に配置されている。
The movable magnet (2) and the fixed magnet (1) have the same poles facing each other so as to form a repulsive magnetic field, and as the rotary disk (4) rotates, the movable magnet (2) and the fixed magnet (1) It is configured to be able to change its position relatively in the far and near direction so that the distance gradually and continuously increases and decreases, and applies a component force (f) in the rotational direction to the rotary disk (4) by the repulsive force in the same polar facing state. It is placed in a position where it can be used.

(3)は上記可動磁石(2)と固定磁石(1)との同極
対向間の中央部に介在する状態で、固定座板(5)に対
して上記縦軸心(a)周りに回転自在に支承された環状
の磁気遮蔽具であって、この環状磁気遮蔽具(3)には
回転周方向に等間隔を隔てて複数個の透孔(3a)が形
成されているとともに、上記回転盤(4)の外側に離れ
た箇所の固定座板(5)部分に設置したモータ(7)に
ベルト等の巻掛は伝動具(8)を介して連動連結されて
いる。この環状磁気遮蔽具(3)はモータ(7)を介し
て、上記両磁石(1)、(2)の対向同極が最も接近し
て所定の回転方向への分力(f)を付与できる状態にな
ったとき、上記透孔(3a)部分がその対向同極間に位
置し、それ以外は磁気遮蔽部(3b)が対向同極間に位
置するような一定回転速度に設定されている。
(3) rotates around the vertical axis (a) with respect to the fixed seat plate (5) while interposed in the center between the movable magnet (2) and the fixed magnet (1) facing the same polarity. A freely supported annular magnetic shielding device (3) has a plurality of through holes (3a) formed at equal intervals in the rotation circumferential direction, and a plurality of through holes (3a) are formed at equal intervals in the rotational circumferential direction. The winding of a belt or the like is interlocked and connected to a motor (7) installed on a fixed seat plate (5) at a location remote from the outside of the panel (4) via a transmission device (8). This annular magnetic shielding device (3) can apply a component force (f) in a predetermined rotational direction through the motor (7) so that the opposing same poles of the two magnets (1) and (2) come closest to each other. When the state is reached, the rotation speed is set at a constant speed such that the through hole (3a) portion is located between the opposing same poles, and the other magnetic shielding portion (3b) is located between the opposing same poles. .

次に、上記構成の回転動力機の回転動作について説明す
る。
Next, the rotational operation of the rotary power machine having the above configuration will be explained.

第6図(A)で示すように、可動磁石(2)と固定磁石
(1)との同極が最も接近した状態で環状磁気遮蔽具(
3)の透孔(3a)部分がその対向同極間に突入位置す
ると、両磁石(2)、(1)間に同極反発力が作用して
、回転盤(4)に(f)なる回転分力が働き、矢印(r
)方向に回転する。
As shown in FIG. 6(A), the annular magnetic shield (
When the through-hole (3a) part of 3) protrudes between the opposing homopoles, a homopolar repulsive force acts between both magnets (2) and (1), causing the rotary disk (4) to become (f). The rotational force acts, and the arrow (r
) direction.

上記の回転に伴なって、可動磁石(2)が回転方向下手
側に隣接位置する固定磁石(1)に対して離間位置から
接近゛して行く過程においては第6図(幻で示すようじ
、両磁石(2)、(1)の対向同極間に上記環状磁気遮
蔽具(3)の磁気遮蔽部(3b)が介在するため同極反
発力による逆方向の回転分力は作用せず、回転盤(4)
は慣性力により可動磁石(2)が次の固定磁石(1)に
対向する位置までスムーズに回転する。
Along with the above rotation, the movable magnet (2) approaches the fixed magnet (1) adjacent to the lower side in the rotational direction from the separated position as shown in FIG. Since the magnetic shielding part (3b) of the annular magnetic shielding device (3) is interposed between the opposing same poles of both magnets (2) and (1), the rotational force in the opposite direction due to the same polar repulsion does not act. Turntable (4)
Due to inertia, the movable magnet (2) smoothly rotates to a position facing the next fixed magnet (1).

そして、可動磁石(2)が次の固定磁石(1)に対して
同極対向状態で最も接近したとき、第6図(C)で示す
よう(、環状磁気遮蔽具(3)の透孔(3a)部分がそ
の対向同極間に突入し、第6図(^)の場合と同様に同
極反発力にともなって回転盤(4)に(f)なる回転分
力が働く。
When the movable magnet (2) approaches the next fixed magnet (1) with the same polarity facing it, as shown in FIG. 6(C), the through hole of the annular magnetic shield (3) The portion 3a) enters between the opposing homopoles, and a rotational force (f) acts on the rotary disk (4) due to the homopolar repulsion force, as in the case of FIG. 6(^).

以上の作用が回転盤(4)の周方向複数箇所で同時に発
生し、それの繰り返しによって回転盤(4)が連続回転
するのである。
The above actions occur simultaneously at multiple locations in the circumferential direction of the rotary disk (4), and by repeating these operations, the rotary disk (4) continuously rotates.

第2実施例 この実施例も上記第1実施例と同様に磁気反発力を直接
回転力として取り出すように構成したもので、上記第1
実施例との相違点は、透孔(3a)と磁気遮蔽部(3b
)とを有する環状磁気遮蔽具(3)を固定した点である
。ただし、この場合は、透孔(3a)部分と磁気遮蔽部
(3b)とが第7図で示すように、回転周方向で交互に
位置するとともに、それらの周長において透孔(3a)
部分を磁気遮蔽部(3b)よりも長く、かつ周長の短い
磁気遮蔽部(3b)を各固定磁石(1)よりもやや回転
方向の上手側に変位させて配置している。
Second Embodiment Similar to the first embodiment, this embodiment is constructed so that the magnetic repulsion force is extracted directly as rotational force.
The difference from the example is that the through hole (3a) and the magnetic shielding part (3b
) to which the annular magnetic shielding device (3) is fixed. However, in this case, as shown in FIG. 7, the through-hole (3a) portion and the magnetic shielding portion (3b) are located alternately in the rotational circumferential direction, and the through-hole (3a) portion
The magnetic shielding part (3b), which is longer than the magnetic shielding part (3b) and has a shorter circumference, is disposed slightly upwardly in the rotational direction than each fixed magnet (1).

第3実施例 この実施例はレシプロ型内燃機関の原理を応用して、磁
気反発力を直線往復移動力どし、この直線往復移動力を
回転力に変換して取り出すように構成したもので、第8
図及び第9図において、(9)はクランク軸で、その各
クランク部(9a)に−端を連接したピストンロッド(
10)の先端に、非磁性材料からなるシリンダ状の直線
移動ガイド(11)に沿って直線往復移動自在に保持さ
れたピストン状永久磁石(2)の一端を枢支連結してい
る。(1)は上記直線移動ガイド(11)のヘッド部に
上記永久磁石(2)と同極対向状態で固定した永久磁石
である。(3)は上記両磁石(1)、(2)の同極対向
間の中間部においてクランク軸(9)の軸心方向に対し
て直角方向に沿って往復移動自在に設けられた板状の磁
気遮蔽具であって、その移動方向に沿って磁気遮蔽部(
3b)と透孔(3a)とが形成されているととも(、リ
ンク機構(12)とカム(13)とを介して上記クラン
ク軸(9)の回転に連動するように構成されている。
Third Embodiment This embodiment applies the principles of a reciprocating internal combustion engine to convert magnetic repulsion into linear reciprocating force, converting this linear reciprocating force into rotational force and extracting it. 8th
In the figure and FIG. 9, (9) is a crankshaft, and a piston rod (
10) is pivotally connected to one end of a piston-shaped permanent magnet (2) held so as to be capable of linear reciprocating movement along a cylindrical linear movement guide (11) made of a non-magnetic material. (1) is a permanent magnet fixed to the head portion of the linear movement guide (11) with the same polarity as the permanent magnet (2). (3) is a plate-shaped plate provided in the middle between the magnets (1) and (2) facing the same polarity so as to be able to reciprocate along a direction perpendicular to the axial direction of the crankshaft (9). A magnetic shielding device, which includes a magnetic shielding portion (
3b) and a through hole (3a) are formed, and is configured to be interlocked with the rotation of the crankshaft (9) via a link mechanism (12) and a cam (13).

尚、上記永久磁石(1)、 (2)はクランク軸(9)
の軸心方向に沿って4対設けられ、90°毎の回転角を
有するクランク部(9a)にピストンロッド(10)を
介して連接されている。
The above permanent magnets (1) and (2) are attached to the crankshaft (9).
Four pairs are provided along the axial direction of the piston rod, and the piston rods are connected to a crank part (9a) having a rotation angle of every 90 degrees via a piston rod (10).

このように構成された動力機においては、第9図(^)
のように、同極対向間距離が最小になった永久磁石(1
)、(2)の同極対向間、ならびに磁気反発力を受けて
下死点方向に移動しつつある永久磁石(1)、 (2)
の同極対向間にはそれぞれ磁気遮蔽具(3)の透孔(3
a)部分が位置し、また第9図(8)のように下死点に
達して同極対向間距離が最大になった永久磁石(1)、
(2)の同極対向間ならびに上死点方向に向かって復帰
移動しつつある永久磁石(1)、(2)の同極対向間に
はそれぞれ磁気遮蔽具(3)の磁気遮蔽部(3b)が位
置するようなタイミングで磁気遮蔽具(3)を移動さぜ
ることにより、各永久磁石(2)の磁気反発力による下
死点方向への移動力を順次クランク軸(9)の回転に変
換することができるのである。
In a power machine configured in this way, Fig. 9 (^)
A permanent magnet with the minimum distance between opposite poles (1
) and (2), as well as permanent magnets (1) and (2) that are moving toward the bottom dead center due to magnetic repulsion.
A through hole (3
Permanent magnet (1) where part a) is located and which has reached the bottom dead center and the distance between the opposite poles is maximum as shown in FIG. 9 (8),
The magnetic shielding part (3b ) by moving the magnetic shielding device (3) at a timing such that the magnetic repulsion of each permanent magnet (2) is applied to the rotation of the crankshaft (9). It can be converted into .

第4実施例 この実施例は上記第3実施例と同様に磁気反発力を直線
往復移動力とし、この直線往復運動を回転力に変換して
取りだすように構成したもので、第3実施例との相違点
は、第10図で示すように同極対向状態に配置した永久
磁石(1)、(2)をともにシリンダ状直線ガイド(1
1)、(11’)に沿って直線往復移動自在に保持させ
るとともに、これら両永久磁石(1)、 (2)それぞ
れの他極端側に連接したピストンロッド(10)、 (
10)を、互いに平行姿勢で離間配置したクランク軸(
9)、(9’)のクランク部(9a)(98′)に連接
し、もって、両永久磁石(1)、 (2)の同極反発力
による下死点方向への移動力を2つのクランク軸(9)
、 (9)の回転に変換するように構成した点であり、
その他の構成は上記第3実施例と同一であるため、同一
の符号を付してそれらの説明を省略する。
Fourth Embodiment In this embodiment, similar to the third embodiment, the magnetic repulsion force is used as linear reciprocating force, and this linear reciprocating motion is converted into rotational force and extracted. The difference is that, as shown in Fig. 10, both permanent magnets (1) and (2) arranged with the same poles and opposite sides are connected to a cylindrical linear guide (1).
1), (11'), and the piston rod (10) connected to the other end of each of these permanent magnets (1), (2).
10) are arranged parallel to each other and spaced apart from each other.
9) and (9') are connected to the crank parts (9a) and (98'), thereby reducing the moving force toward the bottom dead center due to the homopolar repulsion of both permanent magnets (1) and (2). Crankshaft (9)
, is a point configured to convert into the rotation of (9),
Since the other configurations are the same as those of the third embodiment, they will be given the same reference numerals and their explanation will be omitted.

尚、この第4実施例において、2つのクランク軸(9)
、(9″)の回転力を合成して1つの軸回転力として取
り出すようにしても良いが、そのための構成は、例えば
チェーンなどの巻き掛は伝動装置や歯車の組合せなど周
知の機械要素で容易に実現できるため、図示は省略する
In addition, in this fourth embodiment, two crankshafts (9)
, (9″) may be combined and extracted as one shaft rotational force, but the configuration for this is such that the chain or the like is a well-known mechanical element such as a transmission or a combination of gears. Since it can be easily realized, illustration is omitted.

その他の実施例 第1、第2実施例における永久磁′l:3(1)、(2
)の回転周方向での設置数や第3、第4実施例における
気筒数、つまり永久磁石(1)、(2)対のクランク軸
心方向の設置数は図示のものに限定されない。
Other Examples Permanent magnet'l in the first and second examples: 3(1), (2
) and the number of cylinders in the third and fourth embodiments, that is, the number of pairs of permanent magnets (1) and (2) installed in the crankshaft direction are not limited to those shown in the drawings.

また、第1、第2実施例のものにおいて、回転盤(4)
をその回転軸心方向に沿って同心上に複数個配置しても
よい。
In addition, in the first and second embodiments, the rotary disk (4)
A plurality of them may be arranged concentrically along the rotation axis direction.

[発明の効果] 以上の説明からも既に明らかなように、この発明によれ
ば、永久磁石の有する磁気特性のうちの同極対向による
反発力と磁気遮蔽との組合せによって、つまり、同極対
向間に磁気遮蔽具が有るときと無いときとで顕着に異な
る反発力の差を取り出してこれを動力に利用するもので
あり、また磁気遮蔽材料としては、近年、非常に導電率
の低い、かつ磁気遮蔽能の非常に高いものが既に開発実
用化されている状況にあり、このような材料特性の磁気
遮蔽具を用いることによって、冒頭で示した従来例のご
とく、鉄などの吸着板を使用する場合に比してうず電流
発生等に起因する動力ロスを極めて少なくできるととも
に、磁気遮蔽具を可動構成とするにあたっても、その可
動に要するエネルギーを反発力によって19られるエネ
ルギーに比して極端に少ないものにできる。
[Effects of the Invention] As is already clear from the above description, according to the present invention, the repulsion force due to the same polarity of the magnetic properties of the permanent magnet is combined with the magnetic shielding, that is, the same polarity It extracts the difference in the repulsive force that differs between the presence and absence of a magnetic shielding device and uses this for power, and in recent years, as magnetic shielding materials, materials with extremely low conductivity, A magnetic shielding device with very high magnetic shielding ability has already been developed and put into practical use, and by using a magnetic shielding device with such material characteristics, it is possible to replace the adsorption plate made of iron or other material as in the conventional example shown at the beginning. Power loss due to eddy current generation etc. can be extremely reduced compared to when the magnetic shield is used, and even when the magnetic shielding device is made movable, the energy required for its movement is extremely low compared to the energy generated by the repulsive force. can be reduced to less.

従って、磁荷の強さが大なる、例えばNd系の永久磁石
を使用し、その磁気特性を最大限に活用して、エネルギ
ー効率の非常に高い動力の取り出しに成功するに至った
のである。
Therefore, by using, for example, a Nd-based permanent magnet with a high magnetic charge strength and making full use of its magnetic properties, it has been possible to successfully extract power with extremely high energy efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)及び第2図(A)〜(C)は夫々
この発明に係る永久磁石利用の動力機における基本動作
原理の説明図、第3図は磁気反発特性を説明するための
グラフ、第4図と第5図はこの発明の第1実施例を示す
回転動力機の概略平面図と概略正面図、第6図(A)〜
(C)は回転動作の説明図、第7図はこの発明の第2実
施例を示す回転動力機の要部の平面図、第8図と第9図
(A)、 (B)はこの発明の第3実施例を示す概略平
面図と概略正面図、第10図はこの発明の第4実施例を
示す概略平面図、第11図(A)〜(C)は従来の永久
磁石利用回転動力機の回転動作の説明図である。 (1)、 (2)・・・永久磁石、 (3)・・・磁気
遮蔽具、(4)・・・回転盤、  (5)・・・固定座
板1、(9)・・・クランク軸、(10)・・・ピスト
ンロッド、(11)・・・シリンタ状直線移動ガイド。 第1図 第3図 第5図 第6図 第7図 ′Ju 第9図 第10図 ソq 第11図
Figures 1 (A) to (C) and Figures 2 (A) to (C) are illustrations of the basic operating principle of the power machine using permanent magnets according to the present invention, respectively, and Figure 3 explains the magnetic repulsion characteristics. FIGS. 4 and 5 are a schematic plan view and a schematic front view of a rotary power machine showing a first embodiment of the present invention, and FIGS.
(C) is an explanatory diagram of the rotation operation, FIG. 7 is a plan view of the main parts of a rotary power machine showing a second embodiment of the present invention, and FIGS. 8 and 9 (A) and (B) are A schematic plan view and a schematic front view showing the third embodiment, FIG. 10 is a schematic plan view showing the fourth embodiment of the present invention, and FIGS. 11(A) to (C) show a conventional rotary power machine using permanent magnets. It is an explanatory view of rotation operation. (1), (2)...Permanent magnet, (3)...Magnetic shield, (4)...Rotary disk, (5)...Fixed seat plate 1, (9)...Crank Shaft, (10)...Piston rod, (11)...Cylindrical linear movement guide. Figure 1 Figure 3 Figure 5 Figure 6 Figure 7 'Ju Figure 9 Figure 10 Soq Figure 11

Claims (4)

【特許請求の範囲】[Claims] (1)反発磁界を形成するように、同極を相対向させて
配置した永久磁石(1)、(2)を相対的に遠近方向に
位置変更自在に構成するとともに、上記両永久磁石(1
)、(2)の対向同極間には磁気遮蔽具(3)を介在さ
せ、かつこの磁気遮蔽具(3)を少なくとも上記両永久
磁石(1)、(2)の対向同極が最も接近した時点でそ
の対向箇所から退避移動させる機構を設けたことを特徴
とする永久磁石利用の動力機。
(1) In order to form a repulsive magnetic field, permanent magnets (1) and (2), which are arranged with the same poles facing each other, are configured so that their positions can be changed relatively in the far and near directions, and both of the permanent magnets (1)
) and (2), and a magnetic shielding device (3) is interposed between the opposing same poles of the permanent magnets (1) and (2). A power machine using a permanent magnet, characterized in that it is equipped with a mechanism for evacuating from the opposite location when the magnet is removed.
(2)上記1方の永久磁石(1)が位置固定されている
とともに、他方の永久磁石(2)が回転盤(4)の周部
に装着されていて、両磁石(1)、(2)による磁気反
発力を回転盤(4)の回転力として取出すように構成し
た特許請求の範囲第1項に記載の永久磁石利用の動力機
(2) One of the permanent magnets (1) is fixed in position, and the other permanent magnet (2) is attached to the circumference of the rotary disk (4), and both magnets (1), (2) 2. A power machine using permanent magnets according to claim 1, wherein the magnetic repulsion force generated by the rotary disk (4) is extracted as the rotational force of the rotary disk (4).
(3)上記1方の永久磁石(1)が位置固定されている
とともに、他方の永久磁石(2)が直線的に往復移動自
在であり、磁気反発力による上記永久磁石(2)の少な
くとも1方向への直線移動力を回転力に変換する機構を
設けた特許請求の範囲第1項に記載の永久磁石利用の動
力機。
(3) One of the permanent magnets (1) is fixed in position, and the other permanent magnet (2) is linearly movable, and at least one of the permanent magnets (2) is caused by magnetic repulsion. A power machine using permanent magnets according to claim 1, which is provided with a mechanism for converting a linear movement force in a direction into a rotational force.
(4)上記両永久磁石(1)、(2)がともに同極対向
状態のままで直線的に遠近往復移動自在であり、これら
両磁石(1)、(2)の磁気反発力にともなう直線往復
移動力をともに回転力に変換する機構を設けた特許請求
の範囲第1項に記載の永久磁石利用の動力機。
(4) Both of the above permanent magnets (1) and (2) are free to move near and far in a straight line with the same polarity facing each other, and the magnetic repulsion of these two magnets (1) and (2) causes a straight line. A power machine using permanent magnets according to claim 1, which is provided with a mechanism for converting both reciprocating force into rotational force.
JP32787587A 1987-12-24 1987-12-24 Power machine utilizing permanent magnet Pending JPH01170361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32787587A JPH01170361A (en) 1987-12-24 1987-12-24 Power machine utilizing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32787587A JPH01170361A (en) 1987-12-24 1987-12-24 Power machine utilizing permanent magnet

Publications (1)

Publication Number Publication Date
JPH01170361A true JPH01170361A (en) 1989-07-05

Family

ID=18203955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32787587A Pending JPH01170361A (en) 1987-12-24 1987-12-24 Power machine utilizing permanent magnet

Country Status (1)

Country Link
JP (1) JPH01170361A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594289A (en) * 1993-09-16 1997-01-14 Minato; Kohei Magnetic rotating apparatus
EP1569322A1 (en) * 2004-02-25 2005-08-31 Kohei Minato Magnetic rotating motor generator
JP2007504796A (en) * 2003-09-05 2007-03-01 センシス メディカル インク Magneto-mechanical device
US7279816B2 (en) 2005-06-14 2007-10-09 Ichiro Oikawa Driving apparatus
JP2008035654A (en) * 2006-07-31 2008-02-14 Koichi Nagaba Magnetic rotating device
JP2011226340A (en) * 2010-04-16 2011-11-10 Chutoku Kenki Kk Four-cycle engine
US20140203766A1 (en) * 2010-10-07 2014-07-24 Michael Charles Bertsch Smt system
WO2015029782A1 (en) * 2013-08-26 2015-03-05 YAMANO Katsushito Rotational power production device and power generation device
JP5692768B1 (en) * 2013-12-26 2015-04-01 勝臣 山野 Rotational power generator and power generator
WO2015146636A1 (en) * 2014-03-28 2015-10-01 勝臣 山野 Rotational power production device and power generation device
WO2015174340A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotary-power generation device and electricity generation device
WO2015174303A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotational power generation device and power generation device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594289A (en) * 1993-09-16 1997-01-14 Minato; Kohei Magnetic rotating apparatus
JP2007504796A (en) * 2003-09-05 2007-03-01 センシス メディカル インク Magneto-mechanical device
EP1569322A1 (en) * 2004-02-25 2005-08-31 Kohei Minato Magnetic rotating motor generator
US7148596B2 (en) 2004-02-25 2006-12-12 Kohei Minato Magnetic rotating motor generator
US7279816B2 (en) 2005-06-14 2007-10-09 Ichiro Oikawa Driving apparatus
JP2008035654A (en) * 2006-07-31 2008-02-14 Koichi Nagaba Magnetic rotating device
JP2011226340A (en) * 2010-04-16 2011-11-10 Chutoku Kenki Kk Four-cycle engine
US20140203766A1 (en) * 2010-10-07 2014-07-24 Michael Charles Bertsch Smt system
WO2015029782A1 (en) * 2013-08-26 2015-03-05 YAMANO Katsushito Rotational power production device and power generation device
JP5692768B1 (en) * 2013-12-26 2015-04-01 勝臣 山野 Rotational power generator and power generator
WO2015146636A1 (en) * 2014-03-28 2015-10-01 勝臣 山野 Rotational power production device and power generation device
JP2015195706A (en) * 2014-03-28 2015-11-05 勝臣 山野 Rotational motive force generation device and power generation device
WO2015174340A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotary-power generation device and electricity generation device
WO2015174303A1 (en) * 2014-05-13 2015-11-19 勝臣 山野 Rotational power generation device and power generation device

Similar Documents

Publication Publication Date Title
US4937481A (en) Permanent magnet linear electromagnetic machine
US5175457A (en) Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JP2001520498A (en) Linear electromagnetic machine
JPH01170361A (en) Power machine utilizing permanent magnet
JP2007527686A (en) Linear electromechanical for power generation or motivational drive
US20110175463A1 (en) Reciprocating magnet engine
BG61589B1 (en) Rotary magnetic device
CA2095203A1 (en) Motor-generator using permanent magnet
JP2008512977A (en) Magnetic rotating device
Lu et al. New helical-shape magnetic pole design for magnetic lead screw enabling structure simplification
US4843268A (en) Asymmetric field electromagnetic motor
KR101732255B1 (en) Generator
JPS60207440A (en) Vibration motor
WO2001093285A3 (en) Controlled high speed reciprocating angular motion actuator
US4486675A (en) Direct current magnetic motor
CN110086311A (en) A kind of magnetic resistance type globular motor of rotor salient pole type structure
CN1941573A (en) Single-pole permanent-magnetic cylindrical DC linear motor
JPH0511788U (en) Magnetic rotation device
Chen et al. Three-dimensional electromagnetic analysis of tubular permanent magnet linear launcher
RU167307U1 (en) FRONT VALVE ENGINE
Li et al. Halbach array magnet and its application to PM spherical motor
CN115313797B (en) Linear rotary voice coil motor adopting T-shaped permanent magnets
CN116232004B (en) Magnetic screw actuator based on three-dimensional modulation effect and design method thereof
JPH09327186A (en) Magnetic rotating equipment
Hasegawa et al. New Electromagnetic Actuator with Multi-Motion