JPH01169516A - Converter circuit for inverter device - Google Patents

Converter circuit for inverter device

Info

Publication number
JPH01169516A
JPH01169516A JP32854887A JP32854887A JPH01169516A JP H01169516 A JPH01169516 A JP H01169516A JP 32854887 A JP32854887 A JP 32854887A JP 32854887 A JP32854887 A JP 32854887A JP H01169516 A JPH01169516 A JP H01169516A
Authority
JP
Japan
Prior art keywords
capacitor
resistor
capacitors
inverter device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32854887A
Other languages
Japanese (ja)
Inventor
Shinsuke Kimura
信介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32854887A priority Critical patent/JPH01169516A/en
Publication of JPH01169516A publication Critical patent/JPH01169516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To reduce power consumption and to reduce the pressure resistance of a capacitor by controlling current flowing into one of balance resistors so that voltages respectively applied to both the terminals of two capacitors connected in series are equal. CONSTITUTION:Voltages respectively applied to both the terminals of the capacitors 3, 4 are defined as V3, V4. In case of V4>V3, the non-inversional input of an operational amplifier 10 goes higher potential, the output of the amplifier 10 is turned to 'H' and the base potential of a transistor (TR) 9 is raised by a time constant determined by a resistor 15 and a capacitor 16. Thereby, current IC flowing into the TR 9 is increased, the V4 is reduced, the V3 is increased, and V4>V3 is formed. Thereby, the inversional input of the amplifier 10 goes higher potential, its output is turned to 'L' and the base potential of the TR 9 is reduced by the time constant determined by the resistor 15 and the capacitor 16. Since the current flowing into the TR 9 is reduced, the V4 is increased and goes larger than the V3. Since said operation is rapidly repeated, the V4 and V3 are almost equally held.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、誘導電動機駆動用インバータ装置のコンバー
タ回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a converter circuit for an inverter device for driving an induction motor.

従来の技術 一般にインバータ装置のうち電源電圧がAC400Vク
ラスの高電圧仕様のものは、アルミ電解ユンデンサに耐
圧の高いものがないため、コンバータ回路には、アルミ
電解コンデンサを直列に接続して耐圧を越えないように
している。
Conventional technology In general, high-voltage inverters with a power supply voltage of 400 VAC class do not have aluminum electrolytic capacitors with high withstand voltage, so aluminum electrolytic capacitors are connected in series in the converter circuit to exceed the withstand voltage. I try not to.

以下に従来のインバータ装置について説明する。A conventional inverter device will be explained below.

第3図は従来のインバータ装置の主回路であり、1 ハ
交i電源(A C400V)、 2は三相ダイオードブ
リッジ、3と4は同じアルミ電解コンデンサで、直列に
接続され、三相ダイオードブリッジ2の出力P及びNに
接続される。5と6は抵抗で、それぞれコンデンサ3及
び4に並列に接続されている。7は三相のトランジスタ
ブリッジで、出力はモータ8に接続される。
Figure 3 shows the main circuit of a conventional inverter device, where 1 is an AC i power supply (AC400V), 2 is a three-phase diode bridge, and 3 and 4 are the same aluminum electrolytic capacitors, which are connected in series to form a three-phase diode bridge. 2 outputs P and N. 5 and 6 are resistors connected in parallel to capacitors 3 and 4, respectively. 7 is a three-phase transistor bridge, the output of which is connected to the motor 8.

以上のように構成されたインバータ装置について、以下
その動作を説明する。
The operation of the inverter device configured as described above will be described below.

交流電源1より交流が三相ダイオードブリッジ2に給電
されると、三相ダイオードブリッジ2とコンデンサ3,
4で整流平滑され直流となってトランジスタブリッジ7
に入力され、このトランジスタブリッジ7で、PWM変
調をかけ、交流を作すモータ8に給電する。
When AC power is supplied from the AC power supply 1 to the three-phase diode bridge 2, the three-phase diode bridge 2 and the capacitor 3,
4, it is rectified and smoothed and becomes a direct current, which is passed through the transistor bridge 7.
The transistor bridge 7 applies PWM modulation and supplies power to a motor 8 that generates alternating current.

抵抗5,6は、コンデンサ3及び4のそれぞれの両端に
かかる電圧のバランスをとるバランス抵抗である。
Resistors 5 and 6 are balance resistors that balance the voltages applied across capacitors 3 and 4, respectively.

ここでバランス抵抗について第2図を用いて説明する。Here, the balance resistance will be explained using FIG. 2.

アルミ電解コンデンサを純粋な容量と漏れ電流抵抗が並
列に接続されたものと等価的に考えると、第2図の様に
コンデンサ3と4は、それぞれ純粋な容量3C,40%
また漏れ電流抵抗3rと4rとして表される。
If we consider an aluminum electrolytic capacitor equivalently to have a pure capacitance and a leakage current resistance connected in parallel, capacitors 3 and 4 have a pure capacitance of 3C and 40%, respectively, as shown in Figure 2.
It is also expressed as leakage current resistances 3r and 4r.

ここでPとNに電圧が印加されると、漏れ電流抵抗3r
と4rが等しければ、それぞれのコンデンサには均等に
電圧が印加されるが、3rと4rの値が大きく異なれば
、コンデンサに印加される電圧が大きくアンバランスに
なり、コンデンサの耐圧を越えることになる。それを防
ぐため、2つのコンデンサのそれぞれに並列に漏れ電流
抵抗値より十分小さい同じ値の抵抗5及び6を接続し、
2つのコンデンサ3,4に印加される電圧のバランスを
とっている。
When voltage is applied to P and N here, leakage current resistance 3r
If and 4r are equal, the voltage will be applied equally to each capacitor, but if the values of 3r and 4r are significantly different, the voltage applied to the capacitor will be greatly unbalanced and may exceed the withstand voltage of the capacitor. Become. In order to prevent this, resistors 5 and 6 with the same value, which is sufficiently smaller than the leakage current resistance value, are connected in parallel to each of the two capacitors.
The voltages applied to the two capacitors 3 and 4 are balanced.

例えば、電源がAC440Vで最悪の場合、つまり電源
がプラス10%アップのAC484V。
For example, in the worst case when the power supply is AC440V, that is, the power supply is increased by 10% to AC484V.

コンデンサ3の漏れ電流が最大(Bれ電流抵抗3bの値
をRとする)コンデンサ4の漏れ電流がゼロ(漏れ電流
抵抗4rの値が無限大)、バランス抵抗は漏れ電流抵抗
の115とし10%の誤差があり、抵抗5が一10%、
抵抗6が+10%とした場合を考える。PN間の電圧を
VPN、抵抗5,6の抵抗値をR5,R6,コンデンサ
3,4の両端の電圧をV3.V4とすると、 VPN=484VX  2=684V。
The leakage current of capacitor 3 is maximum (the value of B leakage current resistance 3b is R), the leakage current of capacitor 4 is zero (the value of leakage current resistance 4r is infinite), and the balance resistance is 115 and 10% of the leakage current resistance. There is an error of 10% for resistor 5,
Consider the case where the resistance 6 is +10%. The voltage between PN and PN is VPN, the resistance values of resistors 5 and 6 are R5 and R6, and the voltage across capacitors 3 and 4 is V3. Assuming V4, VPN=484VX 2=684V.

R5=RX115X0.9=0.18RRe=Rx 1
15X 1.1 =0.22Rしたがって、 V3= VPN −V4= 280 Vとなる。つまり
、バランス抵抗には、コンデンサの最大漏れ電流の5倍
以上の電流を流す必要があり、コンデンサの耐圧は40
0v以上が必要である。
R5=RX115X0.9=0.18RRe=Rx 1
15X 1.1 = 0.22R Therefore, V3 = VPN - V4 = 280V. In other words, it is necessary to pass through the balance resistor a current that is more than 5 times the maximum leakage current of the capacitor, and the withstand voltage of the capacitor is 40
0v or more is required.

発明が解決しようとする問題点 しかしながら上記の従来の構成では、バランス抵抗に多
くの電流を流す必要があり、そのため無駄なエネルギー
を消費し、ワット数の大きな抵抗が必要であると共に、
コンデンサの耐圧も高いものが必要であるという問題点
を有していた。
Problems to be Solved by the Invention However, in the conventional configuration described above, it is necessary to pass a large amount of current through the balance resistor, which wastes energy and requires a resistor with a large wattage.
The problem was that the capacitor had to have a high breakdown voltage.

本発明は上記従来の問題点を解決するもので、バランス
抵抗のワット数を小さくシ、コンデンサの耐圧を下げる
ことを実現できるインバータ装置を提供することを目的
とする。
The present invention solves the above-mentioned conventional problems, and aims to provide an inverter device that can reduce the wattage of the balance resistor and lower the withstand voltage of the capacitor.

問題点を解決するための手段 この目的を達成するために本発明のインバータ装置のコ
ンバータ回路は、直列に接続された2つのコンデンサの
それぞれの両端の電圧を検出し、前記電圧が等しくなる
様に、前記バランス抵抗の一方に流れる電流を制御する
構成としたものである。
Means for Solving the Problem To achieve this object, the converter circuit of the inverter device of the present invention detects the voltage across each of two capacitors connected in series, and detects the voltage across each of two capacitors connected in series, and detects the voltage across each of two capacitors connected in series, and detects the voltage across each of two capacitors connected in series, , the current flowing through one of the balance resistors is controlled.

作用 上記構成によって、直列に接続された2つのコンデンサ
のそれぞれの両端の電圧は、いかなる時でも等しくなり
、バランス抵抗に流れる電流は小さくてすむ。
Effect: With the above configuration, the voltages across the two capacitors connected in series are always equal, and the current flowing through the balance resistor can be small.

以上の作用により、コンデンサの耐圧に余裕は不必要に
なってくるため、耐圧を下げることができるとともに、
バランス抵抗のワット数も減少できる。
Due to the above effects, there is no need for a margin in the withstand voltage of the capacitor, so the withstand voltage can be lowered, and
The wattage of the balance resistor can also be reduced.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるインバータ装置のコ
ンバータ回路を示すものである。
FIG. 1 shows a converter circuit of an inverter device according to an embodiment of the present invention.

図において1〜4,7.8は従来例と同じにつき説明を
省略する。5aは抵抗で、コンデンサ3の両端に並列に
接続される。6aは抵抗、9はトランジスタでコレクタ
は抵抗6aを介しコンデンサ4のプラス側に接続され、
同エミッタは抵抗20を介しコンデンサ4のマイナス側
(N)に接続される。10はオペアンプで比較器として
働き、同非反転入力端子はコンデンサ4のプラス側とN
の間に直列に接続された抵抗11と抵抗12の接続点に
接続され、同反転入力端子は、PとNの間に直列に接続
された抵抗13と抵抗14の接続点に接続され、同出力
端子は、抵抗15を介してトランジスタ9のベースに接
続され、抵抗15とトランジスタ9のベースの接続点と
Nの間にコンデンサ16が接続される。17はツェナー
ダイオードで、アノードは抵抗18を介してNに接続さ
れ、同カソードは抵抗19を介してPに接続されると共
に、オペアンプ10のプラス電源端子に接続されオペア
ンプの電源を構成している。オペアンプ10のマイナス
電源端子はNに接続されている。
In the figure, 1 to 4, 7.8 are the same as those in the conventional example, so explanations thereof will be omitted. A resistor 5a is connected in parallel to both ends of the capacitor 3. 6a is a resistor, 9 is a transistor whose collector is connected to the positive side of the capacitor 4 via the resistor 6a,
The emitter is connected to the negative side (N) of the capacitor 4 via a resistor 20. 10 is an operational amplifier that functions as a comparator, and its non-inverting input terminal is connected to the positive side of capacitor 4 and N
The inverting input terminal is connected to the connection point between resistor 13 and resistor 14 connected in series between P and N. The output terminal is connected to the base of the transistor 9 via a resistor 15, and a capacitor 16 is connected between the connection point between the resistor 15 and the base of the transistor 9 and N. 17 is a Zener diode, the anode of which is connected to N via a resistor 18, the cathode of which is connected to P via a resistor 19, and the positive power terminal of the operational amplifier 10, constituting the power source of the operational amplifier. . The negative power terminal of the operational amplifier 10 is connected to N.

以上のように構成された本実施例のインバータ装置につ
いて、以下その動作を説明する。
The operation of the inverter device of this embodiment configured as described above will be described below.

コンデンサ3の漏れ電流が最大の時の漏れ電流抵抗をR
とする(従来例の説明に用いたRと同じ)と、抵抗5a
をR1抵抗6aをR/2の値としておく。
The leakage current resistance when the leakage current of capacitor 3 is maximum is R
(same as R used in the explanation of the conventional example), the resistance 5a
Let R1 resistor 6a have a value of R/2.

オペアンプ10の非反転入力より、コンデンサ4の両端
の電圧V4を検出し、同反転入力はPN間の電圧VPN
を検出している。ここで、抵抗11゜12.13.14
の比率を99: l :199: 1とすると、v4が
VPNの半分、つまりV4がV3に等しい時に、オペア
ンプ10の入力が等しくなる。
The voltage V4 across the capacitor 4 is detected from the non-inverting input of the operational amplifier 10, and the inverting input is the voltage VPN between PN.
is being detected. Here, resistance 11°12.13.14
If the ratio is 99:l :199:1, the inputs of the operational amplifier 10 will be equal when v4 is half of VPN, that is, when V4 is equal to V3.

v4がv3より大きい時、オペアンプ10の非反転入力
の方が高い電位となるため、同出力はHighとなり、
トランジスタ9のベース電位を抵抗15とコンデンサ1
6で決まる時定数で上げて行く。
When v4 is larger than v3, the non-inverting input of the operational amplifier 10 has a higher potential, so the output becomes High,
The base potential of transistor 9 is connected to resistor 15 and capacitor 1.
Increase it with the time constant determined by 6.

すると、トランジスタ9に流れる電流1cは増加してい
くのでv4は減少して行き、V3が増加して行く。そう
するといずれv4がv3より小さくなる。今度は、オペ
アンプ10の反転入力の方が高い電位となるため、同出
力はLowとなり、トランジスタ9のベース電位を抵抗
15とコンデンサ16で決まる時定数で下げて行き、ト
ランジスタ9に流れる電流を減少させるのでV4は増加
して行(。そして、またv4がV3より太き(なる。
Then, the current 1c flowing through the transistor 9 increases, so that v4 decreases and V3 increases. Then v4 will eventually become smaller than v3. This time, since the inverting input of the operational amplifier 10 has a higher potential, its output becomes Low, and the base potential of the transistor 9 is lowered with a time constant determined by the resistor 15 and capacitor 16, reducing the current flowing through the transistor 9. Therefore, V4 increases and becomes thicker than V3.

以上の動作を繰り返して高速に行うので、V4とv3は
ほぼ等しくなる様に保たれる。
Since the above operation is repeated and performed at high speed, V4 and v3 are kept approximately equal.

ここで抵抗5aをR9抵抗6aをR/2としたのは一方
のコンデンサの漏れ電流が最大で、他の一方の漏れ電流
がゼロの時でも上記動作が行える様にするための最大の
抵抗値であるからである。
Here, the reason why the resistor 5a is R9 and the resistor 6a is R/2 is the maximum resistance value so that the above operation can be performed even when the leakage current of one capacitor is maximum and the leakage current of the other capacitor is zero. This is because.

本実施例によれば、従来例の説明にあげた条件では、バ
ランス抵抗は、RとR/2となり、V3=V4=342
Vとなるため、バランス抵抗のワット数は約115と1
/2.5になり、コンデンサの耐圧も350Vで良くな
る。
According to this embodiment, under the conditions given in the explanation of the conventional example, the balance resistance is R and R/2, and V3=V4=342
V, the wattage of the balance resistor is approximately 115 and 1
/2.5, and the withstand voltage of the capacitor also improves to 350V.

なお、本実施例では、抵抗5aをR1抵抗6aをR/2
としたが、この抵抗値でな(とも、この値より小さけれ
ばよい。また、バランス抵抗の電流制御は、N側のバラ
ンス抵抗で行ったが、p (1111のバランス抵抗で
行ってもよい。
In this embodiment, the resistor 5a is R1 and the resistor 6a is R/2.
However, this resistance value is not required (any value smaller than this value is sufficient.Also, although the current control of the balance resistor was performed by the N-side balance resistor, it may also be performed by a balance resistor of p (1111).

発明の効果 本発明は、コンバータ回路の直列に接続された2つのコ
ンデンサの端子電圧を等しくすることができ、これらの
コンデンサの耐圧を下げることができると共に、バラン
ス抵抗の消費電力を大幅に減少させることができるとい
う効果を得ることができる。
Effects of the Invention The present invention can equalize the terminal voltages of two series-connected capacitors in a converter circuit, reduce the withstand voltage of these capacitors, and significantly reduce the power consumption of the balance resistor. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるインバータ装置のコ
ンバータ回路図、第2図はコンデンサの等価回路図、第
3図は従来のインバータ装置のコンバータ回路図である
。 3.4・・・・・・アルミ電解コンデンサ、5 a *
 6 a 。 ・・・・・・抵抗、9・・・・・・トランジスタ、10
・・・・・・オペアンプ。 代理人の氏名 弁理士 中尾敏男 ばか1名第2図 P
FIG. 1 is a converter circuit diagram of an inverter device according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of a capacitor, and FIG. 3 is a converter circuit diagram of a conventional inverter device. 3.4...Aluminum electrolytic capacitor, 5a*
6 a. ...Resistor, 9...Transistor, 10
...Op amp. Name of agent Patent attorney Toshio Nakao One idiot Figure 2 P

Claims (1)

【特許請求の範囲】[Claims] 三相ダイオードブリッジの出力に直列に接続された2個
のコンデンサを有し、これらの2個のコンデンサのそれ
ぞれの端子電圧を比較し、その比較信号で、前記2個の
コンデンサにそれぞれ並列に接続されたバランス抵抗の
一方を流れる電流を変化させて、前記2個のコンデンサ
の端子電圧を等しくする構成にしたインバータ装置のコ
ンバータ回路。
It has two capacitors connected in series to the output of the three-phase diode bridge, compares the respective terminal voltages of these two capacitors, and uses the comparison signal to connect each of the two capacitors in parallel. A converter circuit for an inverter device configured to equalize the terminal voltages of the two capacitors by changing the current flowing through one of the balance resistors.
JP32854887A 1987-12-24 1987-12-24 Converter circuit for inverter device Pending JPH01169516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32854887A JPH01169516A (en) 1987-12-24 1987-12-24 Converter circuit for inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32854887A JPH01169516A (en) 1987-12-24 1987-12-24 Converter circuit for inverter device

Publications (1)

Publication Number Publication Date
JPH01169516A true JPH01169516A (en) 1989-07-04

Family

ID=18211510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32854887A Pending JPH01169516A (en) 1987-12-24 1987-12-24 Converter circuit for inverter device

Country Status (1)

Country Link
JP (1) JPH01169516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016517A1 (en) 2009-08-07 2011-02-10 ダイキン工業株式会社 Voltage smoothing circuit
JP2011041367A (en) * 2009-08-07 2011-02-24 Daikin Industries Ltd Voltage smoothing circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176070A (en) * 1984-09-20 1986-04-18 Mitsubishi Electric Corp Converter device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176070A (en) * 1984-09-20 1986-04-18 Mitsubishi Electric Corp Converter device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016517A1 (en) 2009-08-07 2011-02-10 ダイキン工業株式会社 Voltage smoothing circuit
JP2011041367A (en) * 2009-08-07 2011-02-24 Daikin Industries Ltd Voltage smoothing circuit
CN102474191A (en) * 2009-08-07 2012-05-23 大金工业株式会社 Voltage smoothing circuit
KR101292468B1 (en) * 2009-08-07 2013-07-31 다이킨 고교 가부시키가이샤 Voltage smoothing circuit
US9001536B2 (en) 2009-08-07 2015-04-07 Daikin Industries, Ltd. Voltage smoothing circuit for smoothing voltage from power supply

Similar Documents

Publication Publication Date Title
EP0500789B1 (en) An uninterrupted power supply system having improved power factor correction circuit
US5798630A (en) Switching power circuit to supply electric-vehicle battery charger with high-frequency power
JPH01169516A (en) Converter circuit for inverter device
JPH07111784A (en) Power conversion system
JPH03195393A (en) Leak preventing device for inverter device
JP3054954B2 (en) Condenser AC boost circuit
JPH03280619A (en) Power element driving circuit
JP3237448B2 (en) Power supply
SU1753460A1 (en) Linear-pulse stabilizer of direct current
US4302806A (en) Filter for polyphase rectifier
SU1403299A1 (en) Stabilized a.c. to d.c. voltage converter
JPH0746842A (en) Smoothing circuit
JPH02106171A (en) Dc power supply
SU957188A1 (en) High-voltage dc voltage stabilizer
JPH06245550A (en) Power supply circuit
JP2001333592A (en) Motor driver
JPH0246176A (en) Output voltage detecting circuit for inverter device
SU1677701A1 (en) Constant voltage regulator
SU907531A1 (en) Single-cycle converter
JPH03139196A (en) Suppression of current ripple in inverter
SU855641A1 (en) Stabilized electric power supply system
JP2811377B2 (en) AC power supply
JPS6176073A (en) Inverter device
JPS60207450A (en) Current controller
JPS62225195A (en) Inverter control device