JPH01169066A - Vibration controlling structure for building construction - Google Patents

Vibration controlling structure for building construction

Info

Publication number
JPH01169066A
JPH01169066A JP33103187A JP33103187A JPH01169066A JP H01169066 A JPH01169066 A JP H01169066A JP 33103187 A JP33103187 A JP 33103187A JP 33103187 A JP33103187 A JP 33103187A JP H01169066 A JPH01169066 A JP H01169066A
Authority
JP
Japan
Prior art keywords
vibration
building structure
floor portion
rod
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33103187A
Other languages
Japanese (ja)
Other versions
JPH0447115B2 (en
Inventor
Nobuyoshi Murai
信義 村井
Yoshinori Takahashi
良典 高橋
Kazuyoshi Katayama
片山 和喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP33103187A priority Critical patent/JPH01169066A/en
Publication of JPH01169066A publication Critical patent/JPH01169066A/en
Publication of JPH0447115B2 publication Critical patent/JPH0447115B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To control vibration less-expensively by connecting the first member, connected to a floor of a building structure, with the second member, connected to a downstairs floor, in a manner that the first member is capable of swinging freely and horizontally around the axis, and by providing a vibration controlling mechanism which affects the first member. CONSTITUTION:When inter-story displacement occurs at each story of a building structure by a vibration propagated to the building structure by occurrence of an earthquake or the like, the lower end side of a rod 2 is displaced against the downside floor member 1b in the opposite direction to the movement of the upside floor member 1a. In a section whereto the lower end side of the rod 2 is ready to get near, repulsion acts between a superconducting magnet 5 and a permanent magnet 6. In a section wherefrom the lower end side of the rod 2 tends to be separated, attraction acts between the superconducting magnet 5 and the permanent magnet 6, making a displacement occur against the direction of the vibration of the building structure. Thus, control of the vibration of the building structure can be achieved by restraining shifting of the structure's center of gravity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ビルなどの建築構造体が地震などに起因して
震動することを抑制するための建築構造体の制震構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a vibration damping structure for an architectural structure such as a building for suppressing the vibration of an architectural structure due to an earthquake or the like.

〈従来の技術〉 建築構造体に対する制震構造としては、従来、建築構造
体の上部に水槽を設置するとともに、そこに溜められた
水を特定方向に特定周期で波釘たせる波発生装置を付設
し、地震発生時に、その地震波の方向と周期とを即座に
解析し、その解析された周期でもって、地震波を打ち消
す方向に波を発生するように波発生装置を起動し、地震
によって建築構造体が震動することを抑制するようにし
ていた。
<Conventional technology> Conventionally, as a vibration control structure for a building structure, a water tank is installed on the top of the building structure, and a wave generator is attached to the water tank to make waves in a specific direction and at a specific frequency. When an earthquake occurs, the direction and period of the seismic waves are immediately analyzed, and the wave generator is activated to generate waves in the direction of canceling the seismic waves using the analyzed period. I was trying to suppress it from shaking.

〈発明が解決しようとする問題点〉 しかしながら、このような従来構成によれば、大容量の
水槽を建築構造体に設置するために、その水槽の設置に
コストがかかり、そればかりか、水槽の荷重を支持する
ために、建築構造体の強度を大にしなければならず、そ
のうえ、波発生装置を駆動するための電力消費量が増大
し、イニシャルコストおよびランニングコストのいずれ
もが高くなる欠点があった。
<Problems to be Solved by the Invention> However, according to such a conventional configuration, since a large-capacity water tank is installed in a building structure, it is not only costly to install the water tank, but also the size of the water tank is In order to support the load, the strength of the building structure must be increased, and in addition, the power consumption to drive the wave generator increases, resulting in high initial and running costs. there were.

本発明は、このような事情に鑑みてなされたものであっ
て、地震に起因する震動が建築構造体に伝播したときに
、それによって建築構造体が震動することを安価にして
抑制できるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and is an object of the present invention to inexpensively suppress the vibration of a building structure when vibrations caused by an earthquake propagate to the building structure. The purpose is to

〈問題点を解決するための手段〉 本発明の建築構造体の制震構造は、このような目的を達
成するために、構造体の床部分に一体連接した第1の部
材を、その下方の床部分に一体連接した第2の部材に水
平またはほぼ水平の軸芯周りで揺動変位可能に連結し、
その連結点と上方側床部分との長さよりも長い箇所で前
記第1の部材に作用してその水平方向での変位に抵抗を
付与する制震機構を前記下方側床部分または第2の部材
に設けて構成する。
<Means for Solving the Problems> In order to achieve the above object, the vibration damping structure of the building structure of the present invention connects the first member that is integrally connected to the floor part of the structure to the lower part of the structure. connected to a second member integrally connected to the floor portion so as to be swingable around a horizontal or nearly horizontal axis;
A vibration damping mechanism that acts on the first member at a point longer than the length of the connecting point and the upper floor portion to provide resistance to displacement in the horizontal direction is installed on the lower floor portion or the second member. and configure it.

〈作用〉 上記構成によれば、地震によって建築構造体に震動が伝
播し、建築構造体が水平方向に変位して下方の床部分が
変位すると、それに伴い、初期には、上方側床部分が下
方側床部分に対して相対的に反対側に揺動するが、その
ときに、制震機構が第1の部材に作用して下方側床部分
に対する上方側床部分の相対変位を設定範囲内に抑え、
そして、その後に、上方側床部分が下方側床部分と同じ
方向に揺動するようになるが、そのときに、制震機構が
第1の部材に作用して下方側床部分に対する上方側床部
分の相対変位を設定範囲内に抑え、建築構造体の層間変
位を設定範囲内に抑えて建築構造体の重心位置が大きく
変位することを抑制し、地震に起因する建築構造体の震
動を抑制することができる。
<Operation> According to the above configuration, when vibrations propagate to the building structure due to an earthquake and the building structure is displaced in the horizontal direction and the lower floor section is displaced, initially the upper floor section is displaced. The vibration damping mechanism acts on the first member to keep the relative displacement of the upper floor part with respect to the lower floor part within a set range. Keep it to
After that, the upper side floor part begins to swing in the same direction as the lower side floor part, but at that time, the vibration damping mechanism acts on the first member to cause the upper side floor part to swing in the same direction as the lower side floor part. The relative displacement of parts is suppressed within the set range, and the interstory displacement of the building structure is suppressed within the set range, suppressing large displacement of the center of gravity of the building structure, and suppressing vibrations of the building structure caused by earthquakes. can do.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

〈第1実施例〉 第1図は、本発明に係る建築構造体の制震構造の第1実
施例を示す概略全体縦断面図であり、第2図は、第1図
の要部の一部切欠拡大回である。
<First Embodiment> FIG. 1 is a schematic overall vertical sectional view showing a first embodiment of a vibration control structure for a building structure according to the present invention, and FIG. This is an enlarged section of the cutout.

構造体Aの各階それぞれの上方側床部分1aに、下方に
延出して第1の部材としてのロッド2が一体連接され、
一方、各階それぞれの下方側床部分1bには、プレース
3,3を介して補強した状態で、上方側床部分1に近い
箇所において水平方向に支軸4が一体的に突設され、そ
の支軸4に前記ロッド2が水平方向またはほぼ水平方向
の軸芯2周りで揺動変位可能に連結されている。上記プ
レース3.3と支軸4とによって第2の部材が構成され
ている。
A rod 2 extending downward and serving as a first member is integrally connected to the upper floor portion 1a of each floor of the structure A,
On the other hand, on the lower floor part 1b of each floor, a support shaft 4 is integrally provided and protrudes horizontally at a location close to the upper floor part 1, with reinforcement via places 3, 3. The rod 2 is connected to the shaft 4 so as to be able to swing around an axis 2 in a horizontal direction or a substantially horizontal direction. The place 3.3 and the support shaft 4 constitute a second member.

下方側床部分1b・・・それぞれの所定箇所には、一対
の超電導マグネット5,5が設置され、一方、ロッド2
の先端側に、前記超電導マグネット5゜5それぞれに対
応位置させて、ロッド2の下端に連接されたアーム2a
に永久磁石6が付設され、超電導マグネット5と永久磁
石6との間での反発力と吸引力とを利用して、地震など
に起因する構造体Aの震動を抑制するように制震機構B
が構成されている。上記超電導マグネット5.5として
は、例えば、プレース3.3間に別の部材を連接し、そ
の別の部材に設けても良い。
A pair of superconducting magnets 5, 5 are installed at each predetermined location of the lower floor portion 1b, while a rod 2
An arm 2a connected to the lower end of the rod 2 is placed at a position corresponding to each of the superconducting magnets 5.5.
A permanent magnet 6 is attached to the superconducting magnet 5, and the vibration control mechanism B uses the repulsive force and attractive force between the superconducting magnet 5 and the permanent magnet 6 to suppress vibrations of the structure A caused by an earthquake or the like.
is configured. As the superconducting magnet 5.5, for example, another member may be connected between the places 3.3 and provided on that other member.

超電導マグネット5・・・それぞれは、第3図の要部の
拡大断面図および第4図の断面図それぞれに示すように
、真空槽7内の周方向の4箇所に、支持カラム8を介し
てヘリウム槽9・・・を設けるとともに、そのヘリウム
槽9・・・それぞれの内部に超電導コイル10を収納し
て構成されている。
Each of the superconducting magnets 5 is installed at four locations in the circumferential direction within the vacuum chamber 7 via a support column 8, as shown in the enlarged cross-sectional view of the main part in FIG. 3 and the cross-sectional view in FIG. Helium tanks 9 are provided, and superconducting coils 10 are housed inside each of the helium tanks 9.

前記ヘリウム槽9・・・には、ガス放出管11が連通接
続され、そのガス放出管11の端部が真空槽7の外方に
導出されるとともに、そこに設定以上の圧力で開く安全
弁12が設けられ、液体ヘリウムの気化に伴い、ヘリウ
ム槽9内の圧力が設定以上になったときにヘリウムガス
を逃がすように構成されている。
A gas discharge pipe 11 is connected in communication with the helium tank 9, and the end of the gas discharge pipe 11 is led out to the outside of the vacuum tank 7, and a safety valve 12 is provided therein which opens at a pressure higher than a set value. is provided, and is configured to release helium gas when the pressure within the helium tank 9 exceeds a set value as the liquid helium vaporizes.

真空槽7は、内筒7aと外筒7bとによって環状に形成
され、そして、内筒7a内に前記永久磁石6が相対変位
可能に嵌入されている。
The vacuum chamber 7 is formed into an annular shape by an inner cylinder 7a and an outer cylinder 7b, and the permanent magnet 6 is fitted into the inner cylinder 7a so as to be relatively displaceable.

超電導コイル10は、第5図の回路図に示すように、ヒ
ータ13を付設した永久電流スイッチ14と並列に電源
15に対して接続されている。
The superconducting coil 10 is connected to a power source 15 in parallel with a persistent current switch 14 provided with a heater 13, as shown in the circuit diagram of FIG.

そして、第1のスイッチ16を閉じてヒータ13により
永久電流スイッチ14を加熱し、常電導状態にして永久
電流スイッチ14に抵抗を持たせ、その状態で第2のス
イッチ17を閉じ、電源15により超電導コイル10に
励磁電流を流す。このようにして、励磁電流が流れた後
に、第1のスイッチ16を開いてヒータ13による加熱
を停止するとともに冷却により永久電流スイッチ14を
超電導状態にしてから第2のスイッチ17を開いて電源
15との接続を断ち、それにより、永久電流スイッチ1
4と超電導コイル10との間で閉ループを形成し、抵抗
零の状態で永久的に超電導コイル10に電流を流し続け
、所定の磁力を発生し続けるように構成されている。図
中18は、前述の第1および第2のスイッチ16.17
を0N1OFFするための制御装置を示している。
Then, the first switch 16 is closed and the persistent current switch 14 is heated by the heater 13 to make the persistent current switch 14 into a normally conductive state so that the persistent current switch 14 has resistance. An excitation current is applied to the superconducting coil 10. In this way, after the excitation current flows, the first switch 16 is opened to stop the heating by the heater 13, and the persistent current switch 14 is brought into the superconducting state by cooling, and then the second switch 17 is opened to stop the heating by the heater 13, and then the second switch 17 is opened to stop the heating by the heater 13. , thereby causing persistent current switch 1
A closed loop is formed between the superconducting coil 10 and the superconducting coil 10, and the structure is such that current continues to flow permanently through the superconducting coil 10 in a state of zero resistance, and a predetermined magnetic force continues to be generated. In the figure, 18 indicates the aforementioned first and second switches 16 and 17.
This shows a control device for turning ON/OFF.

第1図においては、図面上、下方側床部分1aに対して
上方側床部分1bが水平方向の一方向にのみ変位するよ
うに示されているが、それに直交する方向にも同様に変
位するように構成されていて、その変位の合成により、
二次元方向のいずれの震動をも抑制できるように構成さ
れている。
In FIG. 1, the upper floor portion 1b is shown to be displaced only in one horizontal direction with respect to the lower floor portion 1a, but it is also displaced in the direction perpendicular thereto. It is configured as follows, and by combining the displacements,
It is configured to suppress vibrations in any two-dimensional direction.

以上の構成により、地震などに起因して構造体Aに震動
が伝播され、各階において層間変位を生じたときに、下
方側床部分1bに対して、ロッド2の下端側が上方側床
部分1aの移動方向とは反対側に変位し、それに伴い、
ロッド2の下端側が近付こうとする部分においては、超
電導マグネット5と永久磁石6との間で反発力が作用し
、一方、ロッド2の下端側が遠ざかろうとする部分にお
いては、超電導マグネット5と永久磁石6との間で吸引
力が作用し、上方側床部分1aを、下方側床部分1bに
対して、構造体への震動方向とは反対側に変位させ、構
造体Aの重心位置の変動を抑えて震動を抑制することが
できる。
With the above configuration, when vibrations are propagated to the structure A due to an earthquake or the like and interstory displacement occurs on each floor, the lower end side of the rod 2 is connected to the upper floor portion 1a with respect to the lower floor portion 1b. It is displaced in the opposite direction to the direction of movement, and as a result,
In the part where the lower end of the rod 2 approaches, a repulsive force acts between the superconducting magnet 5 and the permanent magnet 6. On the other hand, in the part where the lower end of the rod 2 tries to move away, the superconducting magnet 5 and the permanent An attractive force acts between the magnet 6 and the upper floor portion 1a to displace the lower floor portion 1b in the direction opposite to the direction of vibration to the structure, causing a change in the center of gravity of the structure A. can suppress vibrations.

本発明としては、例えば、構造体Aの上階側の所定箇所
に、構造体Aの震動およびその方向を検出する震動セン
サを設け、その震動センサによる検出結果を制御袋M1
8に入力し、入力された震動の強さおよび方向に基づき
、作用させる超電導マグネット4を選択するとともに、
その超電導マグネット4における第1および第2のスイ
ッチ16.17それぞれに対するON時間とOFF時間
を算出し、その算出時間に対応するように、第1および
第2のスイッチ16.17それぞれをON、0FFI、
、超電導コイル10に、所定の周期で磁力を発生させて
構造体Aの震動を打ち消す状態に、下方側床部分1bに
対して上方側床部分1aを駆動変位するように構成し、
上方側床部分1a・・・を構造体Aの震動方向とは反対
側により大きく変位させ、その震動をより一層良好に抑
制するように構成しても良い。
In the present invention, for example, a vibration sensor for detecting the vibration of the structure A and its direction is provided at a predetermined location on the upper floor side of the structure A, and the detection results by the vibration sensor are transmitted to the control bag M1.
8 and selects the superconducting magnet 4 to act on based on the input vibration intensity and direction,
The ON time and OFF time for each of the first and second switches 16.17 in the superconducting magnet 4 are calculated, and the first and second switches 16.17 are turned ON and OFF to correspond to the calculated times. ,
, the superconducting coil 10 is configured to drive and displace the upper floor portion 1a relative to the lower floor portion 1b so as to generate magnetic force at a predetermined period to cancel vibrations of the structure A;
The upper floor portions 1a... may be displaced more largely to the side opposite to the vibration direction of the structure A, so that the vibrations can be suppressed even better.

上記実施例では、超電導コイル10をヘリウム槽9に収
納して冷却しているが、超電導コイル10を構成する線
材の材料によっては、液体窒素による低温槽に収納する
ようにしても良い。
In the above embodiment, the superconducting coil 10 is stored in the helium tank 9 for cooling, but depending on the material of the wire that constitutes the superconducting coil 10, it may be stored in a low temperature bath using liquid nitrogen.

〈第2実施例〉 第6図は、第2実施例の要部の一部切欠拡大図であり、
下方側床部分1bの所定箇所に、前述第1実施例の超電
導マグネット5.5それぞれに代えて、ダンパーオイル
19を充填したシリンダ20が設けられ、そのシリンダ
20.20それぞれのピストン21とロッド2の先端に
連接されたアーム2aとが一体的に連結され、ダンパー
オイル19.19それぞれの粘性により、ピストン21
の移動に抵抗を付与し、下方側床部分1bに対して上方
側床部分1aが変位することを抑制するように制震機構
Bが構成されている。
<Second Embodiment> FIG. 6 is a partially cutaway enlarged view of the main part of the second embodiment.
A cylinder 20 filled with damper oil 19 is provided at a predetermined location of the lower floor portion 1b in place of each of the superconducting magnets 5.5 of the first embodiment, and the piston 21 and rod 2 of each cylinder 20.20 are provided at a predetermined location. The piston 21 is integrally connected to the arm 2a connected to the tip of the piston 21 due to the viscosity of the damper oil 19 and 19.
The damping mechanism B is configured to provide resistance to the movement of the upper floor portion 1a and to suppress displacement of the upper floor portion 1a with respect to the lower floor portion 1b.

く第3実施例〉 第7図は、第3実施例の要部の一部切欠拡大図であり、
前述第1実施例の超電導マグネット5゜5それぞれに代
えてリニアモータ22が設けられ、そして、構造体Aの
所定箇所に震動センサ(図示せず)が設けられ、その震
動センサからの信号が制御回路23に入力されるととも
に、その入力結果に基づいてリニアモータ22,22に
所定の駆動出力を出し、震動センサによる震動の感知に
基づいて、構造体Aの揺れを動的に抑制するように制震
機構Bが構成されている。
3rd Embodiment> FIG. 7 is a partially cutaway enlarged view of the main part of the 3rd embodiment.
A linear motor 22 is provided in place of each of the superconducting magnets 5.5 of the first embodiment, and a vibration sensor (not shown) is provided at a predetermined location on the structure A, and signals from the vibration sensor are used for control. The input signal is input to the circuit 23, and based on the input result, a predetermined drive output is output to the linear motors 22, 22, and the shaking of the structure A is dynamically suppressed based on the detection of the vibration by the vibration sensor. A vibration damping mechanism B is configured.

即ち、リニアモータ22が発生する制御力は、震動セン
サの感知する変位の大きさに応じて変化し、上方側床部
分1aに対して、それぞれが変位しようとする方向とは
逆の方向に変位させるように加えられ、震動による構造
体Aの揺れを打ち消すように構成される。
That is, the control force generated by the linear motor 22 changes depending on the magnitude of the displacement sensed by the vibration sensor, and the control force generated by the linear motor 22 changes in accordance with the magnitude of the displacement detected by the vibration sensor. The structure is constructed so as to cancel out the shaking of structure A due to vibration.

上述実施例では、ロッド2を上方側床部分1aに近い位
置で支軸4に連結し、その連結点(軸芯P)と上方側床
部分1aとの長さに対する連結点と制震機構Bに作用す
る位置との長さの比が大きくなるように構成し、下方側
床部分1bに対して上方側床部分1aが少し変位しただ
けでも、ロッド2の下端側を大きく変位させ、てこの原
理により、制震機構Bによって良好に抵抗を付与できる
利点を有しているが、本発明としては、連結点と制震機
構Bに作用する位置とp長さを、連結点と上方側床部分
1aとの長さよりも長く構成するものであれば良い。
In the above-mentioned embodiment, the rod 2 is connected to the support shaft 4 at a position close to the upper floor portion 1a, and the connection point (axis center P) and the connection point and the vibration damping mechanism B are determined based on the length of the upper floor portion 1a. Even if the upper floor portion 1a is slightly displaced with respect to the lower floor portion 1b, the lower end of the rod 2 is largely displaced and the lever is According to the principle, the vibration damping mechanism B has the advantage of being able to provide good resistance, but in the present invention, the position and length of the connection point acting on the vibration damping mechanism B are set between the connection point and the upper floor. Any structure may be used as long as it is longer than the length of the portion 1a.

〈発明の効果〉 本発明によれば、従来の水槽を用いた制震構造のように
、制置のための構造物を支持するために構造体の強度を
高くするといったことをせずに済み、しかも、第1の部
材に対して、それを連接した上方側床部分と連結点との
長さよりも長い箇所で、制震機構によって変位抵抗を付
与するから、てこの原理により、比較的小さな制御力で
もって大きな抵抗を付与でき、制震機構の構成を簡単に
でき、建築構造体が震動することを、安価にして良好に
抑制できるようになった。
<Effects of the Invention> According to the present invention, it is not necessary to increase the strength of the structure in order to support the structure for restraining, unlike the conventional vibration control structure using a water tank. Moreover, since the damping mechanism applies displacement resistance to the first member at a location longer than the length of the connection point and the upper floor portion where it is connected, the displacement resistance is relatively small due to the lever principle. It has become possible to apply a large amount of resistance with control force, simplify the configuration of the vibration damping mechanism, and effectively suppress vibrations of architectural structures at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る建築構造体の制震構造の実施例を
示し、第1図は、第1実施例の概略全体縦断面図、第2
図は、第1図の要部の一部切欠拡大図、第3図は、第2
図の要部の拡大断面図、第4図は、第3図のIV−IV
線断面図、第5図は回路図、第6図は、第2実施例の要
部の一部切欠拡大図、第7図は第3実施例の要部の一部
切欠拡大図である。 la・・・上方側床部分 lb・・・下方側床部分 2・・・第1の部材としてのロッド 3・・・第2の部材を構成するプレース4・・・第2の
部材を構成する支軸 5・・・超電導マグネット A・・・構造体 B・・・制震機構 出願人 株式会社 竹 中 工 務 店代理人 弁理士
  杉  谷    勉第1図 第2図 第5図 第3図
The drawings show an embodiment of the damping structure for a building structure according to the present invention, and FIG. 1 is a schematic overall vertical sectional view of the first embodiment, and FIG.
The figure is a partially cutaway enlarged view of the main part of Figure 1, and Figure 3 is an enlarged view of the main part of Figure 2.
An enlarged sectional view of the main part of the figure, FIG. 4 is taken from IV-IV in FIG. 3.
5 is a circuit diagram, FIG. 6 is a partially cutaway enlarged view of the main part of the second embodiment, and FIG. 7 is a partially cutaway enlarged view of the main part of the third embodiment. la...Upper side floor portion lb...Lower side floor portion 2...Rod 3 as the first member...Place 4 constituting the second member...Constituting the second member Support shaft 5...Superconducting magnet A...Structure B...Vibration control mechanism Applicant: Takenaka Corporation Agent: Patent attorney Tsutomu Sugitani Figure 1 Figure 2 Figure 5 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)構造体の床部分に一体連接した第1の部材を、そ
の下方の床部分に一体連接した第2の部材に水平または
ほぼ水平の軸芯周りで揺動変位可能に連結し、その連結
点と上方側床部分との長さよりも長い箇所で前記第1の
部材に作用してその水平方向での変位に抵抗を付与する
制震機構を前記下方側床部分または第2の部材に設けた
ことを特徴とする建築構造体の制震構造。
(1) A first member integrally connected to the floor portion of the structure is connected to a second member integrally connected to the floor portion below it so as to be able to swing around a horizontal or nearly horizontal axis, and A damping mechanism that acts on the first member at a location longer than the length of the connection point and the upper floor portion to provide resistance to displacement in the horizontal direction is provided on the lower floor portion or the second member. A seismic damping structure for an architectural structure characterized by the provision of a seismic damping structure.
(2)前記制震機構が、前記第1の部材と前記下方側床
部分との間に両者の設定範囲内の相対変位を許容する状
態で超電導マグネットを介在して構成されたものである
特許請求の範囲第(1)項に記載の建築構造体の制震構
造。
(2) A patent in which the vibration damping mechanism is constructed by interposing a superconducting magnet between the first member and the lower floor portion in a state that allows relative displacement between the two within a set range. A vibration control structure for a building structure according to claim (1).
JP33103187A 1987-12-25 1987-12-25 Vibration controlling structure for building construction Granted JPH01169066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33103187A JPH01169066A (en) 1987-12-25 1987-12-25 Vibration controlling structure for building construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33103187A JPH01169066A (en) 1987-12-25 1987-12-25 Vibration controlling structure for building construction

Publications (2)

Publication Number Publication Date
JPH01169066A true JPH01169066A (en) 1989-07-04
JPH0447115B2 JPH0447115B2 (en) 1992-08-03

Family

ID=18239050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33103187A Granted JPH01169066A (en) 1987-12-25 1987-12-25 Vibration controlling structure for building construction

Country Status (1)

Country Link
JP (1) JPH01169066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784226B2 (en) * 2004-11-26 2010-08-31 Nippon Steel Corporation Joint structure for antiseismic reinforcement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621977U (en) * 1979-07-28 1981-02-26
JPS60250167A (en) * 1984-05-23 1985-12-10 富沢 稔 Vibration dampening apparatus by external friction attached to structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621977U (en) * 1979-07-28 1981-02-26
JPS60250167A (en) * 1984-05-23 1985-12-10 富沢 稔 Vibration dampening apparatus by external friction attached to structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784226B2 (en) * 2004-11-26 2010-08-31 Nippon Steel Corporation Joint structure for antiseismic reinforcement

Also Published As

Publication number Publication date
JPH0447115B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
US5439082A (en) Hydraulic inertial vibration isolator
KR0156745B1 (en) Hydraulic antivibratory device
US5653427A (en) Liquid filled type vibration isolating device
JPH03194238A (en) Vibration controller using magnetic elastic body
JPH01169066A (en) Vibration controlling structure for building construction
JPH10246273A (en) Suspension device for vehicle
JP2001280417A (en) Electromagnetic suspension device
JPH01250568A (en) Vibration control structure for building structure body
JPH04312229A (en) Liquid seal vibration isolating device
JP2644536B2 (en) Vibration control structure of building structure
JP2000234646A (en) Vibration control device
JPH06129487A (en) Spring constant variable type damping device
JPH0731788A (en) Washing machine
JP3204238B2 (en) Restraint / release type vibration damping device
JPH01322072A (en) Magnetically levitating vibro-isolating structure for building
JPH04341634A (en) Vibro-isolating structure of vibrator
JP2004075228A (en) Elevator
JPH0544757A (en) Suspension device
JP4147783B2 (en) Mounting device
JP2001248682A (en) Repetitive motion device and refrigerator
JPH02136478A (en) Damping device utilizing magnetic fluid
JPS63130946A (en) Vibration isolator
JPH01203730A (en) Damper gear
JP2963935B2 (en) Anti-vibration support device
JPS63289351A (en) Active damper