JPH01168806A - Production of chromium-contained molten iron - Google Patents

Production of chromium-contained molten iron

Info

Publication number
JPH01168806A
JPH01168806A JP32544687A JP32544687A JPH01168806A JP H01168806 A JPH01168806 A JP H01168806A JP 32544687 A JP32544687 A JP 32544687A JP 32544687 A JP32544687 A JP 32544687A JP H01168806 A JPH01168806 A JP H01168806A
Authority
JP
Japan
Prior art keywords
chromium
molten iron
reduction
furnace
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32544687A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoneda
米田 信幸
Masahiro Kinugasa
衣笠 雅普
Morihiro Hasegawa
長谷川 守弘
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP32544687A priority Critical patent/JPH01168806A/en
Publication of JPH01168806A publication Critical patent/JPH01168806A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To produce chromium-contained molten iron at high reduction speed and good workability by charging chromium oxide-contained material, carbonic material, flux and Fe-Si alloy into a reaction vessel charging molten iron and executing bottom blowing stirring and top oxygen blowing. CONSTITUTION:The molten iron 8 is charged into the reaction vessel 1 capable of top blowing and solid material composed of chromium oxide-contained material, carbonic material and flux is charged from a bunker 6 through the furnace top opening 3. Successively, nitrogen gas, etc., is blown from the tuyeres 2 of the furnace bottom and while executing bottom blowing stirring, oxygen is blown from the top blowing lance 4. By this method, smelting and reduction of the above chromium oxide are executed. Then, before or on the way of this smelting reduction, Fe-Si alloy is supplied from the furnace top. By this method, Si in the above alloy is effectively made to function as a reduction agent and the smelting reduction is executed at high reduction speed and good workability, and the chromium-contained molten iron is simply obtd. at good efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体のクロム酸化物含有物質をクロム源とし
て使用し、これを炉内で溶融還元することによりステン
レス粗溶湯などの含クロム溶鉄を製造する方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a solid chromium oxide-containing substance as a chromium source and melts and reduces it in a furnace to produce chromium-containing molten iron such as crude molten stainless steel. Relating to a method of manufacturing.

〔従来の技術〕[Conventional technology]

従来、ステンレス鋼製造用の含クロム溶鉄の製造には、
電気炉にクロム源、スクラップ、フラックスおよび必要
に応じ副原料やコークスを装入して溶解する方法がとら
れてきた。その際、クロム源としては高炭素フエロクロ
ムが使用されるのが通常であり、この高炭素フエロクロ
ムを製造するにも電気炉を使用している。したがって、
多量の電力消費を必要とすることから、近年、溶融還元
炉を用いてクロム鉱石或いはその半還元物等のクロム酸
化物含有物質をコークス等の炭材により直接的に溶融還
元する方法が提案されている。
Conventionally, in the production of chromium-containing molten iron for stainless steel production,
A method has been adopted in which a chromium source, scrap, flux, and if necessary auxiliary raw materials and coke are charged into an electric furnace and melted. In this case, high carbon ferrochrome is usually used as the chromium source, and an electric furnace is also used to produce this high carbon ferrochrome. therefore,
Since it requires a large amount of electricity consumption, in recent years a method has been proposed in which chromium oxide-containing substances, such as chromium ore or its half-reduced products, are directly smelted and reduced with carbonaceous material such as coke using a smelting reduction furnace. ing.

例えば鉄と鋼’85−3928には、上底吹き転炉に溶
銑を装入したうえ、炉上からコークス、クロム鉱石、造
滓材を連続供給し、底吹N2撹拌しなから上吹ランスか
ら送酸してクロム鉱石を溶融還元する方法が記載されて
いる。
For example, in Tetsu-to-Hagane '85-3928, hot metal was charged into a top-bottom blowing converter, and coke, chromium ore, and slag forming material were continuously supplied from the top of the furnace. A method is described in which chromium ore is melted and reduced by sending acid from it.

また特開昭61−69944号公報は、上底吹き反応容
器に、溶鉄、予備還元クロム鉱石、炭材を装入し酸素を
供給してフェロクロムに溶融還元する方法を開示してお
り、そのさい、スラグ中の酸化物含有量の実質止金てが
還元されてからSt金合金スラグ上から装入して溶融す
ると、スラグ中のフェロクロムは金属浴中に移行させる
ことができると教示している。
Furthermore, JP-A No. 61-69944 discloses a method in which molten iron, pre-reduced chromium ore, and carbonaceous material are charged into a top-bottom blowing reaction vessel and melted and reduced to ferrochrome by supplying oxygen. teaches that the ferrochrome in the slag can be transferred into the metal bath when the slag is charged from above and melted after the oxide content in the slag has been substantially reduced. .

特開昭62−80214号公報は、上底吹き転炉等の溶
融還元炉において、金属浴面より上でスラグ面より下に
設けた羽口からCOガスまたはN2ガスをキャリヤーガ
スとしてコークス粉またはFe−5i粉を吹込むことに
よって、クロム酸化物の還元を行なう方法を開示する。
JP-A-62-80214 discloses that in a melting reduction furnace such as a top-bottom blowing converter, coke powder or A method for reducing chromium oxide by injecting Fe-5i powder is disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、これまでの溶融還元法では、クロム酸化物の還
元は、スラグ中に懸濁している炭材または溶鉄中の炭素
に依存するものであった。そのため還元速度が一般に遅
く、スラグ中のクロム分を溶鉄中に歩留りよく回収する
ためには9例えば前掲の鉄と鋼’ 87−5928に示
されるように、クロム酸化鉄物含有物質の投入完了後も
送酸と撹拌をかなり長時間実施せねばならず処理時間を
長く必要とした。
Generally, in conventional smelting reduction methods, the reduction of chromium oxide has relied on carbonaceous material suspended in slag or carbon in molten iron. Therefore, the reduction rate is generally slow, and in order to recover the chromium content in slag into molten iron with a high yield, it is necessary to complete the addition of chromium iron oxide-containing substances, as shown in 9, for example, the above-mentioned Iron and Steel '87-5928. In addition, acid feeding and stirring had to be carried out for a considerable period of time, requiring a long processing time.

また、還元剤としてPe−5i粉を使用することが前記
特開昭62−80214号公報に提案されているが。
Further, the use of Pe-5i powder as a reducing agent is proposed in the above-mentioned Japanese Patent Application Laid-Open No. 62-80214.

この場合には、 Fe−5i粉を羽口からスラグ中にC
OやN2をキャリヤーガスとしてインジェクシヨンする
ものであるから、精錬装置の装置構成が複雑になること
は否めない。
In this case, Fe-5i powder is introduced into the slag from the tuyere.
Since O or N2 is injected as a carrier gas, it is undeniable that the configuration of the refining equipment becomes complicated.

特開昭61−69944号公報はSi合金の添加を開示
するが、この場合にはスラグ中のクロム酸化物含有量が
1%以下になった時点、つまり還元が実質上終了したあ
とにSi合金を添加するものである。
JP-A-61-69944 discloses the addition of a Si alloy, but in this case, the Si alloy is added when the chromium oxide content in the slag becomes 1% or less, that is, after the reduction is substantially completed. is added.

したがって、このSi合金は還元速度の向上には寄与し
ないと考えられる。
Therefore, it is considered that this Si alloy does not contribute to improving the reduction rate.

本発明は、上底吹き可能な反応容器を用いて固体のクロ
ム酸化物を溶融還元するさいにF e−S iを用いて
高い還元速度のもとて操業性よく溶融還元を行なうこと
を目的としたものである。
The purpose of the present invention is to melt and reduce solid chromium oxide using Fe-Si at a high reduction rate and with good operability when melting and reducing solid chromium oxide using a top-bottom blown reaction vessel. That is.

〔問題点を解決するための手段] 前記の目的を達成せんとする本発明の要旨とするところ
は、上底吹き可能な反応容器に溶鉄を装入し、炉上より
クロム酸化物含有物質、炭材およびフラックスからなる
固体材料を装入し、底吹き撹拌を行いながら上吹きラン
スから送酸してクロム酸化物の溶融と還元を行うさいに
、この溶融還元の操作前または途中にF e−S i合
金を炉上より供給することを特徴とする。
[Means for Solving the Problems] The gist of the present invention, which aims to achieve the above-mentioned object, is to charge molten iron into a top-bottom blown reaction vessel, and to charge a chromium oxide-containing material from above the furnace. When charging a solid material consisting of carbonaceous material and flux and melting and reducing chromium oxide by sending oxygen from a top-blowing lance while performing bottom-blowing stirring, F e is added before or during the melt-reduction operation. -Si alloy is supplied from above the furnace.

すなわち本発明は、溶融還元炉の上部より装入するクロ
ム酸化物含有物質、炭材およびフラックスからなる固体
材料の炉上装入物として、これらに加えてF e−S 
i合金を含ませるのであり、このFe−3i合金中のS
rを溶融還元期における還元剤として機能させるもので
ある。本発明者らは溶融還元期の材料である該炉上装入
物にF e−S i合金を合わせて供給すると、クロム
酸化物の還元速度が著しく上昇しまたスラグ中のクロム
分の回収歩留を向上させることができることを見出し1
本発明法の場合には、溶融還元期に引き続く仕上げ還元
期を特別に設けなくても、高いCr歩留りで且つ短時間
の精錬時間で含クロム溶鉄を製造することができること
がわかった。従来のクロム酸化物の溶融還元法は溶融還
元期とこれに引き続く仕上げ還元期とからなるものであ
り、仕上げ還元期では装入物質のうち少なくともクロム
酸化物含有物質の供給を止めたうえ−で、溶融還元期と
同様の操作を行ってスラグ中に残存するクロム酸化物の
還元を行なうことがクロム歩留り向上の点から必要とし
ていたのであるが1本発明法によると、この仕上げ還元
期の時間を大幅に短縮しても、また場合によっては仕上
げ還元期を特別に設けなくても、高いクロム歩留りが達
成でき9全体としての処理時間は大幅に短縮できる。
That is, the present invention provides a furnace charge of a solid material consisting of a chromium oxide-containing substance, a carbonaceous material, and a flux, which is charged from the upper part of a smelting reduction furnace.
i alloy, and S in this Fe-3i alloy
This allows r to function as a reducing agent during the melting reduction period. The present inventors have found that when Fe-Si alloy is supplied together with the furnace charge, which is the material in the smelting reduction stage, the reduction rate of chromium oxide increases significantly, and the recovery rate of chromium in the slag increases. Finding 1 that it can improve retention
In the case of the method of the present invention, it has been found that chromium-containing molten iron can be produced with a high Cr yield and in a short refining time without the need to specifically provide a final reduction period following the smelting reduction period. The conventional smelting reduction method for chromium oxide consists of a smelting reduction period and a finishing reduction period that follows this, and in the finishing reduction period, the supply of at least the chromium oxide-containing material among the charged materials is stopped, and then In order to improve the chromium yield, it was necessary to reduce the chromium oxide remaining in the slag by performing the same operation as in the smelting reduction period, but according to the method of the present invention, the time of this final reduction period can be reduced. A high chromium yield can be achieved even if the process time is significantly shortened, or even without a special finishing reduction period in some cases, and the overall processing time can be significantly shortened.

第1図に本発明法の実施に適する溶融還元炉を示した。FIG. 1 shows a melting reduction furnace suitable for carrying out the method of the present invention.

この炉は、筒型反応容器1の炉底に羽口2を設け、炉頂
の開口3から上吹きランス4を挿入するようにした上底
吹き可能な精錬容器であり。
This furnace is a refining vessel capable of top and bottom blowing, in which a tuyere 2 is provided at the bottom of a cylindrical reaction vessel 1, and a top blowing lance 4 is inserted through an opening 3 at the top of the furnace.

炉頂の開口3から固体装入物を投入できるように。Solid charge can now be introduced through opening 3 at the top of the furnace.

炉上部にバンカー6が設けられている。7は排気フード
を示す、また、8は炉内の溶鉄層を、9はその上のスラ
グ層を示す。
A bunker 6 is provided at the top of the furnace. 7 indicates an exhaust hood, 8 indicates a molten iron layer in the furnace, and 9 indicates a slag layer above it.

この炉の操業は、炉底の羽口2から撹拌用ガスを吹き込
みなから溶鉄を反応容器1に装入し、バンカー6からク
ロム酸化物含有物質、炭材およびフラックスを供給した
うえまたは供給しながら。
This furnace is operated by first blowing stirring gas through the tuyere 2 at the bottom of the furnace, then charging molten iron into the reaction vessel 1, and supplying or supplying a chromium oxide-containing material, carbonaceous material, and flux from the bunker 6. While.

ランス4から送酸することによって行われるが。This is done by sending oxygen from lance 4.

本発明法においては、最初の溶融還元期の始まる前また
は途中においてバンカー6からF e−S i合金を装
入し、−または装入しつづけ、これを溶融することによ
って、溶鉄中にSiを溶解し、この金属浴中のSiを還
元剤としてクロム酸化物の還元を行わせ、また次の仕上
還元期、つまりクロム酸化物は新たに炉内に投入せずに
スラグ中に残留するクロム酸化物を還元する段階を行な
う場合には残留するSiによって残留クロム酸化物の還
元を助成するのである。Fe−3t合金のバンカー6か
らの投入は、溶融還元期の操業中において連続的に投入
してもよいし1回分式に時間を置きながら投入を続ける
方式で投入してもよい。
In the method of the present invention, Si is introduced into the molten iron by charging or continuing to charge Fe-Si alloy from the bunker 6 before or during the first smelting reduction period and melting it. The Si in the metal bath is used as a reducing agent to reduce the chromium oxide, and in the next final reduction period, the chromium oxide is not added to the furnace and the chromium oxide remaining in the slag is reduced. When performing the step of reducing chromium oxide, the remaining Si assists in reducing the remaining chromium oxide. The Fe-3t alloy may be fed from the bunker 6 continuously during the operation during the melting and reduction period, or may be fed in one batch at a time interval.

このようにして、溶融還元期にクロム酸化物含有物質等
の供給物とともにF e−S i合金を供給すると、溶
鉄中に溶解したシリコンによってクロム酸化物が良好に
還元される。これは、クロム酸化物を還元する能力は炭
素よりもシリコンの方が大きいことによる。またスラグ
層中で溶融したFe−Si合金は、シリコンとクロム酸
化物の反応に加えて、スラグ中に懸濁しているメタル粒
を捕捉回収する。これによって、クロム酸化物の還元速
度およびスラグ中のクロム分の回収歩留の両者を上昇さ
せることができ、処理時間を大幅に短縮することができ
る。Fe−Si合金の投入そのものはコストアップに繋
がるが処理時間の低減効果が著しいので、適切なF e
−S +合金の添加量では総合的に見てコストダウンと
なる。Fe−Si合金の投入量は限定的ではないが供給
するクロム分に対して約5%〜45%が適当である。そ
れ以上に供給してもコストに見あう還元速度の向上は得
られず、また5%より少なくても還元速度の改善に効果
が小さい。
In this way, when the Fe-S i alloy is supplied together with supplies such as a chromium oxide-containing substance during the smelting and reduction period, the chromium oxide is effectively reduced by the silicon dissolved in the molten iron. This is because silicon has a greater ability to reduce chromium oxide than carbon. Further, the Fe-Si alloy melted in the slag layer not only reacts with silicon and chromium oxide, but also captures and recovers metal particles suspended in the slag. As a result, both the reduction rate of chromium oxide and the recovery yield of chromium in the slag can be increased, and the processing time can be significantly shortened. Although the introduction of Fe-Si alloy itself leads to an increase in cost, it has a remarkable effect of reducing processing time, so it is necessary to
The amount of addition of -S + alloy results in a cost reduction overall. Although the amount of Fe--Si alloy to be added is not limited, it is appropriate to range from about 5% to 45% based on the chromium content to be supplied. Even if it is supplied in excess of this amount, an improvement in the reduction rate commensurate with the cost cannot be obtained, and if it is less than 5%, the effect of improving the reduction rate is small.

本発明法における反応容器中に溶融還元処理を行う前に
入れる溶鉄には、2%以上のCおよび39%までのCr
を含む鉄あるいは鉄−クロム系溶湯を用いて行なうのが
よく、必要に応じてNi等の他の成分を含有してもよい
、また、前ヒートの一部を残湯として利用してもよい、
バンカーより炉内に投入するクロム酸化物含有物質とし
ては、クロム鉱石、未還元または半還元クロムペレット
In the method of the present invention, the molten iron introduced into the reaction vessel before the smelting reduction treatment contains at least 2% C and up to 39% Cr.
It is preferable to use iron or iron-chromium-based molten metal containing Ni, and if necessary, other components such as Ni may be included. Also, a part of the previous heat may be used as residual metal. ,
The chromium oxide-containing materials introduced into the furnace from the bunker include chromium ore and unreduced or semi-reduced chromium pellets.

クロム焼結鉱などを使用することができ、フラックスと
しては、該クロム酸化物含有物質のスラグへの溶融を促
進するためにCaO,珪砂等のS i Oz源、蛍石等
のCa F z等が使用される。炭材はコークスの使用
が一般的である。上吹きランスからは酸素または酸素混
合ガスを供給し、炉底の羽口からは、窒素、アルゴン、
−酸化炭素、二酸化炭素、炭化水素ガス等のガスを供給
する。場合によっては炉底の羽口から酸素含有ガスを供
給することもできる。また1反応容器の側壁に横吹き羽
口を設けて、これから同様のガスを吹き込んでもよい、
さらに固体の装入原料を炉上からその全部を装入するの
ではなく、その一部を粉体としてこれを炉底の羽口、上
吹きランス或いは横吹き羽口からガスと共にインジェク
ションする溶融還元法の場合にも本発明によるF e−
S i合金の炉上からの投入操業とその効果を享受する
ことができる。
Sintered chromium ore or the like can be used, and fluxes include CaO, a SiOz source such as silica sand, CaFz such as fluorite, etc., in order to promote the melting of the chromium oxide-containing substance into slag. is used. Coke is commonly used as the carbon material. Oxygen or oxygen mixed gas is supplied from the top blowing lance, and nitrogen, argon,
- Supplying gases such as carbon oxide, carbon dioxide, hydrocarbon gases, etc. In some cases, oxygen-containing gas can also be supplied through tuyeres at the bottom of the furnace. Alternatively, a side blowing tuyere may be provided on the side wall of one reaction vessel, and the same gas may be blown from there.
Furthermore, instead of charging all of the solid raw material from the top of the furnace, a part of it is turned into powder and is injected together with gas from the tuyere at the bottom of the furnace, top-blowing lance, or side-blowing tuyere. Also in the case of the F e-
It is possible to enjoy the operation of charging Si alloy from above the furnace and its effects.

〔実施例〕〔Example〕

第1図に示す構造の0.5トンの上底吹き可能な反応容
器を用いて、第1〜3表に示す成分のクロム鉱石の半還
元ペレット、Fe−3t合金、コークスを使用して、第
4表に示す処理条件にて溶融還元を行った場合の、処理
中におけるスラグ中のクロム%(χT、Cr)の推移を
、溶融還元期にF e−S i合金を投入しなかった場
合と比較して第2図に示した。実施例では供給するクロ
ム分に対して37%のF e−S i合金を供給し、比
較例ではF e−S i合金を供給しない。
Using a 0.5 ton top-bottom blown reaction vessel having the structure shown in FIG. The changes in chromium% (χT, Cr) in the slag during the treatment when melting reduction is carried out under the processing conditions shown in Table 4, and when no Fe-Si alloy is added during the melting reduction period. A comparison is shown in Figure 2. In the example, 37% of Fe-Si alloy was supplied with respect to the supplied chromium content, and in the comparative example, no Fe-Si alloy was supplied.

第2図より明らかな樺にこの発明法によれば溶融還元期
に、Fe−3i合金を供給することによって、溶融還元
終了時に、スラグ中の(χT、(:r) −1,0%に
到達し、処理時間を大幅に短縮することができる。尚、
工業的にはスラグ中の(χT、Cr)51%で処理終了
とみなされる。したがって、特に仕上げ還元期を設けな
くても、装入されたクロム酸化物は十分に還元すること
ができる。
According to this invention method, Fe-3i alloy is supplied to birch during the smelting and reduction period as shown in Fig. 2. can be achieved and the processing time can be significantly shortened.In addition,
Industrially, the treatment is considered complete when (χT, Cr) in the slag is 51%. Therefore, the charged chromium oxide can be sufficiently reduced even without providing a final reduction period.

以上説明した様に2本発明法によると、クロム酸化物の
還元速度および溶鉄へのクロム分の回収率を上昇させ得
ることにより、処理時間を大幅に短縮できるから、既存
のプロセス例えばステンレス製鋼工程に溶融還元法を採
り入れることが容易となり且つ耐火物溶損の低減効果が
奏され耐火物コストが安くなるとともに反応容器の稼動
率向上も図られる。
As explained above, according to the method of the present invention, the reduction rate of chromium oxide and the recovery rate of chromium to molten iron can be increased, and the processing time can be significantly shortened. It becomes easy to adopt the smelting reduction method, and the effect of reducing the erosion of the refractory is exhibited, the cost of the refractory is reduced, and the operating rate of the reaction vessel is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するに通した装置例を示す略断
面図、第2図は本発明を実施したさいのスラグ中の(χ
T、Cr)の推移を、比較例と対比して示した図である
。 l・・反応容器、  2・・炉底の羽口、  3・・炉
頂開口、  4・・上吹きランス、  6・・バンガー
、  7・・フード、  8・・溶鉄層1.9・・スラ
グ層。
FIG. 1 is a schematic sectional view showing an example of an apparatus for carrying out the present invention, and FIG.
FIG. 3 is a diagram showing the changes in T, Cr) in comparison with a comparative example. 1. Reaction vessel, 2. Tuyere at the bottom of the furnace, 3. Furnace top opening, 4. Top blowing lance, 6. Banger, 7. Hood, 8. Molten iron layer 1. 9. Slag layer.

Claims (1)

【特許請求の範囲】[Claims] 上底吹き可能な反応容器に溶鉄を装入し、炉上よりクロ
ム酸化物含有物質、炭材およびフラックスからなる固体
材料を装入し、底吹き撹拌を行いながら上吹きランスか
ら送酸してクロム酸化物の溶融と還元を行うさいに、こ
の溶融還元の操作前または途中にFe−Si合金を炉上
より供給することを特徴とする含クロム溶鉄の製造法。
Molten iron is charged into a reaction vessel capable of top-bottom blowing, solid materials consisting of chromium oxide-containing substances, carbonaceous materials, and flux are charged from the top of the furnace, and oxygen is fed from a top-blowing lance while bottom-blowing stirring is performed. A method for producing chromium-containing molten iron, which comprises supplying an Fe-Si alloy from above the furnace before or during the melting and reduction operation when chromium oxide is melted and reduced.
JP32544687A 1987-12-24 1987-12-24 Production of chromium-contained molten iron Pending JPH01168806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32544687A JPH01168806A (en) 1987-12-24 1987-12-24 Production of chromium-contained molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32544687A JPH01168806A (en) 1987-12-24 1987-12-24 Production of chromium-contained molten iron

Publications (1)

Publication Number Publication Date
JPH01168806A true JPH01168806A (en) 1989-07-04

Family

ID=18176950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32544687A Pending JPH01168806A (en) 1987-12-24 1987-12-24 Production of chromium-contained molten iron

Country Status (1)

Country Link
JP (1) JPH01168806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543634B1 (en) * 2018-03-23 2023-05-24 Air Products and Chemicals, Inc. Oxy-fuel combustion system for melting a pelleted charge material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543634B1 (en) * 2018-03-23 2023-05-24 Air Products and Chemicals, Inc. Oxy-fuel combustion system for melting a pelleted charge material

Similar Documents

Publication Publication Date Title
CA2046928C (en) Manufacture of ferroalloys using a molten bath reactor
JPH01168806A (en) Production of chromium-contained molten iron
JP3063537B2 (en) Stainless steel manufacturing method
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JPH01147011A (en) Steelmaking method
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPS62167808A (en) Production of molten chromium iron
JPH0435529B2 (en)
WO1998015662A1 (en) A method and an apparatus for producing metals and metal alloys
JPS61106744A (en) Melting and manufacturing method of stainless steel
JPH0762413A (en) Production of stainless steel
JPS6250543B2 (en)
JPH01222034A (en) Production of molten chromium-containing iron
SU1022994A1 (en) Steel melting process
JPS59150062A (en) Production of stainless steel by melt reduction of chromium ore
JPS6244533A (en) Melting-reducing refining method for metallic oxide
JPS61139614A (en) Manufacture of steel
JPS6126752A (en) Manufacture of low-phosphorus and high-manganese iron alloy by melt reduction
KR20200049076A (en) Method for processing molten material and stainless steel manufactured using the same
JPS63153207A (en) Method for smelting reduction of chromium ore
JPS59232207A (en) Producton of molten base metal for stainless steel by melt reduction of chromium ore
JPH0841519A (en) Steelmaking method
JPH01316407A (en) Production of chromium-containing molten iron
JPS62211343A (en) Combined addition reduction method for ore