JPH01166481A - Sheathed heater - Google Patents

Sheathed heater

Info

Publication number
JPH01166481A
JPH01166481A JP32584687A JP32584687A JPH01166481A JP H01166481 A JPH01166481 A JP H01166481A JP 32584687 A JP32584687 A JP 32584687A JP 32584687 A JP32584687 A JP 32584687A JP H01166481 A JPH01166481 A JP H01166481A
Authority
JP
Japan
Prior art keywords
silica sol
powder
insulation resistance
silica
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32584687A
Other languages
Japanese (ja)
Inventor
Hideyuki Ohashi
秀行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32584687A priority Critical patent/JPH01166481A/en
Publication of JPH01166481A publication Critical patent/JPH01166481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure excellent electrical insulation characteristics particularly during the supply of electric current, enhance reliability and enable less expensive production by using electromelting magnesia as an electrical insulation powder and subjecting the powder to heating treatment after adding the predetermined amount of silica sol thereto. CONSTITUTION:Silica sol is added to an electromelting magnesia powder and adsorbed therewith. Then, the powder is subjected to heating treatment at a temperature equal to or above 450 deg.C and the surface and inside of the electromelting magnesia powder are reformed, thereby enabling restraining semiconductor characteristics and increasing insulation resistance. When a small amount of silica sol is added, a p-type semiconductor becomes available and when a large amount is added, an n-type semiconductor comes out. In either case, sufficient insulation resistance is not available, but high insulation resistance can generally be obtained within a range of 0.3 to 15wt.% on the basis of conversion to silica weight. Also, heating treatment at a temperature equal to or above 450 deg.C removes moisture contained in the silica sol and dries the silica sol, thereby diffusing a silica ingredient into the electromelting magnesia. According to the aforesaid processes, it is possible to obtain a less expensive sheathed heater having higher insulation resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般調理器具や暖房器具などの幅広い製品分
野における加熱源として応用されるシーズヒータに関し
、特に通電時の電気絶縁特性に優れた信頼性の高いシー
ズヒータに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a sheathed heater that is applied as a heating source in a wide range of product fields such as general cooking appliances and heating appliances, and in particular has excellent reliability in electrical insulation properties when energized. This relates to a sheathed heater with high performance.

従来の技術 従来よりシーズヒータは簡便であると共に、安全性が高
く、かつ耐食性に優れているため、オープン、電子レン
ジ、電気コンロ、電気ストーブ等、調理および暖房器具
の加熱源として幅広く使用されている。
Conventional technology Since sheathed heaters are simple, safe, and have excellent corrosion resistance, they have been widely used as a heating source for cooking and heating appliances such as open ovens, microwave ovens, electric stoves, and electric stoves. There is.

このシーズヒータは、一般に、両端に端子棒を備えたコ
イル状の電熱線を金属パイプの中央部に挿入し、この金
属パイプに電気絶縁粉末を充填した後、圧延減径し、所
定の形状に曲げ加工して製造される。
This sheathed heater generally involves inserting a coiled heating wire with terminal bars at both ends into the center of a metal pipe, filling the metal pipe with electrical insulating powder, and then rolling it to a predetermined shape. Manufactured by bending.

このようなシーズヒータの電気絶縁粉末として従来より
電融マグネシアが用いられてきた。
Electrofused magnesia has conventionally been used as an electrically insulating powder for such sheathed heaters.

これは電融マグネシアが電気絶縁性、熱伝導性に優れ、
また商業的に安価で、かつ安定して供給されているため
であった。
This is because fused magnesia has excellent electrical insulation and thermal conductivity.
This is also because it is commercially inexpensive and stably supplied.

発明が解決しようとする問題点 シーズヒータには前述したように電気絶縁粉末として電
融マグネシアが用いられてきた。この電融マグネシアの
絶縁抵抗は温度上昇と共に低下、半導体的性質を示す。
Problems to be Solved by the Invention As mentioned above, fused magnesia has been used as an electrically insulating powder in sheathed heaters. The insulation resistance of this fused magnesia decreases as the temperature rises, exhibiting semiconducting properties.

その関係は一般に次式で表わされる。The relationship is generally expressed by the following equation.

ここでρは固有抵抗、Eは活性化エネルギー、Tは絶対
温度、kは゛ポルツマン定数、Aは定数である。
Here, ρ is a specific resistance, E is an activation energy, T is an absolute temperature, k is a Portzmann constant, and A is a constant.

従って、電融マグネシアの絶縁抵抗はA及びΣによって
決まり、それぞれの値によって低温用から高温用のグレ
ードに分類される。
Therefore, the insulation resistance of fused magnesia is determined by A and Σ, and grades are classified from low-temperature grade to high-temperature grade depending on each value.

1000℃における固有抵抗は、低温用で106Ω儒程
度、高温用で107〜108Ω譚程度であるが、最近の
加熱温度の高温化や形状の短小化等の要望を満たすため
には、これらの絶縁抵抗では不十分であった。
The specific resistance at 1000°C is about 106 Ω for low temperature applications and 107 to 108 Ω for high temperature applications, but in order to meet the recent demands for higher heating temperatures and shorter and smaller shapes, these insulation Resistance was not enough.

一方、単結晶マグネシアは1ooo℃で10Ωα砒、の
固有抵抗を示すが、コスト的には通常の電融マグネシア
の約1ooO倍の価格であり、非常に高価でシーズヒー
タへの適用は難しかった。
On the other hand, single-crystal magnesia exhibits a specific resistance of 10 Ωα arsenic at 100° C., but it is about 100 times as expensive as ordinary fused magnesia, making it extremely expensive and difficult to apply to sheathed heaters.

本発明は前述した問題点を解決するもので、高い絶縁抵
抗を有する安価なシーズヒータを提供することを目的と
するものである。
The present invention solves the above-mentioned problems, and aims to provide an inexpensive sheathed heater with high insulation resistance.

問題点を解決するための手段 上記問題点を解決するために本発明は、電気絶縁粉末と
して、電融マグネシア粉末を使用し、シリカゾルをシリ
カ重量に換算して0,3〜15wt%添加し、450℃
以上の温度で加熱処理したものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses fused magnesia powder as the electrical insulating powder, adds 0.3 to 15 wt% of silica sol in terms of silica weight, 450℃
It was heat-treated at the above temperature.

作  用 シーズヒータの電気絶縁粉末に使用される電融マグネシ
アは一般に不純物を含有している。これらの不純物は1
価のアルカリ金属酸化物であるNa2o+に20.2価
のアルカリ土類金属酸化物であるCaO1’3価の酸化
物であるFe2O3やAt203、B2O2,4価の酸
化物であル5102ヤzx02等カ主なものである。こ
れらの不純物の混入は、電融マグネシアの原材料が天然
マグネサイトや海水マグネシアクリンカであることから
不可避であるが、2価のMgO中に1価や3価、4価の
酸化物やイオン半径の異なる2価の酸化物が不純物とし
て混入することにより、結晶内に欠陥を生じて半導体的
性質を付与する結果、絶縁抵抗が単結晶マグネシアに比
べて大きく低下することになる。通常、電融マグネシア
はp型の半導体としての性質を有し、Mqと0の比は、
0が過剰でMqが不足していると考えられている。
Function The fused magnesia used in the electrically insulating powder of sheathed heaters generally contains impurities. These impurities are 1
Na2O+ which is a valent alkali metal oxide, CaO1 which is a divalent alkaline earth metal oxide, Fe2O3 which is a trivalent oxide, At203, B2O2, etc. This is the main thing. The contamination of these impurities is unavoidable because the raw materials for fused magnesia are natural magnesite and seawater magnesia clinker. The incorporation of different divalent oxides as impurities causes defects in the crystal and imparts semiconductor properties, resulting in a greatly reduced insulation resistance compared to single-crystal magnesia. Normally, fused magnesia has properties as a p-type semiconductor, and the ratio of Mq to 0 is
It is thought that 0 is in excess and Mq is insufficient.

本発明では、この電融マグネシア粉末にシリカゾルを添
加して吸着させた後、450℃以上の温度で加熱処理し
て乾燥及び拡散処理することにより、電融マグネシア粉
末の表面及び内部を改質して半導体的性質を押さえ、絶
縁抵抗を高めることができるものである。
In the present invention, after adding and adsorbing silica sol to the fused magnesia powder, the surface and interior of the fused magnesia powder are modified by heat treatment at a temperature of 450°C or higher, drying, and diffusion treatment. This makes it possible to suppress semiconducting properties and increase insulation resistance.

電融マグネシア粉末にシリカゾルを添加して吸着させる
工程としては、(1)粉末状態でシリカゾルを添加し、
450℃以上の温度で加熱処理を行なった後、金属パイ
プ内に充填してシーズヒータを形成する。(2)  金
属パイプ内に電融マグネシア粉末を充填した後、シリカ
ゾルを含浸し、圧延減径して450℃以上の温度で加熱
処理を行なってシーズヒータを形成する。(3)金属パ
イプ内に電融マグネシア粉末を充填し、圧延減径した後
、シリカゾルを含浸し、450℃以上の温度で加熱処理
を行なってシーズヒータを形成する等、シーズヒータの
加工工程中のいずれの段階で行なっても効果を有するも
のである。
The process of adding silica sol to electrofused magnesia powder and adsorbing it is (1) adding silica sol in powder form,
After performing a heat treatment at a temperature of 450° C. or higher, the metal pipe is filled with the metal pipe to form a sheathed heater. (2) After filling a metal pipe with fused magnesia powder, it is impregnated with silica sol, rolled to reduce its diameter, and heated at a temperature of 450° C. or higher to form a sheathed heater. (3) During the manufacturing process of a sheathed heater, such as filling a metal pipe with fused magnesia powder, rolling it to reduce its diameter, impregnating it with silica sol, and performing heat treatment at a temperature of 450°C or higher to form a sheathed heater. It is effective even if it is performed at any stage.

シリカゾルの添加量は、用いる電融マグネシアの半導体
的性質の程度や不純物量によって異なり、添加量が少な
いとp型半導体となり、また添加量が多いとn型半導体
となって共に十分な絶縁抵抗が得られないが、一般にシ
リカ重量に換算して0.3〜15wt%の範囲内で高い
絶縁抵抗を得ることができる。
The amount of silica sol added varies depending on the degree of semiconducting properties of the electrofused magnesia used and the amount of impurities.If the amount added is small, it becomes a p-type semiconductor, and if the amount added is large, it becomes an n-type semiconductor, and both have sufficient insulation resistance. However, high insulation resistance can generally be obtained within the range of 0.3 to 15 wt% in terms of silica weight.

450℃以上の温度での加熱処理は、シリカゾルに含ま
れる水分を除去乾燥する目的と、シリカ成分を電融マグ
ネシア中に拡散する目的を有している。乾燥のためには
、化学吸着水を除去する必要があり450℃以上の温度
での加熱処理が必要となる。またシリカ成分の拡散につ
いては、電融マグネシアの内部まで十分に拡散させるた
めには900℃以上の加熱処理が望ましい。従って加熱
処理の温度は、450℃以上、望ましくは900℃以上
が必要である。
The heat treatment at a temperature of 450° C. or higher has the purpose of removing moisture contained in the silica sol and drying it, and the purpose of diffusing the silica component into the fused magnesia. For drying, it is necessary to remove chemically adsorbed water, and heat treatment at a temperature of 450° C. or higher is required. Regarding the diffusion of the silica component, heat treatment at 900° C. or higher is desirable in order to sufficiently diffuse the silica component into the interior of the fused magnesia. Therefore, the temperature of the heat treatment needs to be 450°C or higher, preferably 900°C or higher.

実施例 以下、本発明の一実施例を第1図及び第2図にもとづい
て説明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

まず、40〜32゛6メツシユに粉砕した電融マグネシ
アを、中心に直径3m、長さ40簡のステンレス棒を配
置した内径8m、外径10+o+、長さ20■のステン
レスパイプ内に充填し、シリカ含有量20wt% のシ
リカゾルを任意の量だけ添加して含浸させた後、130
KP/crIの圧力でプレスレ、パイプ内の完全に充填
した。その後、パイプ及び中心のステンレス棒に直径0
.5mのニクロム線をスポット溶接し、絶縁測定用のリ
ード線とした。サンプルは電気炉内に投入し、1oOo
℃で30分の加熱処理を施した。比較のため、シリカゾ
ルを添加含浸しないサンプルも同様の処理を施した。
First, fused magnesia crushed into 6 meshes of 40~32゛ was filled into a stainless steel pipe with an inner diameter of 8 m, an outer diameter of 10 + o +, and a length of 20 cm, with a stainless steel rod of 3 m in diameter and 40 pieces in length placed in the center. After adding a desired amount of silica sol with a silica content of 20 wt% and impregnating it,
Pressure was applied at a pressure of KP/crI to completely fill the pipe. After that, the pipe and the center stainless steel rod are made with a diameter of 0.
.. A 5 m long nichrome wire was spot welded and used as a lead wire for insulation measurement. The sample was placed in an electric furnace and heated to 1oOo.
A heat treatment was performed at ℃ for 30 minutes. For comparison, a sample that was not impregnated with silica sol was also subjected to the same treatment.

以上のようにして作製したサンプルを電気炉中に吊るし
、約1時間かけて1000℃に昇温し、約10分間保持
した後、DClooVの絶縁計を用いて絶縁抵抗を測定
し、計算により固有抵抗を求めた。
The sample prepared as described above was suspended in an electric furnace, heated to 1000°C over about 1 hour, and held for about 10 minutes. The insulation resistance was measured using a DClooV insulation meter, and the specific I asked for resistance.

2種の電融マグネシアを用いて測定を行なったが、用い
た電融マグネシアの組成を第1表に、得られた固有抵抗
と、シリカに換算したシリカゾルの添加量の関係を第1
図に示す。
The measurements were carried out using two types of electrofused magnesia. The composition of the electrofused magnesia used is shown in Table 1, and the relationship between the obtained specific resistance and the amount of silica sol added in terms of silica is shown in Table 1.
As shown in the figure.

(以下4!Q) 第1図から明らかなように、比較的高純度の電融マグネ
シアAにおいては、シリカに換算したシリカゾルの添加
量が1.6〜3wt%で最大の固有抵抗を示し、さらに
添加量が増加すると逆に固有抵抗が低下した。一方、比
較的低純度の電融マグネシアBにおいては、同様に4〜
5wt% で最大の固有抵抗を示した。このことは、シ
リカゾルを添加した電融マグネシアの半導体的性質がp
型からn型へと添加量と共に変化することを意味してい
る。
(4!Q below) As is clear from Figure 1, relatively high-purity electrofused magnesia A exhibits the maximum specific resistance when the amount of silica sol added is 1.6 to 3 wt% in terms of silica. Furthermore, as the amount added increased, the specific resistance decreased. On the other hand, in relatively low-purity electrofused magnesia B, similarly 4 to
The maximum resistivity was shown at 5wt%. This means that the semiconducting properties of fused magnesia to which silica sol has been added are p
This means that it changes from type to n-type with the amount added.

また、固有抵抗の改良度合は低純度の電融マグネシアB
において著しく、固有抵抗の最大値はほぼ同等の値とな
った。このことは半導体的性質をなくすことにより、一
定の固有抵抗が得られることを意味しており、工業的に
は比較的低コストの低純度マグネシアを用いることが可
能となシ、シーズヒータの材料コストを引き下げること
ができることを意味する。
In addition, the degree of improvement in specific resistance is that of low-purity fused magnesia B.
Remarkably, the maximum values of resistivity were almost the same. This means that a certain specific resistance can be obtained by eliminating semiconductor properties, and it is possible to use relatively low-cost, low-purity magnesia industrially, which is a material for sheathed heaters. This means that costs can be reduced.

次に、同様に第1表に示した2種類の電融マグネシアを
用いてシーズヒータを作製した。両端に端子棒を備えた
コイ゛ル状の電熱線を耐食耐熱超合金NCF300から
なる金属パイプに挿入し、電気絶縁粉末として電融マグ
ネシア粉末を金属パイプ内に充填した後、シリカ含有量
20wt%  のシリカゾルを任意の量だけ添加して含
浸させ、圧延減径を施し、最高温度1050℃のトンネ
ル炉で加熱処理し、さらにU字状に曲げ加工およびプレ
ス加工を施して、外径6.6++m、全長500mmの
U字状のシーズヒータを作製した。
Next, sheathed heaters were similarly produced using the two types of fused magnesia shown in Table 1. A coiled heating wire with terminal rods at both ends was inserted into a metal pipe made of corrosion-resistant and heat-resistant superalloy NCF300, and after filling the metal pipe with fused magnesia powder as electrical insulating powder, the silica content was 20 wt%. A desired amount of silica sol was added and impregnated, the diameter was reduced by rolling, heat treated in a tunnel furnace with a maximum temperature of 1050°C, and further bent and pressed into a U-shape to form an outer diameter of 6.6++ m. A U-shaped sheathed heater with a total length of 500 mm was manufactured.

、  iCCクシスヒータを用いてACloOv、4o
, ACloOv, 4o using iCC Kxis heater
.

Wで通電を行ない、6分後安定状態になった時点でDC
500Vの絶縁計を用いて絶縁抵抗を測定した。測定は
各条件ごとに5本のシーズヒータについて行なった。そ
して得られた絶縁抵抗と、シリカに換算したシリカゾル
の添加量の関係を第2図に示す。
Turn on the current with W, and when it reaches a stable state after 6 minutes, turn on the DC
Insulation resistance was measured using a 500V insulation meter. Measurements were performed on five sheathed heaters under each condition. FIG. 2 shows the relationship between the obtained insulation resistance and the amount of silica sol added in terms of silica.

第2図から明らかなように、シーズヒータの絶縁抵抗と
シリカゾルの添加量の関係は、第1図に示した電融マグ
ネシアの固有抵抗とシリカゾルの添加量の関係と良い一
致を示した。電融マグネシアAについては、シリカに換
算して2wt% 前後のシリカゾルの添加で最大の絶縁
抵抗が得られ、電融マグネシアBについては、同様に7
wt%前後のシリカゾルの添加で最大の絶縁抵抗が得ら
れた。
As is clear from FIG. 2, the relationship between the insulation resistance of the sheathed heater and the amount of silica sol added was in good agreement with the relationship between the specific resistance of fused magnesia and the amount of silica sol added shown in FIG. For fused magnesia A, the maximum insulation resistance can be obtained by adding around 2 wt% of silica sol in terms of silica, and for fused magnesia B, the same
The maximum insulation resistance was obtained by adding approximately wt% of silica sol.

このように本発明のシーズヒータは、従来の電融マグネ
シアのみを電気絶縁粉末として用いたシーズヒータと比
べて、通電時の絶縁抵抗を向上させることができると共
に、比較的低純度の電融マグネシアを用いて高い絶縁抵
抗のシーズヒータを提供できることがわかった。また絶
縁抵抗の向上により、シーズヒータの高温化が図れると
共に、全長を短かくしたり、外径を細くしたりするとい
う具合に、シーズヒータのコンパクト化も図れるように
なった。
As described above, the sheathed heater of the present invention can improve the insulation resistance during energization compared to conventional sheathed heaters that use only fused magnesia as an electrical insulating powder, and can also improve the insulation resistance when electricity is applied. It was found that a sheathed heater with high insulation resistance could be provided using this method. Furthermore, improved insulation resistance has made it possible to raise the temperature of the sheathed heater, and it has also become possible to make the sheathed heater more compact by shortening its overall length and reducing its outer diameter.

発明の効果 上記実施例の説明から明らかなように本発明によれば、
電気絶縁粉末として、電融マグネシアを使用し、シリカ
ゾルをシリカ重量に換算して0.3〜15wt%添加し
、450℃以上の温度で加熱処理しているため、特に通
電時の電気絶縁特性に優れ、信頼性が高く、しかも安価
なシーズヒータを提供することができるものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the present invention,
As the electrical insulating powder, fused magnesia is used, 0.3 to 15 wt% of silica sol is added in terms of silica weight, and heat treatment is performed at a temperature of 450°C or higher, which improves electrical insulation properties especially when electricity is applied. It is possible to provide an excellent, highly reliable, and inexpensive sheathed heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるシーズヒータの電融
マグネシアの固有抵抗とシリカゾルの添加量の関係を示
すグラフ、第2図は同シーズヒータの絶縁抵抗とシリカ
ゾルの添加量の関係を示すグラフである。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 シリカにPA!シたシワ力 ジルの添70量  wt%
Figure 1 is a graph showing the relationship between the specific resistance of fused magnesia and the amount of silica sol added in the sheathed heater in an embodiment of the present invention, and Figure 2 is a graph showing the relationship between the insulation resistance of the same sheathed heater and the amount of silica sol added. It is a graph. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure PA on silica! 70 amount wt%

Claims (1)

【特許請求の範囲】[Claims] 電気絶縁粉末として、電融マグネシア粉末を使用し、シ
リカゾルをシリカ重量に換算して0.3〜15wt%添
加し、450℃以上の温度で加熱処理したことを特徴と
するシーズヒータ。
A sheathed heater characterized in that fused magnesia powder is used as an electrical insulating powder, 0.3 to 15 wt% of silica sol is added in terms of silica weight, and the mixture is heat-treated at a temperature of 450°C or higher.
JP32584687A 1987-12-23 1987-12-23 Sheathed heater Pending JPH01166481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32584687A JPH01166481A (en) 1987-12-23 1987-12-23 Sheathed heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32584687A JPH01166481A (en) 1987-12-23 1987-12-23 Sheathed heater

Publications (1)

Publication Number Publication Date
JPH01166481A true JPH01166481A (en) 1989-06-30

Family

ID=18181271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32584687A Pending JPH01166481A (en) 1987-12-23 1987-12-23 Sheathed heater

Country Status (1)

Country Link
JP (1) JPH01166481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260934A (en) * 1988-06-28 1990-03-01 Amoco Corp Polyimide and copolyimide which have low dielectric constant and low moisture absorptivity and are used for both interlayer insulator and base plate coating film
JPH0436979A (en) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd Sheathed heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424332A (en) * 1977-07-26 1979-02-23 Hitachi Heating Appliance Co Ltd Sheathed heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424332A (en) * 1977-07-26 1979-02-23 Hitachi Heating Appliance Co Ltd Sheathed heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260934A (en) * 1988-06-28 1990-03-01 Amoco Corp Polyimide and copolyimide which have low dielectric constant and low moisture absorptivity and are used for both interlayer insulator and base plate coating film
JPH0436979A (en) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd Sheathed heater

Similar Documents

Publication Publication Date Title
JPH01166481A (en) Sheathed heater
JPH01166482A (en) Sheathed heater
JPH0338715B2 (en)
JPS6030076B2 (en) Sheathed heater and its manufacturing method
JPH0235434B2 (en) SHIIZUHIITA
JP2007035656A (en) Heater
JPH04123784A (en) Sheathed heater
JPH0235435B2 (en) SHIIZUHIITA
JPH0340909B2 (en)
JPS648912B2 (en)
JPH0340906B2 (en)
JPH0340910B2 (en)
JPS6322035B2 (en)
JPH0318318B2 (en)
JPS60115189A (en) Method of producing sheathed heater
JPH0340905B2 (en)
JPH0340907B2 (en)
JPS6325472B2 (en)
JPH0119636B2 (en)
JPH0670911B2 (en) Seesheater
JPS62168371A (en) Sheathed heater
JPH0375995B2 (en)
JPS60208078A (en) Sheathed heater
JPS59217985A (en) Sheathed heater
JPS649716B2 (en)