JPH0116607B2 - - Google Patents

Info

Publication number
JPH0116607B2
JPH0116607B2 JP54004595A JP459579A JPH0116607B2 JP H0116607 B2 JPH0116607 B2 JP H0116607B2 JP 54004595 A JP54004595 A JP 54004595A JP 459579 A JP459579 A JP 459579A JP H0116607 B2 JPH0116607 B2 JP H0116607B2
Authority
JP
Japan
Prior art keywords
filler
mesh
parts
adhesion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54004595A
Other languages
Japanese (ja)
Other versions
JPS5596235A (en
Inventor
Masamitsu Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP459579A priority Critical patent/JPS5596235A/en
Publication of JPS5596235A publication Critical patent/JPS5596235A/en
Publication of JPH0116607B2 publication Critical patent/JPH0116607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はアルミニウム合金鋳物、特にエンジ
ンのハウジングやシリンダヘツド等のように高い
熱負荷を受ける一方、オイルや冷却水等にさらさ
れる部品に生じたピンホールやクラツク等の鋳造
欠陥に対し、該穴を恒久的に密閉封鎖して部品の
機能損失を防止する補修用充填剤の改良に関する
ものである。 従来、この種用途に用いる補修用充填剤として
は、2液性のエポキシ樹脂を主成分とし、これに
アルミニウム合金粉末を混合したものが多用され
ている。しかしこの充填剤は反応性の有機粘結剤
であるため反応による臭気が発生し、これがため
作業環境の悪化をまねく一方硬化時間が比較的短
い為充填に際し最も重要な可使時間が限定されて
いた。そのため使用の都度新規に混合しなくては
ならない不便が生じ作業性が著しく低下してい
た。また混合した粘結剤の粘度が極端に高いため
充填し難く、そのため被処理物を予め加熱し、そ
の熱によつて充填剤の粘度を下げて使用せざるを
得なかつた。さらに被処理物表面に油や不純物等
が付着していると密着強度が低下するため充填前
に完全な脱脂を必要とし、パークレン洗浄等が施
されているが有害ガスが発生する問題もあつた。 一方、鋳物用含浸剤として、特公昭50−1446号
公報に有機系含浸剤と無機系含浸剤とが示されて
いるが、これらはいずれも粘度が250CP以下と極
めて低く、鋳物の微細孔を封孔するのに用いられ
るものであり、鋳物表面部の比較的大きな鋳巣、
ピンホールの穴においては、含浸剤が穴から流出
して封孔効果が不十分である。また、有機系含浸
剤は、高温時に劣化して鋳物との密着強度が低下
し、一方、無機系含浸剤は常温における鋳物との
密着強度が不足し、いずれも十分な封孔効果を得
ることができない。 また、鋳物用含浸剤として特公昭51−35568号
公報に示されているものが知られているが、この
含浸剤も上記従来技術と同様に極めて粘度が低
く、鋳物の微細孔を封入するには効果を有する
が、比較的大きな穴については含浸剤が穴から流
出して十分な封孔効果を得ることが困難である。 このような従来の問題点に対し本発明は、常温
から高温にかけて確実に封孔効果を有すると共
に、耐熱性に優れ、かつ格別な脱脂処理も不要な
補修用充填剤を提供しようとするものであり、そ
の材料的な特徴は、主成分を無機物質とし、これ
に有機物質を添加した複合成分の充填剤とするこ
とにより、従来問題であつた臭気の発生をなく
し、かつ可使時間も長くすることができ、さら
に、常温から高温にかけて安定した鋳物との密着
強度を確保して封孔を確実にできるようにしたも
のである。 すなわち本発明充填剤は、アルミナ粉末100部
に対し、無機シリケート水溶液15〜25部、アクリ
ルエマルジヨン3.5〜4.5部を混合してなるもので
ある。 次に本発明充填剤の各成分の限定理由について
述べる。 アルミナ粉末は本発明充填剤の主剤であり骨材
として機能するものであつて、その効果は充填剤
に耐熱性を与え、かつ強度を向上せしめるもので
ある。 無機シリケート水溶液は、濃度約30%のものを
粘結剤として使用するもので、前記アルミナ100
部に対し15〜25部添加する。添加量が15未満であ
ると粘度が高過ぎて充填剤作業が困難となり、逆
に25部を超えると密着力は向上するが粘度が低下
し過ぎ、かえつて作業性が悪くなる。本発明にお
いて使用する無機シリケート水溶液としては、コ
ロイダルシリカ22〜25%、酸化ナトリウム4〜7
%、酸化リチウム0.1〜0.3%(重量%)残部水か
らなるものが好適である。コロイダルシリカの比
率は、密着力ならびに比率が高過ぎると長期保存
においてシリカ分が沈降傾向を示すことから、上
記の範囲が好ましい。酸化ナトリウム及び酸化リ
チウムは珪素ゾルの安定剤としての機能を果すも
のであるが、上記下限値未満では効果が十分でな
いばかりか、密着力が低下し硬化後亀裂が生じ易
くなり、また上限値を超えると硬化速度が著しく
遅くなるとともに硬化が不完全となる。なお、酸
化リチウムは充填剤を適用するアルミニウム鋳物
の肌に対して隙間を生じさせない作用があり、上
記のようなわずかの量で著効がある。 アクリルエマルジヨンは、常温での密着力を高
めるために添加するもので、3.5部未満ではその
効果がなく、4.5部を超えるとシリカの安定性に
影響を及ぼし粘結剤全体としてのバランスが崩れ
ゲル化現象を起こすが、この範囲においては著効
を示し、シリカゾル単独の場合とくらべて約5〜
7倍の常温強度向上をもたらす。このように、無
機系粘結剤と有機系粘結剤とを複合させることに
より、従来品より大巾に改良した粘結剤を作り出
すことに成功した。 また骨材としてのアルミナ粉末は、適当な粒度
分布を持つていることが望ましく、そのうち60メ
ツシユ篩上のものが4〜6%、325メツシユ篩下
のものが18〜28%で、残部が60〜325メツシユの
範囲内にあることが望ましい。最も好ましいのは
28メツシユ篩上が0.7〜1.3%、28〜48メツシユが
1.7〜2.3%、48〜60メツシユが1.5〜2.5%、60〜
100メツシユが22〜32%、100〜200メツシユが20
〜30%、200〜325メツシユが15〜25%、325メツ
シユ篩下が18〜28%の範囲にあることである。こ
れは60メツシユ篩上のものは結合強度を得、過度
な通気性を得るために必要であるが、多過ぎると
表面粗さが極度に悪化し好ましくないからであ
り、逆に325メツシユ篩下のものはアルミニウム
合金鋳物への密着力を得るために必要なものであ
るが、多過ぎるとかえつて結合力が低下しヘアー
クラツクを生じさせるので好ましくないからであ
る。 次に本発明実施例について述べる。 (イ) 充填剤の組成 Γ溶融アルミナ(+28メツシユ1.0%、28〜48
メツシユ20%、48〜60メツシユ20%、60〜
100メツシユ27%、100〜200メツシユ25%、
200〜325メツシユ20%、−325メツシユ23%)
100g Γ無機系シリケート水溶液(SiO224%、
Na2O5%、Li2O0.24%) 20g Γアクリルエマルジヨン(三井東圧化学製E−
3155A) 4g 以上3成分を混合し充填剤を製造した。 (ロ) テスト方法 図面に示すような10mm角形状のアルミ合金製
テストピースを作製した。各部寸法はd1=3.3φ
mm、d2=4.4φmm、h=4.8mmである。図に示す
とおり、穴部1内をエチルアルコールで拭き取
つた後、4.3φmmのスチールボール2を挿入し、
つぎにスチールボール2を覆うように前記充填
剤を充填し、乾燥固化させて充填剤層3とす
る。尚乾燥固化させる方法は大気放置で十分で
ある。 このようにして得られたテストピースの細孔
4内に図に二点鎖線で示すように3.2φmmの棒5
を押し込み、充填剤の結合力に抗して力を加え
スチールボールが穴1外へ押出されるに至る力
を測定した。 尚、従来の充填剤(有機系として2液性エポキ
シ樹脂品)と、比較例として一般の無機充填剤
(一般シリカゾル使用のもの)を用いて上記実施
例と同様のテストピースをそれぞれ作製し、同一
のテスト方法で密着力を測定した。 これらの結果を第1表に示す。
This invention solves casting defects such as pinholes and cracks that occur in aluminum alloy castings, especially parts that are subjected to high heat loads such as engine housings and cylinder heads and are exposed to oil and cooling water. This invention relates to improvements in repair fillers that permanently seal and seal parts to prevent loss of functionality. Conventionally, as a repair filler used for this type of application, a mixture of a two-component epoxy resin as a main component and an aluminum alloy powder mixed therein is often used. However, since this filler is a reactive organic binder, the reaction generates an odor, which causes a deterioration of the working environment. On the other hand, the curing time is relatively short, which limits the pot life, which is the most important point in filling. Ta. This resulted in the inconvenience of having to mix the mixture anew each time it was used, resulting in a significant decrease in work efficiency. Furthermore, the viscosity of the mixed binder is extremely high, making it difficult to fill the filler, and it is therefore necessary to heat the object in advance and use the heat to lower the viscosity of the filler. Furthermore, if oil or impurities adhere to the surface of the object to be treated, the adhesion strength will decrease, so complete degreasing is required before filling, and although cleaning with perchloromethane is carried out, there is also the problem of the generation of harmful gases. . On the other hand, as impregnating agents for castings, Japanese Patent Publication No. 1446/1977 discloses organic impregnating agents and inorganic impregnating agents, but both of these have extremely low viscosities of 250 CP or less, and they do not absorb the fine pores of castings. It is used for sealing relatively large cavities on the surface of castings.
In the pinhole hole, the impregnating agent flows out from the hole, resulting in insufficient sealing effect. In addition, organic impregnants deteriorate at high temperatures and their adhesion strength with castings decreases, while inorganic impregnation agents lack adhesion strength with castings at room temperature, making it difficult to obtain sufficient sealing effects. I can't. Furthermore, as an impregnating agent for castings, the one disclosed in Japanese Patent Publication No. 51-35568 is known, but this impregnating agent also has an extremely low viscosity, similar to the above-mentioned conventional technology, and is not suitable for sealing the fine pores of castings. However, for relatively large holes, the impregnating agent flows out from the holes, making it difficult to obtain a sufficient sealing effect. In order to address these conventional problems, the present invention aims to provide a repair filler that has a reliable sealing effect from room temperature to high temperature, has excellent heat resistance, and does not require special degreasing treatment. The material is characterized by a composite filler consisting of an inorganic substance as the main component and an organic substance added to it, which eliminates the odor that was a problem with conventional products and has a long pot life. Furthermore, it is possible to ensure stable adhesion strength with the casting from room temperature to high temperature, thereby ensuring reliable hole sealing. That is, the filler of the present invention is prepared by mixing 15 to 25 parts of an inorganic silicate aqueous solution and 3.5 to 4.5 parts of an acrylic emulsion to 100 parts of alumina powder. Next, the reason for limiting each component of the filler of the present invention will be described. Alumina powder is the main ingredient of the filler of the present invention and functions as an aggregate, and its effect is to impart heat resistance to the filler and improve its strength. The inorganic silicate aqueous solution has a concentration of about 30% and is used as a binder.
Add 15 to 25 parts per part. If the amount added is less than 15 parts, the viscosity will be too high and it will be difficult to work with the filler, while if it exceeds 25 parts, the adhesion will be improved but the viscosity will be too low and workability will worsen. The inorganic silicate aqueous solution used in the present invention includes colloidal silica 22-25%, sodium oxide 4-7%
%, lithium oxide 0.1 to 0.3% (wt%), balance water. The ratio of colloidal silica is preferably within the above range because if the adhesion and ratio are too high, the silica content will tend to settle during long-term storage. Sodium oxide and lithium oxide function as stabilizers for silicon sol, but if the lower limit is less than the above, not only will the effect be insufficient, but the adhesion will decrease and cracks will easily occur after curing. If it exceeds this, the curing speed will be extremely slow and the curing will be incomplete. It should be noted that lithium oxide has the effect of preventing the formation of gaps in the skin of the aluminum casting to which the filler is applied, and a small amount as mentioned above is highly effective. Acrylic emulsion is added to increase adhesion at room temperature; if it is less than 3.5 parts, it has no effect, and if it exceeds 4.5 parts, it affects the stability of the silica and disrupts the overall balance of the binder. Although it causes a gelation phenomenon, it is highly effective in this range, and compared to the case of silica sol alone, it is about 5 to
Provides a 7x improvement in room temperature strength. In this way, by combining an inorganic binder and an organic binder, we succeeded in creating a binder that is vastly improved over conventional products. It is also desirable that the alumina powder used as aggregate has an appropriate particle size distribution, with 4 to 6% of the powder passing through a 60 mesh sieve, 18 to 28% below a 325 mesh sieve, and the remainder being 60 mesh. Preferably within the range of ~325 meshes. The most preferred is
28 mesh sieves are 0.7-1.3%, 28-48 mesh
1.7~2.3%, 48~60 meshes 1.5~2.5%, 60~
100 mesh is 22-32%, 100-200 mesh is 20
~30%, 200-325 mesh is in the range of 15-25%, and 325 mesh is in the range of 18-28%. This is because the amount above the 60 mesh sieve is necessary to obtain bonding strength and excessive air permeability, but if it is too large, the surface roughness will deteriorate extremely and it is undesirable. This is because, although this amount is necessary to obtain adhesion to aluminum alloy castings, too much of it is undesirable because it will actually reduce the bonding force and cause hair cracks. Next, embodiments of the present invention will be described. (a) Composition of filler Γ fused alumina (+28 mesh 1.0%, 28~48
20% mesh, 48~60 mesh 20%, 60~
100 mesh 27%, 100-200 mesh 25%,
200-325 mesh 20%, -325 mesh 23%)
100g Γ inorganic silicate aqueous solution (SiO 2 24%,
Na 2 O 5%, Li 2 O 0.24%) 20g Γ acrylic emulsion (Mitsui Toatsu Chemical E-
3155A) 4g A filler was produced by mixing the three components. (b) Test method A 10 mm square aluminum alloy test piece as shown in the drawing was prepared. Dimensions of each part are d 1 = 3.3φ
mm, d 2 =4.4φmm, and h=4.8mm. As shown in the figure, after wiping the inside of the hole 1 with ethyl alcohol, insert a 4.3φmm steel ball 2,
Next, the filler is filled so as to cover the steel balls 2, and is dried and solidified to form a filler layer 3. In addition, as a method for drying and solidifying, leaving it in the air is sufficient. A rod 5 of 3.2φmm was inserted into the pore 4 of the test piece thus obtained, as shown by the two-dot chain line in the figure.
was pushed in, a force was applied against the binding force of the filler, and the force required to push the steel ball out of the hole 1 was measured. In addition, test pieces similar to those in the above example were prepared using a conventional filler (a two-component epoxy resin product as an organic type) and a general inorganic filler (using general silica sol) as a comparative example. Adhesion was measured using the same test method. These results are shown in Table 1.

【表】 この結果から明らかなように、従来の有機系の
ものは低温では十分な密着力を有しているが、高
温にさらされると崩壊することがわかる。また比
較例の無機系のものは高温にさらされると強くな
るが常温のままでは密着力に欠けていることがわ
かる。 なお、耐水性および耐不凍液性についても、従
来品と比べて何ら孫色なく、十分満足できるもの
であつた。 この発明の充填剤は、無機質及び有機質の複合
成分からなるものであり、有害ガスの発生もな
く、アルミニウムとの密着力は強固で約700℃ま
での耐熱性を有し、常温強度も高い。また不凍液
で侵されることもない。さらには、可使時間は任
意に設定できるもので、特に自動車エンジンのシ
リンダヘツドやローターハウジング等の鋳造欠陥
補修用充填剤として好適である。
[Table] As is clear from the results, conventional organic materials have sufficient adhesion at low temperatures, but disintegrate when exposed to high temperatures. It can also be seen that the inorganic type in the comparative example becomes strong when exposed to high temperatures, but lacks adhesion when left at room temperature. Furthermore, the water resistance and antifreeze resistance were also sufficiently satisfactory, with no inferiority compared to conventional products. The filler of the present invention is composed of a composite component of inorganic and organic substances, does not generate harmful gases, has strong adhesion to aluminum, has heat resistance up to about 700°C, and has high strength at room temperature. It is also not attacked by antifreeze. Furthermore, the pot life can be set arbitrarily, and it is particularly suitable as a filler for repairing casting defects in cylinder heads and rotor housings of automobile engines.

【図面の簡単な説明】[Brief explanation of drawings]

図面はテストピースの形状の説明図である。 The drawing is an explanatory diagram of the shape of the test piece.

Claims (1)

【特許請求の範囲】 1 アルミナ粉末100重量部(以下部は全て重量
部を示す)に対し、無機シリケート水溶液15〜25
部、アクリルエマルジヨン3.5〜4.5部を混合して
なることを特徴とするアルミニウム合金鋳物の補
修用充填剤。 2 アルミナ粉末が、60メツシユ篩上のもの4〜
6重量%(以下%は重量%を示す)、325メツシユ
篩下のもの18〜28%、残部が60〜325メツシユの
ものであることを特徴とする特許請求の範囲第1
項記載のアルミニウム合金鋳物の補修用充填剤。
[Claims] 1. 15 to 25 parts of an inorganic silicate aqueous solution to 100 parts by weight of alumina powder (all parts below are by weight).
A filler for repairing aluminum alloy castings, characterized in that it is made by mixing 3.5 to 4.5 parts of an acrylic emulsion. 2 Alumina powder passed through a 60 mesh sieve 4~
Claim 1: 6% by weight (hereinafter % indicates weight%), 18-28% of the content under the 325 mesh sieve, and the remainder being 60-325 mesh.
A filler for repairing aluminum alloy castings as described in .
JP459579A 1979-01-17 1979-01-17 Filler for repair of casting of aluminum alloy Granted JPS5596235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP459579A JPS5596235A (en) 1979-01-17 1979-01-17 Filler for repair of casting of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP459579A JPS5596235A (en) 1979-01-17 1979-01-17 Filler for repair of casting of aluminum alloy

Publications (2)

Publication Number Publication Date
JPS5596235A JPS5596235A (en) 1980-07-22
JPH0116607B2 true JPH0116607B2 (en) 1989-03-27

Family

ID=11588387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP459579A Granted JPS5596235A (en) 1979-01-17 1979-01-17 Filler for repair of casting of aluminum alloy

Country Status (1)

Country Link
JP (1) JPS5596235A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141854A1 (en) * 2006-06-07 2007-12-13 Asahi Co., Ltd Method for repairing mold, heat-resistant inorganic repairing material, mold, molded article and product
JP5038785B2 (en) * 2007-06-11 2012-10-03 アイシン・エィ・ダブリュ株式会社 Test piece for impregnation performance evaluation and impregnation performance evaluation method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501446A (en) * 1973-05-09 1975-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501446A (en) * 1973-05-09 1975-01-09

Also Published As

Publication number Publication date
JPS5596235A (en) 1980-07-22

Similar Documents

Publication Publication Date Title
DE68910599T2 (en) Ceramic coating on metal.
EP1934001B8 (en) Borosilicate glass-containing molding material mixtures
CN104772429B (en) A kind of high-performance directional solidification ceramic shell mould and preparation technology thereof
CN107777956A (en) Anti-cracking large volume concrete
CN106479030A (en) A kind of heat conduction phase change composite and preparation method thereof
CN106238670A (en) Foundry facing and preparation method and application
US2491096A (en) Casting mold
US5820976A (en) Thin insulative ceramic coating and process
US3748157A (en) Refractory laminate based on negative sols or silicates and basic aluminum salts
CN108602112B (en) Binder composition for mold, aggregate mixture for mold, and mold
JPH0116607B2 (en)
US3754946A (en) Refractory laminate based on negative sols or silicates and non polymeric organic cationic nitrogen containing compounds
WO2009093002A2 (en) Liquid formulation of microporous thermal insulation material, method of manufacture, and use thereof
DE10104289B4 (en) Formable exothermic compositions and feeders made therefrom
US3089764A (en) Barrelling chips
JP2008207238A (en) Casting mold
JPS61256951A (en) Degradation prevention for set concrete
US2949375A (en) Siliceous casting cores
CN1220923A (en) Powdery quartz coating material
JPS5942155A (en) Mold coating material
JPS60238369A (en) Method of forming protecting film on mold
CN109796148A (en) A kind of anti-crack water-proof agent for concrete and preparation method thereof
JP2723149B2 (en) Core for pressure casting
JPH1130698A (en) Radioactive waste solidifying disposal method
SU1310092A1 (en) Impregnation composition for hermetic sealing of porous castings