JPH01165735A - Copper alloy for lead frame - Google Patents

Copper alloy for lead frame

Info

Publication number
JPH01165735A
JPH01165735A JP32284887A JP32284887A JPH01165735A JP H01165735 A JPH01165735 A JP H01165735A JP 32284887 A JP32284887 A JP 32284887A JP 32284887 A JP32284887 A JP 32284887A JP H01165735 A JPH01165735 A JP H01165735A
Authority
JP
Japan
Prior art keywords
weight
strength
copper alloy
alloy
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32284887A
Other languages
Japanese (ja)
Inventor
Keizo Kazama
風間 敬三
Juichi Shimizu
寿一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32284887A priority Critical patent/JPH01165735A/en
Publication of JPH01165735A publication Critical patent/JPH01165735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title copper alloy having excellent strength, electric conductivity, high temp. characteristics, etc., by incorporating specific ratios of Cr, Sn, Mg and Zn to Cu. CONSTITUTION:The copper alloy contg., by weight, 0.05-1.5% Cr and 0.01-0.5% Sn, furthermore contg. one or more kinds between 0.01-0.5% Mg and 0.05-1.0% Zn and consisting of the balance Cu with inevitable impurities is prepd. By this method, the copper alloy for a lead frame not only showing excellent value in the aspect of strength, electric conductivity and heat resistance but also having excellent soldering characteristics and plating adhesion can be obtd. at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体機器のリードフレーム等に好適な銅合金
に関する6 [従来の技術] 従来、半導体機器のリードフレーム材としては、耐食性
、強度等の面で優れるものとして、例えば重量%にて4
2%のニッケルを含有した鉄合金(42合金)や重量%
にて鉄を2.1〜2.6%、亜鉛を0.05〜0.20
%、燐を0.015〜0.15%含有する銅合金(OD
A194合金)。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a copper alloy suitable for lead frames of semiconductor devices, etc. 6. [Prior Art] Conventionally, lead frame materials for semiconductor devices have been used to improve corrosion resistance, strength, etc. For example, 4% by weight is considered to be excellent in terms of
Iron alloy containing 2% nickel (42 alloy) or weight%
2.1-2.6% iron and 0.05-0.20% zinc
%, copper alloy containing 0.015-0.15% phosphorus (OD
A194 alloy).

更には、重量%にて錫を2.0〜5.0%、燐を0.0
5〜0.35%含有する銅合金(りん青銅)、又、特公
昭47−4228号に示されるように銅に錫を0゜1〜
1.0重1%程度の範囲で添加したものが多くの実用に
供されている。
Furthermore, tin is 2.0 to 5.0% and phosphorus is 0.0% by weight.
Copper alloy containing 5 to 0.35% (phosphor bronze), or copper alloy containing 0.1 to 0.1% of tin as shown in Japanese Patent Publication No. 47-4228.
Additions of about 1.0% by weight are used in many practical applications.

[発明が解決しようとする問題点] 近年、半導体業界6手於ける進展はめざましいものがあ
り、集積回路の高密度化や小型化の要求が高まるにつれ
、リードフレーム材については高強度でかつ高導電性を
保つと共に、材料の軟化点か高く、半田付は性、メツキ
密着性についてもより厳しい性能が要求される様になっ
た。
[Problems to be solved by the invention] In recent years, there has been remarkable progress in the semiconductor industry.As the demand for higher density and smaller integrated circuits increases, lead frame materials with high strength and high In addition to maintaining conductivity, the softening point of the material is high, and stricter performance is now required in terms of solderability and plating adhesion.

しかしながら、現用のリードフレーム材は、例えば、錫
入り銅やCDA194合金の様に導電性に富むものは強
度が低く、逆に42合金やりん青銅のように強度に優れ
たものは導電性に劣ると云う具合である。また、特公昭
61−9385にて、クロム0.3〜1.5重置%、g
J0.01〜0゜5重量%を含み、残部が本質的に則か
らなる合金が開示されているが、これを用いても総合的
に充分でない、さらに、集積度の向上に伴なってリード
フレーム材の半田付は性、及びメツキ密着性についての
要求が従来にも増して厳しくなって来ている。したがっ
て、強度と導電性と高温特性、さらにはんだ付は性やメ
・ツキ密着性の要求を何れも充分に満す材料の供給が望
まれていた。
However, current lead frame materials that are highly conductive, such as tinned copper and CDA194 alloy, have low strength, and conversely, materials that have excellent strength, such as 42 alloy and phosphor bronze, have poor conductivity. That's how it goes. In addition, in Special Publication No. 61-9385, 0.3 to 1.5% of chromium, g
An alloy containing 0.01 to 0.5% by weight of J and the remainder essentially consisting of a regular alloy has been disclosed, but even if this is used, it is not comprehensively sufficient, and furthermore, as the degree of integration increases, the lead When soldering frame materials, requirements regarding soldering properties and plating adhesion are becoming more severe than ever. Therefore, it has been desired to provide a material that fully satisfies the requirements for strength, conductivity, high-temperature properties, as well as solderability and metal adhesion.

[問題点を解決するための手段] 本発明者等は上記問題点を解決するための手段として種
々検討を加えた結果、クロム0.05〜1.5重量%と
錫0.01〜0.5重量%とを含み、更にマグネシュウ
ム0.01〜0.5重量%及び亜鉛0.05〜1.0重
量%のうち1種以上を併せて含み、残部が銅及び不可避
的不純物からなる銅合金を見出しなものである。
[Means for Solving the Problems] The present inventors conducted various studies as a means for solving the above problems, and as a result, they found that 0.05 to 1.5% by weight of chromium and 0.01 to 0.0% by weight of tin were added. 5% by weight, and further contains one or more of 0.01 to 0.5% by weight of magnesium and 0.05 to 1.0% by weight of zinc, with the balance consisting of copper and inevitable impurities. is the headline.

[作用] 以下に、本発明合金を組成する合金成分の添加理由とそ
の組成限定理由を説明する。
[Function] The reasons for adding the alloy components constituting the alloy of the present invention and the reasons for limiting the composition will be explained below.

(a)  クロムの含有量を0.05〜1.5%と限定
した理由ニ クロムは適切な熱処理を加える事によって合金素地内に
析出物を析出させ、この析出物によって合金の強度と耐
熱性を向上させる。しかし、クロムの含有量が0.05
重景%未満では期待する強度や耐熱性が得られず、逆に
クロム含有量が1゜5平旦%を超えると強度、並びに耐
熱性の改善が飽和するだけで、素地内に析出するクロム
化合物が粗大化してメツキ密着性が悪化してくる。
(a) Reason for limiting the chromium content to 0.05 to 1.5% When nichrome is subjected to appropriate heat treatment, precipitates are deposited within the alloy matrix, and these precipitates improve the strength and heat resistance of the alloy. Improve. However, the content of chromium is 0.05
If the chromium content is less than 1.5%, the expected strength and heat resistance will not be obtained, and on the other hand, if the chromium content exceeds 1.5%, the improvement in strength and heat resistance will be saturated, and chromium compounds will precipitate in the substrate. becomes coarse and the plating adhesion deteriorates.

(b)  錫の含有量を0.01〜0.5重量%と限定
した理由: 錫は素地に固溶して素地の強化に寄与すると共に、クロ
ム化合物の粗大析出を防止する役割をになっている。し
かし、錫の含有量が0.01重量%未満では素地の強化
能が充分に現われないし、逆に錫の含有量が0.5%を
超えると材料の導電率低下が著しくなる。
(b) Reason for limiting the tin content to 0.01 to 0.5% by weight: Tin dissolves in the base material and contributes to strengthening the base material, and also plays a role in preventing coarse precipitation of chromium compounds. ing. However, if the tin content is less than 0.01% by weight, the strength of the base material will not be sufficiently enhanced, and if the tin content exceeds 0.5%, the electrical conductivity of the material will be significantly lowered.

(C)  マグネシュウムの含有量を0.01〜0.5
重量%と限定した理由: マグネシュウムは素地中に固溶する事によって、合金の
導電性を大きく下げる事なしに強度を向上する。しかし
、マグネシュウムの含有量が0,01ffi量%未溝で
は強度を上昇させる効果が充分でなく、逆にマグネシュ
ウムの含有量が0.5重量%を超えると合金の鋳造性及
び熱間加工性が低下して来る。
(C) Magnesium content is 0.01 to 0.5
Reason for limiting the value to % by weight: Magnesium improves the strength of the alloy without significantly lowering its conductivity by forming a solid solution in the matrix. However, when the magnesium content is 0.01% by weight without grooves, the effect of increasing the strength is not sufficient, and on the other hand, when the magnesium content exceeds 0.5% by weight, the castability and hot workability of the alloy are reduced. It's coming down.

(d)  亜鉛の含有量を0.05〜1.0重量%と限
定した理由: 亜鉛は素地中に固溶することによって、合金の導電性を
大きく下げる事なく、材料の強度を向上させる機能を有
する。しかし、亜鉛の含有量が0゜05重量26未満で
は強度の上昇効果が不充分であり、逆に亜鉛の含有量が
1.0重量%を超えると材料の半田付は性が低下して来
る。
(d) Reason for limiting the zinc content to 0.05 to 1.0% by weight: Zinc has the ability to improve the strength of the material without significantly reducing the conductivity of the alloy by being dissolved in the matrix. has. However, if the zinc content is less than 0.05wt.26, the effect of increasing strength is insufficient, and on the other hand, if the zinc content exceeds 1.0wt%, the solderability of the material will decrease. .

[実施例] 実施例1゜ 電気銅を品周波溶解炉で大気溶解し、その後所要成分に
応じた合金組成を有する溶湯となる様に、クロム10%
−銅合金、粒状金属錫、マグネシュウム50%−銅合金
をそれぞれ所定量加えて溶解し、金型に鋳込んで、厚さ
30III11、幅8011111.長さ170inの
鋳味3.6kaを得た。この場合の鋳塊の組成は、クロ
ム0.5重量%、錫0.03重量%、マグネシュウム0
.05重量%および、残部の銅及び不可避的不純物から
なるものであった。
[Example] Example 1 Electrolytic copper was melted in the atmosphere in a Shinshu wave melting furnace, and then 10% chromium was added so that the molten metal had an alloy composition according to the required components.
- Copper alloy, granular metal tin, 50% magnesium - Add a prescribed amount of copper alloy, melt it, and cast it into a mold to a thickness of 30III11 and a width of 8011111. A cast taste of 3.6 ka with a length of 170 inches was obtained. The composition of the ingot in this case is 0.5% by weight of chromium, 0.03% by weight of tin, and 0% of magnesium.
.. 0.5% by weight, with the balance consisting of copper and unavoidable impurities.

この鋳塊を900℃にて2時間加熱後、熱間圧延により
厚さ14Tanの板とした9次いでこの板の表面を片面
innづつ面削し、厚さ12nlの板とした後、冷間加
工により厚さ0.2511Inの板に加工し、更に40
0℃にて1時間焼鈍して供試材とした。
After heating this ingot at 900°C for 2 hours, it was hot-rolled into a plate with a thickness of 14 Tan9.Then, the surface of this plate was milled inn on each side to make a plate with a thickness of 12 nl, and then cold-rolled. It was processed into a plate with a thickness of 0.2511 In by
The sample material was annealed at 0°C for 1 hour.

この様にして作製された供試材の評価を次のように得た
6引張試験による強度と、IACS%表示による導電率
を測定したところ、引張強さ60kg/nn2 、破断
伸び10%、導電率85%を得た。
The evaluation of the test material produced in this way was carried out by measuring the strength in the 6 tensile test obtained as follows and the conductivity in IACS%. A rate of 85% was obtained.

また、耐熱性の評価方法として、供試材をアルゴン雰囲
気中で加熱し、種々なる温度にて各1時間保持した後に
引張試験を行い、当初の強度に比鮫して80%の強度を
示す温度を軟化点と定めた場合、500℃の軟化点を有
する事が確認された。
In addition, as a method for evaluating heat resistance, the test material was heated in an argon atmosphere, held at various temperatures for 1 hour, and then subjected to a tensile test, which showed a strength of 80% compared to the initial strength. When temperature is defined as softening point, it was confirmed that it has a softening point of 500°C.

さらに、前処理として脱脂、酸洗を行なった後、ロジン
系のブラックスを用いて釦40%を含有する錫合金の半
田浴に浸漬した試料についてその表面が均一に濡れてい
るか否かを観察する事により評価した半田付は性は良好
な結果を示した。
Furthermore, after degreasing and pickling as pretreatment, the sample was immersed in a tin alloy solder bath containing 40% button using rosin-based blacks, and the surface was observed to see if it was uniformly wet. The soldering properties evaluated by the method showed good results.

同様に、前処理として脱脂、酸洗した後、厚さ3μmの
銀めっきを施した試料について、450℃にて5分間の
加熱処理を施した後、試料の表面に発生する膨れの有無
を観察する事により評価するメツキ密着性は良好な結果
を示した。
Similarly, after degreasing and pickling as pretreatment, a sample was plated with silver to a thickness of 3 μm, and after heat treatment was performed at 450°C for 5 minutes, the presence or absence of blisters occurring on the surface of the sample was observed. The plating adhesion evaluated by this method showed good results.

実施例2゜ 鋳塊の組成が、クロム0.3重量%、錫0.2fIL量
%、マグネシュウム0.05重量%、亜鉛0゜1重量%
および、残部の銅及び不可避的不純物からなる他は実施
例1と同じ工程にて作成された試料について、実施例1
と同じく各種の試験を行なった結果は、引張強さ60 
ka/ n+n2 、破断伸び11%、導電率75%、
軟化点490℃であり、半田付は性及びメツキ密着性の
両者とも良好という結果を示した。
Example 2 The composition of the ingot is 0.3% by weight of chromium, 0.2% by weight of tin, 0.05% by weight of magnesium, and 0.1% by weight of zinc.
Example 1 was prepared using the same process as Example 1 except for the remaining copper and unavoidable impurities.
The results of various tests were as follows: tensile strength 60
ka/n+n2, elongation at break 11%, electrical conductivity 75%,
The softening point was 490°C, and both solderability and plating adhesion were good.

比較例1゜ 鋳塊の組成が、クロム1.7重量%、gJo、 1重量
%、マグネシュウム0.1重量%および、残部の銅及び
不可避的不純物からなる他は実施例1と同じ工程にて作
成された試料について、実施例1と同じく各種の試験を
行なった場合は、引張強さ57 kg/+gn2 、破
断伸び10%、導電率76%、軟化点500℃を示し、
半田付は性も良好な結果を示したが、メツキ密着性は不
可と云う結果となった。
Comparative Example 1 The same process as in Example 1 was carried out except that the composition of the ingot was 1.7% by weight of chromium, 1% by weight of gJo, 0.1% by weight of magnesium, and the remainder was copper and unavoidable impurities. When the prepared sample was subjected to various tests in the same manner as in Example 1, it showed a tensile strength of 57 kg/+gn2, elongation at break of 10%, electrical conductivity of 76%, and a softening point of 500°C.
The soldering properties showed good results, but the plating adhesion was poor.

比較例2゜ 鋳塊の組成が、クロム0.5重量%、錫0.1重量%、
亜鉛1,2重量%および、残部の銅及び不可避的不純物
からなる他は実施例1と同じ工程にて作成された試料に
ついて、実施例1と同じく各種の試験を行なった結果は
、引張強さ58kg/1ll12、破断伸び12%、導
電率74%、軟化点480℃を示し、メツキ密着性は良
好であったものの、半田付は性は不可と云う結果を示し
た。
Comparative Example 2 The composition of the ingot was 0.5% by weight of chromium, 0.1% by weight of tin,
Various tests were conducted in the same manner as in Example 1 on a sample made in the same process as in Example 1 except that it consisted of 1.2% by weight of zinc and the remainder of copper and unavoidable impurities.The results showed that the tensile strength 58 kg/1 12, elongation at break 12%, electrical conductivity 74%, and softening point 480° C., and although the plating adhesion was good, the solderability was poor.

上記実施例1および2の合金、また比較例1および2の
合金を第1表の本発明合金1および6、また比較合金8
および10として各々示す、第1表には、上記の実施例
、比較例以外にも、各種の組成をもった試料を作成して
、実施例1と同様な材料試験を行なった結果を示しであ
る。第1表から、本発明合金が優れた性能を有する合金
である事が明らかである。
The alloys of Examples 1 and 2 and the alloys of Comparative Examples 1 and 2 were used as the invention alloys 1 and 6 in Table 1, and the comparative alloy 8.
In addition to the above Examples and Comparative Examples, Table 1, shown as 1 and 10, shows the results of material tests similar to those in Example 1 made by preparing samples with various compositions. be. From Table 1, it is clear that the alloy of the present invention has excellent performance.

尚第1表中に示された従来合金材N013〜No、 1
6は、本発明と比較の為、市販の材料を使用した結果を
示したものである。
In addition, conventional alloy materials No. 1 to No. 1 shown in Table 1
6 shows the results using commercially available materials for comparison with the present invention.

[発明の効果] 以上の如く、本発明合金はリードフレーム用銅合金とし
て要求される強度、導電率、耐熱性の面で優れた値を示
すばかりでなく、半田付は性、めっき付着性に於ても優
れた材料であり、錫等の高価な元素の添加量が極めて少
くて済む事から、素材費も安価なものとなる為、電子機
器業界に寄与、+
[Effects of the Invention] As described above, the alloy of the present invention not only exhibits excellent values in terms of strength, electrical conductivity, and heat resistance required as a copper alloy for lead frames, but also exhibits excellent solderability and plating adhesion. It is also an excellent material, and since only a small amount of expensive elements such as tin can be added, the material cost is also low, contributing to the electronics industry.

Claims (1)

【特許請求の範囲】[Claims] クロム0.05〜1.5重量%と、錫0.01〜0.5
重量%とを含み、更に、マグネシュウム0.01〜0.
5重量%及び亜鉛0.05〜1.0重量%のうち1種以
上を併せて含み、残部が銅及び不可避的不純物からなる
ことを特徴とするリードフレーム用銅合金。
0.05-1.5% by weight of chromium and 0.01-0.5% of tin
% by weight, and further contains 0.01 to 0.0% of magnesium.
5% by weight of zinc and 0.05 to 1.0% by weight of zinc, the remainder being copper and inevitable impurities.
JP32284887A 1987-12-22 1987-12-22 Copper alloy for lead frame Pending JPH01165735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32284887A JPH01165735A (en) 1987-12-22 1987-12-22 Copper alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32284887A JPH01165735A (en) 1987-12-22 1987-12-22 Copper alloy for lead frame

Publications (1)

Publication Number Publication Date
JPH01165735A true JPH01165735A (en) 1989-06-29

Family

ID=18148272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32284887A Pending JPH01165735A (en) 1987-12-22 1987-12-22 Copper alloy for lead frame

Country Status (1)

Country Link
JP (1) JPH01165735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166717A (en) * 2011-02-28 2011-08-31 朱炳兴 Method for processing novel sound hole plate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166717A (en) * 2011-02-28 2011-08-31 朱炳兴 Method for processing novel sound hole plate material

Similar Documents

Publication Publication Date Title
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
TWI415958B (en) Copper alloy for electronic material and method for manufacturing the same
JP2670670B2 (en) High strength and high conductivity copper alloy
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
EP0189637B1 (en) Copper alloy and production of the same
JP2007126739A (en) Copper alloy for electronic material
JP3413864B2 (en) Connector for electrical and electronic equipment made of Cu alloy
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS63307232A (en) Copper alloy
US4492602A (en) Copper base alloys for automotive radiator fins, electrical connectors and commutators
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6231059B2 (en)
WO1999013117A1 (en) Copper based alloy featuring precipitation hardening and solid-solution hardening
JPS6215621B2 (en)
JPS6215622B2 (en)
JPS6239218B2 (en)
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPS6256937B2 (en)
JPH01165735A (en) Copper alloy for lead frame
JPH01165733A (en) High strength and high electric conductive copper alloy
KR19990048844A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloys for high-strength wire and plate and its manufacturing method
JPS58213847A (en) Copper alloy for electric and electronic parts and its manufacture
JPS6142772B2 (en)
JPH02129326A (en) High strength copper alloy