JPH01163686A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH01163686A
JPH01163686A JP62323201A JP32320187A JPH01163686A JP H01163686 A JPH01163686 A JP H01163686A JP 62323201 A JP62323201 A JP 62323201A JP 32320187 A JP32320187 A JP 32320187A JP H01163686 A JPH01163686 A JP H01163686A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetic body
current
detection winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62323201A
Other languages
Japanese (ja)
Other versions
JP2617498B2 (en
Inventor
Yoshiaki Akachi
義昭 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62323201A priority Critical patent/JP2617498B2/en
Priority to US07/287,153 priority patent/US4939459A/en
Priority to DE3843087A priority patent/DE3843087C2/en
Publication of JPH01163686A publication Critical patent/JPH01163686A/en
Application granted granted Critical
Publication of JP2617498B2 publication Critical patent/JP2617498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain the title magnetic sensor which eliminates the need for exciting winding by supplying a pulse or AC current in the length-wise direction of a conductive magnetic body and detecting an external magnetic field by detection winding provided around the magnetic body. CONSTITUTION:A monolithic wire or rod-shaped magnetic body 10 which has no magnetic strain is formed of a Co magnetic material. The pulse current or AC current is supplied from a power source 11 in the lengthwise direction of the magnetic body 10. The magnetic body 10 is wound with the detection winding 12. An internal magnetic field Hi is produced in the circumferential direction of the magnetic body 10 with the pulse current or AC current and an external magnetic field Ho is detected by the detection winding 12 as an electric signal with the Hi. A voltage Eo is developed at the output terminal 13 of the detection winding 12 with the voltage pulse Ei of the power source 11. The crest value H of the Eo when the pulse current rises and falls is larger and larger as the intensity of the external magnetic field Ho is larger and larger and the direction of the Ho is closer and closer to the direction of the magnetic body 10 on condition that the intensity of the external magnetic field Ho is smaller than a prescribed value. This constitution eliminates the need for exciting winding for the magnetic sensor and has high sensitivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 木発朗は、磁界の有無、大小、角度等を検出することが
でき、方位センサ、位置センサ、傾斜センサ、電流セン
サ等に使用てきる磁気センサに関する。
[Detailed Description of the Invention] (Field of Industrial Application) Kihatsuro can detect the presence or absence of a magnetic field, its magnitude, angle, etc., and can be used in azimuth sensors, position sensors, tilt sensors, current sensors, etc. Regarding magnetic sensors.

(従来の技術) 従来の磁気センサは、第15図に示すように、磁芯1に
励磁巻線2と検出巻線3とを巻回し、励磁巻線2に電源
4により交流電流を流し、これにより磁芯lに磁芯の軸
心方向に内部磁界H8を発生させ、該内部磁界H,に対
してバイアスとして作用する外部磁界Hoの大きさによ
り、検出巻線3の出力端子5に現われる基本波または高
調波の出力電圧か変化するように構成されている。この
磁気センサは、例えば電流センサとして使用されるもの
て、電流の大小によって変化する外部磁界Hoの大小の
変化が出力電圧の変化として検出てきる。
(Prior Art) As shown in FIG. 15, a conventional magnetic sensor has an excitation winding 2 and a detection winding 3 wound around a magnetic core 1, and a power source 4 passing alternating current through the excitation winding 2. As a result, an internal magnetic field H8 is generated in the magnetic core l in the axial direction of the magnetic core, and due to the magnitude of the external magnetic field Ho acting as a bias on the internal magnetic field H, a voltage appears at the output terminal 5 of the detection winding 3. The output voltage of the fundamental wave or harmonics is configured to change. This magnetic sensor is used, for example, as a current sensor, and detects changes in the magnitude of the external magnetic field Ho, which changes depending on the magnitude of the current, as changes in the output voltage.

第16図は、第15図の磁気センサの用途を変えたもの
て、磁芯lと外部磁界Itoとの相対的な向きか変化す
るように磁気センサあるいは磁石等の外部磁界発生手段
を配置し、磁芯lの内部磁界11□に対し、外部磁界I
Ioの磁芯1と同方向成分11o−coSθの変化か出
力電圧の変化として現われるようにしだものである。こ
の磁気センサば、単体あるいは複数個のものを組合わせ
て方位センサ、傾斜センサ等に使用される。
Fig. 16 shows a modification of the magnetic sensor shown in Fig. 15, in which a magnetic sensor or an external magnetic field generating means such as a magnet is arranged so that the relative direction of the magnetic core l and the external magnetic field Ito can be changed. , for the internal magnetic field 11□ of the magnetic core l, the external magnetic field I
This appears as a change in the component 11o-coSθ of Io in the same direction as the magnetic core 1 or a change in the output voltage. These magnetic sensors are used singly or in combination as azimuth sensors, inclination sensors, and the like.

第15図および第16図に示す磁気センサは、第17図
(A)に示すように、内部磁界11□に対し、外部磁界
+(0の磁束の方向か平行となり、第17図(B)に示
すように、外部磁界H8と内部磁界11□の向きか回し
である場合には磁界強度か最大となり、同(C)に示す
ように逆方向になると最小となり、この変化か出力電圧
として検出できるわけである。
In the magnetic sensor shown in FIGS. 15 and 16, the direction of the magnetic flux of the external magnetic field +(0) is parallel to the internal magnetic field 11□, as shown in FIG. 17(B). As shown in (C), when the external magnetic field H8 and internal magnetic field 11□ are in the opposite direction, the magnetic field strength is maximum, and as shown in (C), when the direction is reversed, it is minimum, and this change is detected as the output voltage. It can be done.

」−記の他、従来の磁気センサとして、ホール素子を用
いたものかある。
In addition to the above, there are other conventional magnetic sensors that use Hall elements.

(発明か解決しようとする問題点) 上記従来の磁気センサのうち、第15図および第16図
に示したものは、励磁巻線2と検出巻線3の2つの巻線
か必要てあり、構造か複雑になるという問題点かある。
(Problems to be Solved by the Invention) Among the conventional magnetic sensors described above, the ones shown in FIGS. 15 and 16 require two windings, an excitation winding 2 and a detection winding 3. There is a problem with the structure being complicated.

また、ホール素子を用いた磁気センサは、感度か悪いと
いう問題点かある。
Furthermore, magnetic sensors using Hall elements have a problem of poor sensitivity.

(問題点を解決するだめの手段) 本発明の磁気センサは、導電性を有する線状、帯状ある
いは棒状の磁性体と、該磁性体に長手方向にパルス電流
あるいは交流電流を流す手段と、該磁性体に巻回された
検出巻線とからなり、前記パルス電流あるいは交流電流
により前記磁性体の周回方向に生しる磁界によって外部
磁界を前記検出巻線に生しる電気信号として検出する構
成とすることにより、励磁巻線を不要として小形、軽量
化を達成し、また、高感度の磁気センサを実現したもの
である。
(Means for Solving the Problems) The magnetic sensor of the present invention comprises: a conductive magnetic body in the form of a linear, strip, or rod; a means for passing a pulsed current or an alternating current in the longitudinal direction of the magnetic body; A configuration comprising a detection winding wound around a magnetic material, and detects an external magnetic field as an electric signal generated in the detection winding by a magnetic field generated in the circumferential direction of the magnetic material by the pulsed current or alternating current. This eliminates the need for an excitation winding, achieving a smaller size and lighter weight, and also realizing a highly sensitive magnetic sensor.

また本発明の目的は、前記磁性体の代わりに、周囲に磁
性体を設けた線状、帯状あるいは棒状の導体を用いても
達成てきる。
Further, the object of the present invention can be achieved by using a linear, band-shaped, or rod-shaped conductor having a magnetic material around it instead of the magnetic material.

(実施例) 第1図は本発明による磁気センサの一実施例てあり、該
実施例の磁気センサは、導電性を有する線状あるいは棒
状の磁性体10と、該磁性体10に長手方向にパルス電
流あるいは交流量流を流す手段としての電源11と、該
磁性体10に巻回された検出巻線12とからなり、第2
図に示すように、前記パルス電流あるいは交流電流によ
り前記磁性体10の周回方向に内部磁界H8を発生させ
、該内部磁界H,によって外部磁界Hoを前記検出巻線
12に生しる電気信号として検出するものである。
(Embodiment) FIG. 1 shows an embodiment of a magnetic sensor according to the present invention, and the magnetic sensor of this embodiment includes a linear or rod-shaped magnetic body 10 having conductivity, and a longitudinal direction of the magnetic body 10. It consists of a power source 11 as a means for passing a pulsed current or an alternating current, and a detection winding 12 wound around the magnetic body 10.
As shown in the figure, an internal magnetic field H8 is generated in the circumferential direction of the magnetic body 10 by the pulsed current or alternating current, and the internal magnetic field H generates an external magnetic field Ho in the detection winding 12 as an electric signal. It is something to detect.

第3図は、電源11により発生させる電圧パルスE、に
より磁性体10にパルス電流を流した場合、外部磁界H
6が内部磁界11□と異なる方向に存在する際に、検出
巻線12の出力端子13に現われる出力電圧E。を示す
ものであり、パルス電流の立ち上かりまたは立ち下がり
において、出力端子13に現れる電圧E。の波高値Hは
、外部磁界H6の強度か所定の大きさ以下であれば、そ
の強度が大であるほど、また、外部磁界Hoの向きか磁
性体10の向きに近い程大となる。
FIG. 3 shows that when a pulse current is passed through the magnetic body 10 by a voltage pulse E generated by a power source 11, an external magnetic field H
6 is in a different direction from the internal magnetic field 11□, the output voltage E appearing at the output terminal 13 of the detection winding 12. The voltage E that appears at the output terminal 13 at the rise or fall of the pulse current. If the intensity of the external magnetic field H6 is less than a predetermined value, the wave height value H becomes larger as the intensity is larger and as the direction of the external magnetic field Ho is closer to the direction of the magnetic body 10.

[実施例1 ] Go系磁性材て磁歪ゼロのアモルファ
スワイヤ(線径1251Im、長さ65+++m)を前
記磁性体10として用い、その周囲に検出巻線12を2
00ターン巻回し、地磁気の水平成分に対してアモルフ
ァスワイヤか平行になるように非磁性基板上に配置した
。このアモルファスワイヤの両端に振幅2v、デユーテ
ィ−ファクタ50%、繰返し周期10μsのパルスを印
加した。この状態て磁性体10を水平に保ちながら時計
回り方向に回転すると、端子13に現われる電圧は第4
図に示すように推移した。第4図は、磁性体lOの向き
か地磁気の水平成分に対して0度、90度、180度、
270度をなす場合を示しており、出力電圧(尖頭値、
以下同じ)は0度、180度、すなわち磁性体10の向
きか地磁気の水平成分と同方向の場合に最大となり、出
力電圧の極性は逆になる。また、出力電圧は、90度、
270度、すなわち磁性体10の向きか地磁気の水平成
分に対して直角をなす場合に最小となる。
[Example 1] An amorphous wire (wire diameter 1251 Im, length 65+++ m) made of Go-based magnetic material and having zero magnetostriction was used as the magnetic body 10, and two detection windings 12 were arranged around it.
The wire was wound with 00 turns and placed on a non-magnetic substrate so that the amorphous wire was parallel to the horizontal component of the earth's magnetism. A pulse with an amplitude of 2 V, a duty factor of 50%, and a repetition period of 10 μs was applied to both ends of this amorphous wire. In this state, if the magnetic body 10 is rotated clockwise while keeping it horizontal, the voltage appearing at the terminal 13 will be the fourth voltage.
The trend has been as shown in the figure. Figure 4 shows the orientation of the magnetic material lO or the horizontal component of the earth's magnetism at 0 degrees, 90 degrees, 180 degrees,
The output voltage (peak value,
(same below) is maximum at 0 degrees and 180 degrees, that is, when the direction of the magnetic body 10 is the same as the horizontal component of the earth's magnetism, and the polarity of the output voltage is reversed. Also, the output voltage is 90 degrees,
It is minimum at 270 degrees, that is, when the direction of the magnetic body 10 is perpendicular to the horizontal component of the earth's magnetism.

第5図は磁性体lOの地磁気の水平成分に対する回転角
度と出力電圧(印加した矩形電圧パルスの立ち」−かり
部分で発生ずる出力電圧)との関係を示すものて、コサ
インカーブを描く。
FIG. 5 shows the relationship between the rotation angle of the magnetic material lO with respect to the horizontal component of the earth's magnetism and the output voltage (the output voltage generated at the rising edge of the applied rectangular voltage pulse), and draws a cosine curve.

このような磁性体lOの回転角度と出力電圧との関係か
ら、この磁気センサは、方位センサ(たたし東西のどち
ら側に傾斜しているかは不明である。)や、磁石等で発
生させた磁界の方向に対する磁性体10の傾斜を求める
傾斜センサや、出力電圧か外部磁界強度に比例すること
を利用した電流センサや、可動体と静止体にそれぞれ磁
性体10あるいは磁石等を取付け、磁性体lOか磁石等
に対向した際に出力か現れるような位置センサまたは回
転センサ等に用いることかてきる。
Because of the relationship between the rotation angle of the magnetic material lO and the output voltage, this magnetic sensor can be used with a direction sensor (it is unknown which side of the tread is tilted, east or west) or a magnet. An inclination sensor that measures the inclination of the magnetic body 10 with respect to the direction of a magnetic field; a current sensor that uses the fact that the output voltage is proportional to the strength of an external magnetic field; It can be used for position sensors, rotation sensors, etc. that produce an output when the body 10 faces a magnet or the like.

なお、磁性体10の材料として前記径、材質のアモルフ
ァスワイヤを用い、磁性体lOの長さを40111m 
〜130mmの範囲で変え、検出巻線12の巻き数を2
00ターン(同ピツチ)とし、繰返し周期10μs、チ
ューティーファクタ50%の定電流パルスを磁性体10
に流した場合、地磁気の水平成分の方向に磁性体10を
向けたときの出力電圧の変化を調べた。その結果は、$
6図に示すように、磁性体長か長くなると出力電圧かや
や増大するという結果を得た。
Note that an amorphous wire having the diameter and material described above is used as the material of the magnetic body 10, and the length of the magnetic body 10 is 40111 m.
~130mm, and the number of turns of the detection winding 12 is 2.
00 turns (same pitch), a constant current pulse with a repetition period of 10 μs and a tutie factor of 50% is applied to the magnetic material 10.
The change in output voltage was investigated when the magnetic body 10 was oriented in the direction of the horizontal component of the earth's magnetism. The result is $
As shown in Figure 6, we obtained the result that as the length of the magnetic body increases, the output voltage increases slightly.

また、第7図は、入力電圧と出力電圧との関係を示した
図で、この場合の磁性体10の材質、径は前記同様で、
長さを65mmとしく該磁性体10の直流抵抗は12Ω
であった。)、繰返し周期lOμS、デユーティ−ファ
クタ50%の入力電圧の振幅をO,SV〜2.Ovの範
囲で変化させ、地磁気の水平成分の方向に磁性体10を
向けたときの出力電圧の変化を調べたものである。第7
図から、2V近くまでは入力電圧、すなわち入力電流の
増大に比例して出力電圧か増大することかわかる。
Moreover, FIG. 7 is a diagram showing the relationship between input voltage and output voltage, and the material and diameter of the magnetic body 10 in this case are the same as above,
The length is 65 mm, and the DC resistance of the magnetic body 10 is 12Ω.
Met. ), repetition period lOμS, duty factor 50%, input voltage amplitude is O,SV~2. The change in the output voltage was investigated when the magnetic body 10 was oriented in the direction of the horizontal component of the earth's magnetism. 7th
From the figure, it can be seen that the output voltage increases in proportion to the increase in the input voltage, that is, the input current, up to nearly 2V.

また第8図は、第7図における試験条件において、入力
電圧の振幅を2■とし、繰返し周期を4μs〜100μ
sに変化させた場合の出力電圧の変化を示すものて、繰
返し周期によっては出力電圧は大きくは変化しない。
In addition, Fig. 8 shows that under the test conditions shown in Fig. 7, the amplitude of the input voltage is 2■, and the repetition period is 4μs to 100μs.
The output voltage does not change significantly depending on the repetition period.

[実施例2]磁性体10として、実施例1と同様のCo
系磁歪セロの材質て、幅1■、板厚15μmの細い帯状
のものを用い、200ターンの検出巻線12を巻回し、
同様の回路で地磁気に対する感度を測定した結果、ワイ
ヤの場合と同様の傾向を示した。
[Example 2] The same Co as in Example 1 was used as the magnetic body 10.
A thin strip-shaped magnetostrictive cello material with a width of 1 mm and a plate thickness of 15 μm is used, and a detection winding 12 of 200 turns is wound thereon.
When we measured the sensitivity to geomagnetic field using a similar circuit, we found a similar trend to that of the wire.

また、帯状磁性体10の長さを38+n+n(該磁性体
10の直流抵抗は3Ωてあった。)、入力電圧の振幅を
0.5V、繰返し周期を25μs、デユーティ−ファク
タ50%の電圧を磁性体IOに印加し、その立ち」−か
り時間を0.5μs〜2.0μsの範囲て変化させた場
合の出力電圧の変化を第10図に示す。第9図かられか
るように、入力パルスの立ち」−かり時間か短い程出力
電圧が高くなるという傾向が顕著に現われる。
In addition, the length of the strip magnetic body 10 was 38+n+n (the DC resistance of the magnetic body 10 was 3Ω), the amplitude of the input voltage was 0.5V, the repetition period was 25 μs, and the voltage with a duty factor of 50% was applied to the magnetic field. FIG. 10 shows changes in the output voltage when the voltage is applied to the body IO and the rise time is varied in the range of 0.5 μs to 2.0 μs. As can be seen from FIG. 9, there is a remarkable tendency that the output voltage becomes higher as the rising time of the input pulse becomes shorter.

[実施例3]実施例2と同様の材質、寸法の帯状磁性体
を2本用い、第10図に示すように、これらの磁性体1
0x、10yに検出巻線12x、12yを200タ一ン
巻回したものを直交させて配設し、電源11に対し、磁
性体10x、loyを直列に接続し、振@2v、デユー
ティ−ファクタ50%、繰返し周期25μsの電圧パル
スを加え、磁性体10x、10yを水平に保ち、時計回
り方向に回転し、各検出巻線12x、12yの出力電圧
Ex、 Eyを測定した。その結果、第11図に示すよ
うに、出力か推移した。第11図は第10図のように磁
性体10x、loyを配置した場合を回転角度ゼロ度と
し、回転角度を変化したときの出力電圧Ex、 Eyの
変化を示す図であり、第11図に示すように、方位によ
り、2つの出力電圧Ex、 Eyの極性と値の組合わせ
か一義的に決定されることから、この交叉形の磁気セン
サは、方位センサとして用いることか可能である。
[Example 3] Using two strip-shaped magnetic bodies having the same material and dimensions as in Example 2, as shown in FIG. 10, these magnetic bodies 1
Detection windings 12x and 12y wound with 200 turns are arranged perpendicularly to 0x and 10y, and the magnetic bodies 10x and 10y are connected in series to the power supply 11, with a vibration @ 2v and a duty factor. A voltage pulse of 50% and a repetition period of 25 μs was applied, the magnetic bodies 10x and 10y were held horizontally and rotated clockwise, and the output voltages Ex and Ey of each detection winding 12x and 12y were measured. As a result, the output changed as shown in FIG. Fig. 11 is a diagram showing the changes in the output voltages Ex and Ey when the rotation angle is changed, assuming that the rotation angle is zero degree when the magnetic bodies 10x and loy are arranged as shown in Fig. 10. As shown, since the combination of polarity and value of the two output voltages Ex and Ey is uniquely determined by the orientation, this cross-shaped magnetic sensor can be used as an orientation sensor.

第12図は第10図に示した磁気センサの処理回路の一
例であり、各出力電圧Ex、 Eyの位相検波後の波高
値をそれぞれサンプルホールド回路14x、14yによ
り保持し、その各電圧値をそれぞれA−D変換回路15
x、15yによりテシタル値に変換し、例えばマイクロ
コンピュータ16によって方位信号を算出し、マイクロ
コンピュータ16に付帯した表示器17によって表示す
るものである。なお、前記出力電圧Ex、 Eyの処理
回路としては第12図の他種々のものが用いられること
は勿論である。
FIG. 12 is an example of the processing circuit of the magnetic sensor shown in FIG. 10, in which the peak values of the output voltages Ex and Ey after phase detection are held by sample and hold circuits 14x and 14y, respectively, and the respective voltage values are A-D conversion circuit 15 respectively
x, 15y are converted into digital values, and the microcomputer 16 calculates an azimuth signal, which is displayed on a display 17 attached to the microcomputer 16. It goes without saying that various circuits other than the one shown in FIG. 12 may be used as the processing circuits for the output voltages Ex and Ey.

第13図は本発明の他の実施例であり、アルミナ等の基
板20上に膜形成技術により磁性体膜21を形成し、基
板20と共に磁性体膜21に検出巻線22を巻装し、磁
性体膜21に前記電源11より通電し、外部磁界を検出
巻線22に生しる電気信号として検出するようにしたも
のである。
FIG. 13 shows another embodiment of the present invention, in which a magnetic film 21 is formed on a substrate 20 of alumina or the like by a film forming technique, and a detection winding 22 is wound around the magnetic film 21 together with the substrate 20. The magnetic film 21 is energized by the power source 11, and the external magnetic field is detected as an electric signal generated in the detection winding 22.

上記実施例においては、@源11による矩形電圧パルス
を磁性体10に印加する例について示したが、三角波あ
るいは正弦波等、他の波形の電圧を印加するようにして
もよい。また、磁性体10としては、導電性があり、か
つ高い透磁率て飽和磁束密度の大きな前記アモルファス
合金の他、同様の特性を有するパーマロイか好ましいか
、同様な特性てあれば、他の材質のものを用いてもよい
。また、第14図に示すように、金属等の導電体10a
の周囲にフェライトやアモルファス合金等の磁性材10
bを固着したもの、あるいは磁性材10bを別体に構成
して導電体10aを挿入したものも用いられる。また、
電流値か大きい用途においては、径の大きな断面円形あ
るいは矩形等の棒状のものを用いることかてきる。さら
に、磁性体10の組合わせは任意に行なうことかできる
In the above embodiment, an example was shown in which a rectangular voltage pulse from the source 11 was applied to the magnetic body 10, but a voltage having another waveform such as a triangular wave or a sine wave may be applied. In addition to the above-mentioned amorphous alloy, which is electrically conductive and has high magnetic permeability and a large saturation magnetic flux density, the magnetic material 10 may preferably be permalloy, which has similar characteristics, or may be made of other materials if it has similar characteristics. You may also use Further, as shown in FIG. 14, a conductor 10a such as metal
Magnetic material 10 such as ferrite or amorphous alloy is placed around the
A structure in which the magnetic material 10b is fixed or a structure in which the magnetic material 10b is constructed separately and the conductor 10a is inserted may also be used. Also,
In applications where the current value is large, it is possible to use a rod-shaped one with a large diameter and a circular or rectangular cross section. Furthermore, the combinations of magnetic bodies 10 can be made arbitrarily.

(発明の効果) 以上述べたように、本発明の磁気センサは、パルス電流
あるいは交流電流により磁性体の周回方向に生じる磁界
によって外部磁界を前記検出巻線に生じる電気信号とし
て検出する構成としたものであり、従来の磁芯を有する
磁気センサで必要とした励磁巻線が不要となるので、構
成か簡略化され、方位センサに例をとれば、前記のよう
な細線によって磁性体か実現てきるから、従来のトロイ
タル磁芯を有するものに比較し、約1710〜]/10
0程度に軽量化され、廉価に提供できる。また、軽量で
高感度の磁気センサが実現てき、微小磁界の検出の用途
にも用いることかてきる。
(Effects of the Invention) As described above, the magnetic sensor of the present invention has a configuration in which an external magnetic field is detected as an electric signal generated in the detection winding by a magnetic field generated in the circumferential direction of a magnetic body by a pulsed current or an alternating current. This eliminates the need for the excitation winding required in conventional magnetic sensors with magnetic cores, simplifying the structure.For example, in the case of direction sensors, magnetic materials can be realized using thin wires as described above. Therefore, compared to the conventional one with a troital magnetic core, it is about 1710~]/10
The weight is reduced to about 0, and it can be provided at a low price. Furthermore, a lightweight and highly sensitive magnetic sensor has been realized, which can also be used for detecting minute magnetic fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気センサの一実施例を示す構成図、
第2図は本発明の原理説明図、第3図は本発明における
入力電圧と出力電圧との関係の一例を示す波形図、第4
図は第1図の実施例における各回転角に対応した出力電
圧波形を示す写真図、第5図は第1図の実施例における
回転角と出力電圧との関係図、第6図は該実施例におけ
る磁性体長と出力電圧との関係図、第7図は該実施例に
おける入カバルス電圧と出力電圧との関係図、第8図は
該実施例における繰返し周期と出力電圧との関係図、第
9図は磁性体として帯状のものを用いた場合における入
カバルス立ち上がり時間と出力電圧との関係図、第10
図は磁性体を直交させた本発明の他の実施例を示す構成
図、第11図は該実施例における回転角と出力電圧との
関係図、第12図は該実施例の処理回路の一例図、第1
3図は本発明の他の実施例を示す斜視図、第1+7 4図本願の第2発明の実施例を示す図、第15図へ および第16図は従来の磁気センサを示す構成図、第1
7図は従来の磁気センサの原理図てある。
FIG. 1 is a configuration diagram showing an embodiment of the magnetic sensor of the present invention;
FIG. 2 is a diagram explaining the principle of the present invention, FIG. 3 is a waveform diagram showing an example of the relationship between input voltage and output voltage in the present invention, and FIG.
The figure is a photographic diagram showing the output voltage waveform corresponding to each rotation angle in the embodiment shown in Fig. 1, Fig. 5 is a diagram showing the relationship between the rotation angle and the output voltage in the embodiment shown in Fig. FIG. 7 is a diagram of the relationship between the magnetic body length and output voltage in the example, FIG. 7 is a diagram of the relationship between the input cabling voltage and output voltage in the example, and FIG. Figure 9 is a diagram of the relationship between the input pulse rise time and the output voltage when a strip-shaped magnetic material is used.
The figure is a block diagram showing another embodiment of the present invention in which the magnetic bodies are orthogonal to each other, FIG. 11 is a diagram of the relationship between the rotation angle and the output voltage in this embodiment, and FIG. 12 is an example of a processing circuit of this embodiment. Figure, 1st
FIG. 3 is a perspective view showing another embodiment of the present invention, FIG. 1+7 is a diagram showing an embodiment of the second invention of the present application, FIGS. 1
Figure 7 shows the principle of a conventional magnetic sensor.

Claims (1)

【特許請求の範囲】 1、導電性を有する線状、帯状あるいは棒状の磁性体と
、該磁性体に長手方向にパルス電流あるいは交流電流を
流す手段と、該磁性体に巻回された検出巻線とからなり
、前記パルス電流あるいは交流電流により前記磁性体の
周回方向に生じる磁界によって外部磁界を前記検出巻線
に生じる電気信号として検出する構成を有することを特
徴とする磁気センサ。 2、周囲に磁性体を設けた線状、帯状あるいは棒状の導
体と、該導体に長手方向にパルス電流あるいは交流電流
を流す手段と、該磁性体に巻回された検出巻線とからな
り、前記パルス電流あるいは交流電流により前記磁性体
の周回方向に生じる磁界によって外部磁界を前記検出巻
線に生じる電気信号として検出する構成を有することを
特徴とする磁気センサ。
[Scope of Claims] 1. A linear, band-shaped, or rod-shaped magnetic body having conductivity, means for passing a pulse current or alternating current in the longitudinal direction of the magnetic body, and a detection winding wound around the magnetic body. 1. A magnetic sensor comprising a wire, and configured to detect an external magnetic field as an electric signal generated in the detection winding by a magnetic field generated in the circumferential direction of the magnetic body by the pulsed current or alternating current. 2. Consisting of a linear, band-shaped or rod-shaped conductor with a magnetic material around it, means for passing a pulsed current or alternating current in the longitudinal direction of the conductor, and a detection winding wound around the magnetic material, A magnetic sensor characterized in that the magnetic sensor is configured to detect an external magnetic field as an electric signal generated in the detection winding by a magnetic field generated in the circumferential direction of the magnetic body by the pulse current or alternating current.
JP62323201A 1987-12-21 1987-12-21 Magnetic sensor Expired - Lifetime JP2617498B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62323201A JP2617498B2 (en) 1987-12-21 1987-12-21 Magnetic sensor
US07/287,153 US4939459A (en) 1987-12-21 1988-12-21 High sensitivity magnetic sensor
DE3843087A DE3843087C2 (en) 1987-12-21 1988-12-21 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323201A JP2617498B2 (en) 1987-12-21 1987-12-21 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH01163686A true JPH01163686A (en) 1989-06-27
JP2617498B2 JP2617498B2 (en) 1997-06-04

Family

ID=18152172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323201A Expired - Lifetime JP2617498B2 (en) 1987-12-21 1987-12-21 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2617498B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus
US6831457B2 (en) 2002-02-19 2004-12-14 Aichi Micro Intelligent Corporation Two-dimensional magnetic sensor including magneto-impedance sensor elements
US6909368B2 (en) 2002-03-04 2005-06-21 Aichi Micro Intelligent Corporation Magnetic field detection device
US7071688B2 (en) 2003-02-10 2006-07-04 Samsung Electronics Co., Ltd. Magnetic field sensing device and method for fabricating thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839527B1 (en) 2015-02-16 2016-01-06 マグネデザイン株式会社 Ultra-sensitive micro magnetic sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156575A (en) * 1978-05-31 1979-12-10 Tdk Corp Magnetic detecting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156575A (en) * 1978-05-31 1979-12-10 Tdk Corp Magnetic detecting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus
US6831457B2 (en) 2002-02-19 2004-12-14 Aichi Micro Intelligent Corporation Two-dimensional magnetic sensor including magneto-impedance sensor elements
US6909368B2 (en) 2002-03-04 2005-06-21 Aichi Micro Intelligent Corporation Magnetic field detection device
US7071688B2 (en) 2003-02-10 2006-07-04 Samsung Electronics Co., Ltd. Magnetic field sensing device and method for fabricating thereof
US7145332B2 (en) 2003-02-10 2006-12-05 Samsung Electronics Co., Ltd. Magnetic field sensing device and method for fabricating thereof

Also Published As

Publication number Publication date
JP2617498B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US4939459A (en) High sensitivity magnetic sensor
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JP4357841B2 (en) Magnetoelastic torque sensor
US6831456B2 (en) Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
EP0365603A1 (en) Single-winding magnetometer
JP2001281308A (en) Magnetic sensor and position detector
US3271665A (en) Thin film field sensor
JP2003315376A (en) Current sensor
JP2003215220A (en) Magnetic field sensor
JPH01163686A (en) Magnetic sensor
Vincueria et al. Flux-gate sensor based on planar technology
JP3399185B2 (en) Magnetic detection device and magnetic detection method
JP2582133B2 (en) Magnetic field sensor
JP2021025820A (en) Magnetic field detection sensor
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JPH07248365A (en) Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
JP2000266786A (en) Current sensor
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
SU495528A1 (en) Electronic compass
JPS61262613A (en) Geomagnetic azimuth sensor
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP2582132B2 (en) Magnetic field sensor
JP2514550B2 (en) Magnetic force type stress measurement method for non-ferrous metal materials

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11