JPH01163219A - Production of fiber-reinforced resin composition - Google Patents

Production of fiber-reinforced resin composition

Info

Publication number
JPH01163219A
JPH01163219A JP62322373A JP32237387A JPH01163219A JP H01163219 A JPH01163219 A JP H01163219A JP 62322373 A JP62322373 A JP 62322373A JP 32237387 A JP32237387 A JP 32237387A JP H01163219 A JPH01163219 A JP H01163219A
Authority
JP
Japan
Prior art keywords
strand
divided
chopped strands
fiber
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322373A
Other languages
Japanese (ja)
Inventor
Norio Sato
紀夫 佐藤
Shigetoshi Sugiyama
杉山 繁利
Satoru Matsushima
悟 松島
Norio Kurauchi
紀雄 倉内
Kenichi Sekiyama
関山 憲一
Yasuhiro Tsuchiya
泰広 土屋
Yasushi Kageyama
裕史 影山
Masatsugu Sakamoto
坂本 昌嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62322373A priority Critical patent/JPH01163219A/en
Publication of JPH01163219A publication Critical patent/JPH01163219A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex

Abstract

PURPOSE:To provide the title composition free from the concentration of stresses and having excellent fatigue characteristics at a low cost, by dividing a strand comprising many gathered filaments in the axial direction thereof, chopping the divided strand in a prescribed length, two-dimensionally dispersing the chopped strands and integrating the dispersed chopped strands with a resin. CONSTITUTION:A strand 1 comprising many gathered filaments is rolled with a pressure roll 2 and torn in the axial direction of the strand 1 with a cutting plate 3d and a blade 3a in a cutter section 3 to finely divide the strand into a plurality of fiber bundles and subsequently chopped in a prescribed length with a chopper 5 comprising a pair of rolls 5a and 5b through carrying rolls 4 to provide divided chopped strands 10. The divided chopped strands 10 are two-dimensionally dispersed on a resin component such as an unsaturated polyester supplied from a resin reservoir 18 on a plastic sheet 12 supplied from a sheet roll 15. The plastic sheet 12 having the divided chopped strands 10 dispersed thereon is laminated to a sheet film 17 supplied from a sheet roll 16 and coated with a resin supplied from a resin reservoir 19 to provide the objective resin composition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、繊維強化樹脂組成物の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a fiber-reinforced resin composition.

[従来の技術] 従来、炭素繊維、ガラス繊M笠を集束させ、所定の長さ
に切断し、樹脂成分中に分散させたシート・モールディ
ング・コンパウンド(以下SMCという)やバルク・モ
ールディング・コンパウンド(以下BMCという)等の
4JiIlt強化樹脂組成物を得るために以下のような
方法が行われている。
[Prior Art] Conventionally, sheet molding compounds (hereinafter referred to as SMC) and bulk molding compounds (hereinafter referred to as SMC) are made by bundling carbon fibers and glass fibers, cutting them into predetermined lengths, and dispersing them in a resin component. In order to obtain 4Jilt reinforced resin compositions such as BMC (hereinafter referred to as BMC), the following method has been carried out.

その1つには第4図に示すような製造装置を用いる方法
がある。
One of them is a method using a manufacturing apparatus as shown in FIG.

この製造装置は多数の短繊維を集束させて一本の束にし
たストランド100を巻き付けたロービング101と、
ストランド100を案内するガイドローラ102.10
3と、ストランド100を所定長に切断するチョッパー
104と、切断され、落下するチョツプドストランド1
11を受は堆積させるシートロール105.106と、
これらシートロール105.106から引き出されるシ
ート105a、106a上に熱硬化性樹脂を供給する樹
脂留め107.108と、チョツプドストランド111
をシート105a、106aと一緒に巻取る巻取りリー
ル109とから構成される装置かかる製造装置を用いて
ロービング101から引き出されたストランド100を
チョッパー104で所定長に切断し、チョツプドストラ
ンド111とする(第5図参照)。このチョツプドスト
ランド111をシート105a上に落下、分散させ、も
う1つのシート106aを繰り出して、前述のように分
散したチョツプドストランド111とシーt−105a
、106aに塗布された樹脂成分とを一体化させて巻取
りロール109によって巻取ってt&l雑強化樹脂組成
物を製造している。
This manufacturing device includes a roving 101 around which a strand 100 made of a large number of staple fibers is wrapped.
Guide roller 102.10 guiding the strand 100
3, a chopper 104 that cuts the strand 100 into a predetermined length, and a chopped strand 1 that is cut and falls.
sheet rolls 105 and 106 for depositing 11;
Resin clamps 107 and 108 supply thermosetting resin onto the sheets 105a and 106a pulled out from these sheet rolls 105 and 106, and chopped strands 111
The strand 100 pulled out from the roving 101 is cut into a predetermined length by the chopper 104 using this manufacturing device, and the chopped strand 111 is cut into a predetermined length by the chopper 104. (See Figure 5). The chopped strands 111 are dropped and dispersed onto the sheet 105a, and another sheet 106a is fed out, and the chopped strands 111 and the sheet t-105a are separated as described above.
, 106a are integrated and wound up by a winding roll 109 to produce a t&l miscellaneous reinforced resin composition.

[発明が解決しようとする問題点] 上記した従来の製造方法により製造された従来のSMC
,BMCと、炭素繊維等を一方向に引き揃え、エポキシ
樹脂等で硬化させたいわゆる一方向繊維強化複合材料と
の力学特性は弾性率、曲げ強度等のいずれにおいても、
一方向繊維強化複合材料の方が優れていることが一般に
認識されている。
[Problems to be solved by the invention] Conventional SMC manufactured by the above-mentioned conventional manufacturing method
, BMC and a so-called unidirectional fiber-reinforced composite material made of carbon fibers aligned in one direction and cured with epoxy resin etc. The mechanical properties are as follows, in terms of elastic modulus, bending strength, etc.
It is generally recognized that unidirectional fiber reinforced composite materials are superior.

しかしながらSMC,BMC等のもつ経済性、成形性へ
の評価は高く、前記一方向繊維強化複合材料と遜色のな
いすぐれた特性を有するSMC。
However, SMC, BMC, etc. are highly evaluated for their economic efficiency and moldability, and SMC has excellent properties comparable to those of the unidirectional fiber reinforced composite materials.

BMC等を製造しうる製造方法の開発が強く望まれてい
た。、(「カーボンファイバ・(オーム社)」P13〜
P15(昭和59年2月20日発行)、「強化プラスチ
ックハンドブック(日刊工業新聞社)JP90〜P92
、Pi05〜P117(昭和50年5月15日発行)) 本発明は炭素繊維チョツプドストランド等を樹脂成分に
充填して強化した高弾性、高強度であり、かつ疲労耐久
性に優れた繊維強化樹脂組成物を製造するための製造方
法を提供することを目的とする。
There has been a strong desire to develop a manufacturing method that can manufacture BMC and the like. , ("Carbon Fiber (Ohmsha)" P13~
P15 (published February 20, 1980), "Reinforced Plastics Handbook (Nikkan Kogyo Shimbun) JP90-P92
, Pi05-P117 (published on May 15, 1975)) The present invention is a fiber reinforced by filling a resin component with chopped carbon fiber strands, etc., which has high elasticity, high strength, and excellent fatigue durability. It is an object of the present invention to provide a manufacturing method for manufacturing a reinforced resin composition.

[問題点を解決するための手段] 本発明の繊維強化樹脂組成物の製造方法は、多数の単繊
維を集束して得られたストランドを所定長さに切断する
とともに軸方向に分割し、分割チョツプドストランドと
する分割切断工程と、得られた分割チョツプドストラン
ドを少なくとも二次元的に分散させるとともに樹脂成分
と一体化させる複合工程と、からなることを特徴とする
ものである。
[Means for Solving the Problems] The method for producing a fiber-reinforced resin composition of the present invention involves cutting a strand obtained by bundling a large number of single fibers into a predetermined length and dividing it in the axial direction. This method is characterized by comprising a step of dividing and cutting into chopped strands, and a composite step of dispersing the obtained chopped strands at least two-dimensionally and integrating them with a resin component.

[実施例コ 以下、本発明の繊維強化樹脂組成物の製造方法の一実施
例を図面に基づいて説明する。なお、実施例においては
繊維強化樹脂組成物をSMCの形で製造する場合を示す
[Example 1] Hereinafter, an example of the method for producing a fiber-reinforced resin composition of the present invention will be described based on the drawings. In addition, in Examples, the case where the fiber reinforced resin composition is manufactured in the form of SMC is shown.

本実施例のm帷強化樹脂組成物の製造方法は分割切断工
程と複合工程よりなる。この分割切断工程部分の概略構
成図を第1図に、複合工程の概略構成図を第2図に示す
The method for manufacturing the m-thread reinforced resin composition of this example consists of a dividing and cutting process and a composite process. A schematic diagram of the divisional cutting process is shown in FIG. 1, and a diagram of the combined process is shown in FIG. 2.

分割切断工程では、第1図に示す装置を使用する。即ち
、ロービングから引き出されるストランド1の移動方向
に、順に圧延ロール2(上ロール2a、下ロール2b)
、カッタ部3、搬送ローラ4(」:ロール4a1下ロー
ル4b)およびチョッパー5が配置されている。上記圧
延ロール2の上ロール2aは軸受2dにより支持され、
一方この軸受2dは取付基部1つに一端が固定されてバ
ネ2Cにより下方へ圧せられている。こうして上ロール
2aと下ロール2bを圧接させている。なお、この圧延
ロール2は図示しない制御手段によりその回転に抗して
制動が加えられる。ストランド1を軸方向に分割するカ
ッタ部3は当て板3dに当接し、当て板3dとの間を通
るストランド1をその軸方向に裂き、複数の繊維束に細
分割する刃3aを有する。刃3aは所定枚数(望ましく
は繊維束の分割数と同数)ストランド1の搬送方向に沿
って等間隔で、かつ平行に配置されている。この刃3a
は共通の保持部3Cに取付けられ、一方この保持部3C
は一端が取付部21に固定されたバネ3bにより下方へ
押圧されている。搬送ロール4は前記カッタ部3の下流
側に所定間隔を置いて設けられている。その上ロール4
aは軸受4dにより支持され、一方、この軸受4dは取
付基部22に一端が固定されたバネ4Cを介して下方へ
圧せられ下ロール4bと圧接している。搬送ロール4の
下流には一対のロール5a、5bからなり、ストランド
1を所定長に切断するためチョッパ5が配置されている
。なお前記制動手段により圧延ロール2と搬送ロール4
との間のストランド1には一定の張力が与えられている
In the division cutting process, an apparatus shown in FIG. 1 is used. That is, in the moving direction of the strand 1 pulled out from the roving, the rolling rolls 2 (upper roll 2a, lower roll 2b)
, a cutter section 3, a conveyance roller 4 (": roll 4a1 lower roll 4b), and a chopper 5 are arranged. The upper roll 2a of the rolling roll 2 is supported by a bearing 2d,
On the other hand, this bearing 2d has one end fixed to one mounting base and is pressed downward by a spring 2C. In this way, the upper roll 2a and the lower roll 2b are brought into pressure contact. Note that this rolling roll 2 is braked against its rotation by a control means (not shown). The cutter part 3 that divides the strand 1 in the axial direction has a blade 3a that comes into contact with the backing plate 3d, cuts the strand 1 passing between the backing plate 3d in the axial direction, and finely divides it into a plurality of fiber bundles. A predetermined number of blades 3a (preferably the same number as the number of divisions of the fiber bundle) are arranged parallel to each other at regular intervals along the conveying direction of the strand 1. This blade 3a
is attached to a common holding part 3C, while this holding part 3C
One end is pressed downward by a spring 3b fixed to the mounting portion 21. The conveyance roll 4 is provided downstream of the cutter section 3 at a predetermined interval. Moreover roll 4
a is supported by a bearing 4d, and this bearing 4d is pressed downward via a spring 4C whose one end is fixed to the mounting base 22 and is in pressure contact with the lower roll 4b. A chopper 5 is disposed downstream of the transport roll 4, which consists of a pair of rolls 5a and 5b, and cuts the strand 1 into a predetermined length. Note that the braking means causes the rolling roll 2 and the conveying roll 4 to
A constant tension is applied to the strand 1 between the two.

次に上記した装置を使用する分割切断工程のプロセスを
説明する。
Next, a divisional cutting process using the above-mentioned apparatus will be explained.

多数の単繊維をサイジング剤等の集束剤で集束したスト
ランド1はロービングより供給され、第1図に示すよう
に、まず圧延ロール2を通過する。
A strand 1 in which a large number of single fibers are bundled with a binding agent such as a sizing agent is supplied from a roving, and first passes through a rolling roll 2, as shown in FIG.

ここで圧延により、ストランド1を太さ方向に押しつぶ
して断面をより藁平にして、ストランド1を繊維に平行
に裂き易くする。この分割は、ストランド1をピンチロ
ーラなどで押圧し、押圧しつつ横方向へずらすくもむ)
ようにしてもよい。
Here, by rolling, the strand 1 is crushed in the thickness direction to make the cross section more flat, making it easier to tear the strand 1 parallel to the fibers. This division is done by pressing strand 1 with a pinch roller, etc., and shifting it laterally while pressing it.)
You can do it like this.

圧延ローラ2を通って、偏平となったストランド1は、
次いでカッタ部3へ搬送される。ここでカッタ部3の複
数枚等間隔に配置された刃3aによりlll輪軸方向平
行方向にストランド1を裂き、−本のストランドを数本
から、数十本の繊維束群に分割する。なお、−本のスト
ランド1を複数の繊維束群に分割する際、その分割数に
制限を与えるものではない。分割数が多く、ストランド
1が細かく分散するようにすればする程、後述のクラッ
クの進展を阻止する効果が高いため、出来るだけ多数に
分割することが望ましい。
The strand 1 that has passed through the rolling roller 2 and has become flat is
Then, it is transported to the cutter section 3. Here, the strand 1 is torn in a direction parallel to the wheel axis direction using a plurality of equally spaced blades 3a of the cutter section 3, and the - strands are divided into groups of several to several tens of fiber bundles. In addition, when dividing - strand 1 into a plurality of fiber bundle groups, there is no restriction on the number of divisions. The larger the number of divisions and the more finely the strands 1 are dispersed, the more effective it is to prevent the development of cracks, which will be described later, so it is desirable to divide the strands into as many parts as possible.

次に、多数のlll1束群に分割されたストランド1は
搬送ロール4を経てチョッパー5へ搬送され、ここで約
1インチの長さに切断され分割チョツプドストランド1
0となる。これで分割・切断工程を終了する。なおこの
分割・切断工程は、分割、切断の順序で行なうのが好ま
しいが、場合によっては切断後、分割することも可能で
ある。ただし、後者の場合、切断されたチョツプドスト
ランドを圧延ローラへ搬送し、圧延ローラで偏平になる
まで押しつぶす作業をいかに効率よく行なうかが課題と
なる。
Next, the strand 1 divided into a large number of lll1 bundle groups is conveyed to a chopper 5 via a conveyor roll 4, where it is cut into lengths of about 1 inch and divided into chopped strands 1.
It becomes 0. This completes the dividing/cutting process. Note that this dividing/cutting process is preferably performed in the order of dividing and cutting, but depending on the case, it is also possible to perform dividing after cutting. However, in the latter case, the problem is how efficiently the chopped strands are transported to rolling rollers and crushed by the rolling rollers until they become flat.

次いで複合工程に移る。この複合工程では、第2図に示
すような従来公知の装置と同様のS!置を使用すること
が出来る。この工程でのプロセスを説明すると、上記分
割切断工程で得られた分割チョツプドストランド10を
、第2図に示すようにシートロール15から供給される
プラスチックシート12上に落下させ、シート12上に
2次元的に分散させる。このプラスチックシート12上
に分散された分割チョツプドストランド10には樹脂留
め18から供給される不飽和ポリエステル硬化用有機過
酸化物、離型剤および増粘剤とからなる樹脂成分が含浸
する。プラスチックシート12上に落下した分割チョツ
プドストランド10は前述のように約1インチの長さに
切断されており、かつ繊維軸方向に沿っても切断されて
いるため、非常に細かく多数の細い繊維束に分割されて
いる(第3図参照)。
Next, move on to the composite process. In this combined process, the S! You can use the To explain the process in this step, as shown in FIG. distributed two-dimensionally. The divided chopped strands 10 dispersed on the plastic sheet 12 are impregnated with a resin component consisting of an organic peroxide for curing the unsaturated polyester, a mold release agent, and a thickener supplied from the resin retainer 18. The chopped strands 10 that have fallen onto the plastic sheet 12 are cut into approximately 1-inch lengths as described above, and are also cut along the fiber axis direction, so they are very finely divided into many thin pieces. It is divided into fiber bundles (see Figure 3).

更にシートロール16から樹脂留め1つによって前述と
同様の樹脂成分が塗布されたシートフィルム17が供給
され、分割チョツプドストランド10をプラスチックシ
ート12との間で挟持する。
Further, a sheet film 17 coated with the same resin component as described above is supplied from the sheet roll 16 by one resin clamp, and the divided chopped strands 10 are sandwiched between the sheet film 17 and the plastic sheet 12.

プラスチックシート12上に2次元的に分散された分割
チョツプドストランド10に各シート12及び17に塗
布された樹脂成分が含浸し、分割チョツプドストランド
10と一体化し巻取りロール20により巻取られる。こ
れによりSMCが得られる。なお、この単層SMCを所
定の大きさに切り出し、プラスチックシート12および
17を剥離し、単層SMCを積層して多層SMCとして
もよい。SMCの成形はプラスチックシート12.17
が剥離された状態で分割チョツプドストランド10を積
層し、加熱型内で加熱加圧して板状のSMC成形品を得
る。なお、本実施例では、SMCを製造する場合の製造
方法を示したが、他の繊維強化樹脂組成物、例えばBM
C、ハイブリッドSMCなどの製造方法にも適用できる
ことはいうまでもない。
The divided chopped strands 10 two-dimensionally dispersed on the plastic sheet 12 are impregnated with the resin component applied to each sheet 12 and 17, and are integrated with the divided chopped strands 10 and wound up by a winding roll 20. It will be done. This yields SMC. Incidentally, this single-layer SMC may be cut out to a predetermined size, the plastic sheets 12 and 17 may be peeled off, and the single-layer SMC may be laminated to form a multi-layer SMC. SMC molding is plastic sheet 12.17
The divided chopped strands 10 are laminated in a state in which they are peeled off, and heated and pressed in a heating mold to obtain a plate-shaped SMC molded product. In addition, in this example, a manufacturing method for manufacturing SMC was shown, but other fiber reinforced resin compositions, such as BM
Needless to say, the present invention can also be applied to methods of manufacturing C, hybrid SMC, and the like.

(実験) 上記実施例による製造方法により製造された繊維強化樹
脂組成物と、これとの比較例として前述した従来方法に
よって3種類のm維強化樹脂組成物を製造した。上記実
施例及び比較例としての単層SMCを10層積層し、温
度150℃、圧力150kQ/cm’で3分間加圧成形
し、厚さ3 mmノ板状成形品を得た。これらの成形品
により曲げ剛性、曲げ強さ、疲労特性等の力学特性を測
定し、その測定結果を表に表した。
(Experiment) The fiber-reinforced resin composition produced by the production method according to the above example and three types of m-fiber-reinforced resin compositions were produced by the conventional method described above as comparative examples. Ten layers of single-layer SMC as the above examples and comparative examples were laminated and pressure molded at a temperature of 150°C and a pressure of 150 kQ/cm' for 3 minutes to obtain a plate-shaped molded product with a thickness of 3 mm. Mechanical properties such as bending rigidity, bending strength, and fatigue properties were measured using these molded products, and the measurement results are shown in the table.

なお、剛性及び強度は幅25IIll*、厚さ3mmの
試験片をスパン間80ml1lの条件下で三点曲げ試験
することによって求めた。また疲労特性は幅20m+1
1厚さ3mm、長さ220mmの試験片を用いて、最低
応力1kg/mm2、最高応力10kg/+n1の引っ
張り応力を周波数10Hzで繰返し負荷することによっ
て求め、試料の破断に至るまでの繰返し回数を比較した
The rigidity and strength were determined by performing a three-point bending test on a test piece with a width of 25IIll* and a thickness of 3mm under conditions of a span distance of 80ml11. Also, the fatigue characteristics are 20m wide + 1
1 Using a test piece with a thickness of 3 mm and a length of 220 mm, the tensile stress of a minimum stress of 1 kg/mm2 and a maximum stress of 10 kg/+n1 is repeatedly applied at a frequency of 10 Hz, and the number of repetitions until the sample breaks is determined. compared.

(以下余白) 表に示されているように、本実施例としては集  1束
本数が12000本の炭素繊維ストランドを使  (用
し、そのストランドを12本の繊維集束群に分割した。
(The following is a blank space.) As shown in the table, in this example, carbon fiber strands having 12,000 fiber bundles were used, and the strands were divided into 12 fiber bundle groups.

従って分割された一本のストランドは約1000本のフ
ィラメントから構成されている。
Therefore, one divided strand is composed of approximately 1000 filaments.

比較例1では12000本の集束本数の炭素繊維ストラ
ンドを1本のまま使用した。また比較例2では集束本数
が1000本のストランドを最初から供給した。また比
較例3としてサイジング剤(集束剤)を除去してブロワ
で開繊して繊維強化樹脂組成物を製造した。
In Comparative Example 1, 12,000 carbon fiber strands were used as they were. Furthermore, in Comparative Example 2, strands with a bundled number of 1000 strands were supplied from the beginning. Further, as Comparative Example 3, a fiber-reinforced resin composition was produced by removing the sizing agent (sizing agent) and opening the fibers with a blower.

本実施例の製造方法で製造した繊維強化樹脂組成物は従
来の製造方法によって得られた比較例1に比較して、曲
げ剛性で約10%、曲げ強さで約40%、引張り一引張
り疲労寿命で約103 (11;向上していることがわ
かる。
Compared to Comparative Example 1 obtained by the conventional manufacturing method, the fiber-reinforced resin composition manufactured by the manufacturing method of this example had a bending rigidity of about 10%, a bending strength of about 40%, and a tensile fatigue strength of about 10%. It can be seen that the lifespan has improved by about 103 (11).

また、比較例2は上記のように集束本数が1000本の
ストランドを最初から供給し、従来の製造方法で作製し
たSMC成形品である。表よりわかる様に、本発明方法
で製造したSMC成形品は慣初から細かいストランドを
用いて製造した比較列2とほとんど力学特性の差はなく
、むしろストランドを分割する際に更に繊維束が割れて
分割数よりもむしろ多く分割するために、力学特性がわ
ずかに向上している。
Moreover, Comparative Example 2 is an SMC molded product manufactured by a conventional manufacturing method, in which strands having a bundled number of 1000 are supplied from the beginning as described above. As can be seen from the table, there is almost no difference in mechanical properties between the SMC molded products manufactured by the method of the present invention and comparison row 2, which was manufactured using fine strands from the beginning. The mechanical properties are slightly improved due to the large number of splits rather than the number of splits.

また、比較例3の場合、繊維が一本一本に分散し、かさ
高くなって樹脂の含浸が困難となるため、樹脂の含浸が
可能な範囲内でSMCを製造し、成形した。そのため繊
維の最大の体積分率は10%となった。この様に比較例
3の場合、本実施例と比べて繊維の充填量が非常に少な
いためにSMC成形品の特性は著しく低下しているのが
わかる。
In addition, in the case of Comparative Example 3, the fibers were dispersed one by one and became bulky, making it difficult to impregnate with resin, so SMC was manufactured and molded within a range where resin impregnation was possible. Therefore, the maximum volume fraction of fibers was 10%. As described above, in the case of Comparative Example 3, it can be seen that the characteristics of the SMC molded product are significantly deteriorated because the amount of fiber filling is very small compared to the present example.

上記の実験によれば、従来の比較例1、比較例2および
比較例3のSMC成形品に外力が作用すると、応力の集
中が発生し、第2図に示すように、まず、チョツプドス
トランド60内部にクラック60aが発生する。これは
主として繊維と樹脂の界面の剥離破壊によるものである
(チョツプドストランド内クラック)。更に外力が増加
すると、第3図に示すようにクラック60aは、一つの
チョップドストランド60と他のチョツプドストランド
60の間に進展する(クラック60b)。これは、チョ
ツプドストランド60の相互間の繊維方向が異なるため
、チョツプドストランド60間に大きな剪断力が作用し
、その領域にチョツプドストランド60内のクラック6
0aが進展したことによると考えられている。つまりS
MC成形品の破壊は、まず、チョツプドストランド60
内で界面破壊が発生し、それが起点となってチョツプド
ストランド60の相互の境界領域にクラックが進展し、
最終的には破断が発生する。ここで、使用した繊維を分
析してみたところ、繊維自体の破壊はほとんど発生して
いないことを見い出した。
According to the above experiment, when an external force acts on the conventional SMC molded products of Comparative Example 1, Comparative Example 2, and Comparative Example 3, stress concentration occurs, and as shown in FIG. A crack 60a occurs inside the strand 60. This is mainly due to peeling failure at the interface between the fiber and the resin (chopped strand crack). When the external force further increases, the crack 60a develops between one chopped strand 60 and the other chopped strand 60 (crack 60b), as shown in FIG. This is because the fiber directions of the chopped strands 60 are different, so a large shearing force acts between the chopped strands 60, causing cracks in the chopped strands 60 to appear in that area.
It is thought that this is due to the development of 0a. In other words, S
Destruction of MC molded products begins with chopped strand 60.
An interfacial fracture occurs within the chopped strands, and this serves as a starting point for a crack to develop in the mutual boundary area of the chopped strands 60.
Eventually a break will occur. When the fibers used were analyzed, it was found that there was almost no destruction of the fibers themselves.

このように成形品の破壊は一方向繊維強化複合材料と異
なり、強化繊維−本一本の破断に基づくものではなく、
チョツプドストランドの集合体におけるIIと樹脂、あ
るいはチョツプドストランド間の境界領域の破壊である
と考えられる。この破壊プロセスから、成形品の強度向
上を考えた場合、繊維自体の強度を向上させることは有
効でなく、むしろ、本発明のようにチョツプドストラン
ド間の境界領域の強度を向上させることが有効であるこ
とが知見された。
In this way, unlike unidirectional fiber-reinforced composite materials, the fracture of the molded product is not based on the rupture of a single reinforcing fiber.
This is considered to be destruction of II and the resin in the aggregate of chopped strands, or of the boundary area between the chopped strands. From this destruction process, when considering improving the strength of the molded product, it is not effective to improve the strength of the fiber itself, but rather, it is not effective to improve the strength of the boundary area between chopped strands as in the present invention. It was found to be effective.

[発明の効果] 本発明の製造方法によって得られるIl維強化樹脂組成
物は、細かいストランドが微細に分散した構造となって
いる。そのためこの繊維強化樹脂組成物で製造した成形
体に外力が作用すると、従来のSMC,SMC成形品の
様な、応力集中がなくなり、ストランド内クラックが発
生しにくくなる。
[Effects of the Invention] The Il fiber reinforced resin composition obtained by the production method of the present invention has a structure in which fine strands are finely dispersed. Therefore, when an external force is applied to a molded article manufactured from this fiber-reinforced resin composition, there is no stress concentration unlike in conventional SMC and SMC molded products, and cracks in the strands are less likely to occur.

またストランドとストランド間の剪断応力も平均化され
、剪断応力の集中もなくなり、ストランド問クラックの
発生が抑制される。また仮にクラックが発生しても繊維
束が非常に細く分散されているために、クラックの進展
が抑制され、そのため疲労特性が飛躍的に向上する。ま
た、本発明の製造方法により得られるストランドを細く
分割してなる繊維強化樹脂組成物と、これと同様の集束
本数からなるストランドを使用して製造したSMC。
In addition, the shear stress between the strands is averaged, concentration of shear stress is eliminated, and the occurrence of cracks between the strands is suppressed. Furthermore, even if a crack occurs, the fiber bundles are very finely dispersed, so the crack propagation is suppressed, and therefore the fatigue properties are dramatically improved. Further, an SMC manufactured using a fiber-reinforced resin composition obtained by dividing a strand obtained by the manufacturing method of the present invention into thin pieces, and a strand comprising a similar number of bundled strands.

SMC成形品との力学特性に両者殆んど差がない。There is almost no difference in mechanical properties between the two and SMC molded products.

従って、一般に集束本数の少ない炭素繊維ストランドの
価格が飛躍的上昇することを考慮すると、本発明の製造
方法により製造されるI帷強化樹脂組成物は低価格で、
高性能なものとなる。
Therefore, considering that the price of carbon fiber strands with a small number of bundled strands generally increases dramatically, the I-strip reinforced resin composition produced by the production method of the present invention can be produced at a low price.
It has high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のaI維強化樹脂相成物の製造方法の
一実施例の工程部分を示す部分概略図である。第2図は
、本発明の繊維強化樹脂組成物の製造方法の一実施例の
工程部分を説明する概略図である。第3図は本発明によ
り製造された繊維強化樹脂組成物の概略図である。第4
図は従来のSMCの製造方法の全体の工程を示す概略構
成図であり、第5図は従来方法により製造されたSMC
の概略図である。第6図はSMC成形品におけるストラ
ンド内部のクラックの発生状態を説明する説明図である
。第7図はSMC成形品におけるストランド間のクラッ
ク発生状況を示す概略図である。 1・・・ストランド 10・・・分割チョップドストランド
FIG. 1 is a partial schematic diagram showing a process part of an embodiment of the method for producing an aI fiber-reinforced resin phase composition of the present invention. FIG. 2 is a schematic diagram illustrating a process portion of an embodiment of the method for producing a fiber-reinforced resin composition of the present invention. FIG. 3 is a schematic diagram of a fiber-reinforced resin composition produced according to the present invention. Fourth
The figure is a schematic diagram showing the entire process of a conventional SMC manufacturing method, and FIG. 5 shows an SMC manufactured by the conventional method.
FIG. FIG. 6 is an explanatory diagram illustrating the occurrence of cracks inside a strand in an SMC molded product. FIG. 7 is a schematic diagram showing the occurrence of cracks between strands in an SMC molded product. 1...Strand 10...Divided chopped strand

Claims (2)

【特許請求の範囲】[Claims] (1)多数の単繊維を集束して得られたストランドを所
定長さに切断するとともに軸方向に分割し、分割チョッ
プドストランドとする分割切断工程と、得られた分割チ
ョップドストランドを少なくとも二次元的に分散させる
とともに樹脂成分と一体化させる複合工程と、 からなることを特徴とする繊維強化樹脂組成物の製造方
法。
(1) A dividing and cutting step in which a strand obtained by bundling a large number of single fibers is cut into a predetermined length and divided in the axial direction to produce divided chopped strands, and the resulting divided chopped strands are at least two-dimensionally A method for producing a fiber-reinforced resin composition, characterized by comprising: a composite step of dispersing the composition into a resin component and integrating the composition with a resin component.
(2)分割切断工程における分割はストランドを横方向
に押圧して行う特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the division in the dividing and cutting step is performed by pressing the strand in the lateral direction.
JP62322373A 1987-12-19 1987-12-19 Production of fiber-reinforced resin composition Pending JPH01163219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322373A JPH01163219A (en) 1987-12-19 1987-12-19 Production of fiber-reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322373A JPH01163219A (en) 1987-12-19 1987-12-19 Production of fiber-reinforced resin composition

Publications (1)

Publication Number Publication Date
JPH01163219A true JPH01163219A (en) 1989-06-27

Family

ID=18142921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322373A Pending JPH01163219A (en) 1987-12-19 1987-12-19 Production of fiber-reinforced resin composition

Country Status (1)

Country Link
JP (1) JPH01163219A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006989A1 (en) * 2015-07-07 2017-01-12 三菱レイヨン株式会社 Method and apparatus for manufacturing fiber-reinforced resin molding material
CN109070389A (en) * 2016-04-11 2018-12-21 三菱化学株式会社 The manufacturing method of fibre reinforced resin material and the manufacturing device of fibre reinforced resin material
US10889025B2 (en) 2015-12-25 2021-01-12 Mitsubishi Chemical Corporation Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
WO2021182172A1 (en) * 2020-03-11 2021-09-16 三菱ケミカル株式会社 Cfrp structural body, method for producing cfrp structural body, carbon fiber prepreg, and method for producing carbon fiber prepreg

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722061A1 (en) * 2015-07-07 2020-10-14 Mitsubishi Chemical Corporation Uses of a continuous fiber bundle in methods for producing fiber-reinforced resin molding material
JP2017218717A (en) * 2015-07-07 2017-12-14 三菱ケミカル株式会社 Method and apparatus for producing fiber-reinforced resin molding material
JP2020186510A (en) * 2015-07-07 2020-11-19 三菱ケミカル株式会社 Method of manufacturing sheet molding compound, continuous carbon fiber bundle, and method of separating continuous carbon fiber bundle
JP2020186511A (en) * 2015-07-07 2020-11-19 三菱ケミカル株式会社 Method of separating carbon fiber bundle, and method of manufacturing sheet molding compound
EP3321054A4 (en) * 2015-07-07 2018-08-22 Mitsubishi Chemical Corporation Method and apparatus for manufacturing fiber-reinforced resin molding material
US11919255B2 (en) 2015-07-07 2024-03-05 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
WO2017006989A1 (en) * 2015-07-07 2017-01-12 三菱レイヨン株式会社 Method and apparatus for manufacturing fiber-reinforced resin molding material
CN107848146B (en) * 2015-07-07 2020-09-22 三菱化学株式会社 Method and apparatus for producing fiber-reinforced resin molding material
EP4035860A3 (en) * 2015-07-07 2022-10-19 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
JPWO2017006989A1 (en) * 2015-07-07 2017-07-06 三菱ケミカル株式会社 Manufacturing method and manufacturing apparatus for fiber reinforced resin molding material
CN107848146A (en) * 2015-07-07 2018-03-27 三菱化学株式会社 The manufacture method and manufacture device of fiber-reinforced resin moulding material
CN112078056A (en) * 2015-07-07 2020-12-15 三菱化学株式会社 Fiber-reinforced resin molding material, method for producing same, continuous carbon fiber bundle, and method for dividing same
EP3750679A1 (en) * 2015-07-07 2020-12-16 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
JP2022031341A (en) * 2015-07-07 2022-02-18 三菱ケミカル株式会社 Method for producing fiber-reinforced resin molding material
JP2021028432A (en) * 2015-07-07 2021-02-25 三菱ケミカル株式会社 Manufacturing method and manufacturing apparatus of fiber-reinforced resin molding material
US11518116B2 (en) 2015-07-07 2022-12-06 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
EP3875239A1 (en) * 2015-07-07 2021-09-08 Mitsubishi Chemical Corporation Method for producing fiber-reinforced resin molding material
US10889025B2 (en) 2015-12-25 2021-01-12 Mitsubishi Chemical Corporation Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
EP3444090A4 (en) * 2016-04-11 2019-07-24 Mitsubishi Chemical Corporation Method for manufacturing fiber reinforced resin material and apparatus for manufacturing fiber reinforced resin material
EP3838536A3 (en) * 2016-04-11 2021-09-22 Mitsubishi Chemical Corporation Method for manufacturing fiber reinforced resin material and apparatus for manufacturing fiber reinforced resin material
CN109070389B (en) * 2016-04-11 2021-06-15 三菱化学株式会社 Method for producing fiber-reinforced resin material and apparatus for producing fiber-reinforced resin material
CN109070389A (en) * 2016-04-11 2018-12-21 三菱化学株式会社 The manufacturing method of fibre reinforced resin material and the manufacturing device of fibre reinforced resin material
JPWO2021182172A1 (en) * 2020-03-11 2021-09-16
WO2021182172A1 (en) * 2020-03-11 2021-09-16 三菱ケミカル株式会社 Cfrp structural body, method for producing cfrp structural body, carbon fiber prepreg, and method for producing carbon fiber prepreg

Similar Documents

Publication Publication Date Title
JP6083377B2 (en) Carbon fiber composite material
EP2796602B1 (en) Method for producing glass chopped strand mat, and method for producing automotive molded ceiling material
AU692581B2 (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
TWI720150B (en) Fiber reinforced resin molding material and manufacturing method thereof
EP2878615B1 (en) Random mat and fiber-reinforced composite material shaped product
JP2008254191A (en) Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material
EP3485075B1 (en) Carbon fiber random mat and carbon fiber composite material
JP6895682B2 (en) Manufacturing method of unidirectional prepreg, fiber reinforced thermoplastic resin sheet, unidirectional prepreg and fiber reinforced thermoplastic resin sheet, and molded article
JP6457710B2 (en) Glass chopped strand mat and automotive molded ceiling material
WO2013129169A1 (en) Carbon fiber composite material
JP7400807B2 (en) Fiber-reinforced resin molding material molded product and its manufacturing method
KR102405008B1 (en) Random mat, manufacturing method thereof, and fiber-reinforced resin molding material using same
JP2626368B2 (en) Method for producing fiber reinforced thermoplastic resin sheet
JPH01163219A (en) Production of fiber-reinforced resin composition
JPH0757820B2 (en) Fiber reinforced resin composition
JP6876267B2 (en) Method of dividing fiber bundles, method of manufacturing long fiber bundles, and method of manufacturing fiber reinforced resin material
JPH01163218A (en) Fiber-reinforced resin composition
US2640797A (en) Production of synthetic resinous materials
EP4129878A1 (en) Joining strand and method for manufacturing same
JPH01163220A (en) Fiber-reinforced resin composition
JP2023124032A (en) Method for producing composite material
JP2000198112A (en) Strand prepreg reduced in variation of width and manufacture thereof
JP2004277951A (en) Glass chopped strand mat and molded ceiling material for automobile using the same mat
JPH03112631A (en) Fiber-reinforcing of frp product