JPH01162853A - Heat resistant fiber nonwoven fabric - Google Patents

Heat resistant fiber nonwoven fabric

Info

Publication number
JPH01162853A
JPH01162853A JP63067141A JP6714188A JPH01162853A JP H01162853 A JPH01162853 A JP H01162853A JP 63067141 A JP63067141 A JP 63067141A JP 6714188 A JP6714188 A JP 6714188A JP H01162853 A JPH01162853 A JP H01162853A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
heat
fiber
glass fiber
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63067141A
Other languages
Japanese (ja)
Other versions
JPH0236705B2 (en
Inventor
Shinichiro Takaguchi
真一郎 高口
Setsuo Toyoshima
豊島 節夫
Takamasa Ibaraki
孝昌 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Original Assignee
Honshu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP63067141A priority Critical patent/JPH01162853A/en
Publication of JPH01162853A publication Critical patent/JPH01162853A/en
Publication of JPH0236705B2 publication Critical patent/JPH0236705B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: To obtain a heat resistant fiber nonwoven fabric capable of overcoming breakage of a substrate and difficulty of lowering in dielectric constant, having low dielectric constant, excellent in high frequency characteristics and suitable as a substrate for laminated plates by adding a polyimide resin as an adhesive to a heat resistant fiber. CONSTITUTION: This nonwoven fabric is obtained by adding (B) preferably 5-30% adhesive (e.g. polyimide resin, hydrolyzate of alkylsilicate or silicic acid gel) to (A) a heat resistant fiber (e.g. quartz glass fiber, glass fiber, aromatic polyamide fiber, ceramic fiber or alumina fiber) and is especially suitable for polyimide resin laminated plate using a polyimide resin having >=200 deg.C processing temperature as a matrix resin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高周波特性に優れた積層板の基材として好適な
積層板用耐熱性繊維不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-resistant fibrous nonwoven fabric for laminates that has excellent high frequency characteristics and is suitable as a base material for laminates.

し従来の技術] 高速コンピューター、衛星放送用機器等に用いられる積
層板は特に高周波特性が要求されるため、積層板の低誘
電率化がはかられる。
[Prior Art] Laminated plates used in high-speed computers, satellite broadcasting equipment, etc. are particularly required to have high frequency characteristics, so efforts are being made to reduce the dielectric constant of the laminated plates.

そのため、マトリックス樹脂としては従来のフェノール
樹脂またはエポキシ樹脂に比べ、誘電率が非常に低いフ
ッ素樹脂が用いられ、また積層板中のフッ素樹脂比率は
ぐきるだけ高くされるのが一般的である。
Therefore, a fluororesin having a much lower dielectric constant than conventional phenol resins or epoxy resins is used as the matrix resin, and the fluororesin ratio in the laminate is generally made as high as possible.

フッ素樹脂積層板の基材としてはガラス繊維織布または
ガラス繊維不織布が考えられる。しかしながら、ガラス
tllll織布はガラスIJj f4不織布に比べてそ
の密度が高いため、積層板中のフッ素樹脂比率を上げて
低誘電率化をはかることが困難であり、従って、充分な
高周波特性を右する積層板を得ることができなかった。
Glass fiber woven fabric or glass fiber nonwoven fabric can be considered as the base material for the fluororesin laminate. However, since the glass Tllll woven fabric has a higher density than the Glass IJJ F4 non-woven fabric, it is difficult to lower the dielectric constant by increasing the fluororesin ratio in the laminate, and therefore it is difficult to achieve sufficient high frequency characteristics. It was not possible to obtain a laminate that

一方、従来の積層板用ガラス繊維不織布は、ガラス繊維
を水中に分散し、抄紙磯にて抄造寸る湿式法で製造され
るものがほとんどである。
On the other hand, most conventional glass fiber nonwoven fabrics for laminates are manufactured by a wet method in which glass fibers are dispersed in water and paper-made on a paper-making island.

この際、ガラス繊維は自己接着性がなく、また熱融着さ
せるのが困難なため、接着剤が必要である。v4層板用
ガラス繊維不織布の接着剤としては、通常アクリル系樹
脂またはエポキシ系樹脂が使用される。ところが、フッ
素樹脂積層板に用いられるフッ素樹脂は熱可塑性で、そ
の融点は300℃前後と高温であり、実際の積層成形は
400℃程度で行われる場合が多い。従って、従来のア
クリル系樹脂またはエポキシ系樹脂を接着剤として用い
たガラス繊維不織布は、フッ素樹脂を含浸・溶融し、積
層成形する工程の高温高庄条件下で接る剤が分解される
ため、接着剤の着色による積層板の外観不良、接着剤の
劣化による絶縁不良や基材切れの発生等により、フッ素
樹脂積層板の製造は著しく困難であった。
At this time, an adhesive is required because glass fiber does not have self-adhesive properties and is difficult to heat-seal. Acrylic resin or epoxy resin is usually used as the adhesive for the glass fiber nonwoven fabric for the V4 laminate. However, the fluororesin used in fluororesin laminates is thermoplastic and has a high melting point of around 300°C, and actual lamination molding is often performed at around 400°C. Therefore, in conventional glass fiber nonwoven fabrics using acrylic resin or epoxy resin as an adhesive, the contacting agent decomposes under the high temperature and high strength conditions of the process of impregnating and melting fluororesin and laminating it. It has been extremely difficult to manufacture fluororesin laminates due to poor appearance of the laminate due to coloring of the adhesive, poor insulation due to deterioration of the adhesive, and occurrence of breakage of the base material.

(発明が解決しようとする課題1 本発明は従来のものがもつ以Fのような問題点を解消さ
せ、フッ素樹脂積層数のような高温で積層成形を行う製
造工程で必要な熱間強度を有し、かつ低密度である積層
板用耐熱性繊維不織布を提供することを目的とする。
(Problem to be Solved by the Invention 1) The present invention solves the problems of conventional products, such as F, and improves the hot strength required in the manufacturing process of laminating at high temperatures, such as the number of laminated layers of fluororesin. An object of the present invention is to provide a heat-resistant fibrous nonwoven fabric for laminates that has a high density and has a low density.

[課題を解決するための手段] すなわち、本発明は耐熱性繊維に接着剤としてポリイミ
ド樹脂、アルキルケイ酸エステルの加水分解縮合物又は
ケイ酸ゲルを含有することを特徴とする積層板用耐熱性
繊維不織布である。
[Means for Solving the Problems] That is, the present invention provides a heat-resistant laminate, characterized in that heat-resistant fibers contain a polyimide resin, a hydrolyzed condensate of an alkyl silicate ester, or a silicic acid gel as an adhesive. It is a fiber non-woven fabric.

本発明に使用される耐熱性繊維としては、電気絶縁性が
良好なガラス繊維、アルミナ繊維、石英ガラス繊維、セ
ラミック繊維、芳香族ポリアミド(アラミド)繊維等が
あげられる。
Examples of the heat-resistant fibers used in the present invention include glass fibers, alumina fibers, quartz glass fibers, ceramic fibers, and aromatic polyamide (aramid) fibers that have good electrical insulation properties.

不織布の製造法は特に限定するものではないが、円網、
長網、傾斜金網式等の抄紙機でi′ff1熱性繊維のウ
ェブを形成した後、ポリイミド樹脂溶液、アルキルケイ
酸ニスデルの加水分解縮合物溶液、ケイ酸水溶液又はケ
イ酸アンモニ・クム水溶液を塗布または含浸し、乾燥機
により乾燥・硬化させる方法が望ましい。
The manufacturing method of the nonwoven fabric is not particularly limited, but may include circular mesh,
After forming a web of i'ff1 thermal fibers using a Fourdrinier or inclined wire mesh paper machine, a polyimide resin solution, a hydrolyzed condensate solution of Nisder alkylsilicate, an aqueous silicic acid solution, or an aqueous ammonium cum silicate solution is applied. Alternatively, it is preferable to impregnate the material and dry and harden it using a dryer.

本発明に用いられるポリイミド樹脂溶液としては、ポリ
イミド樹脂をジメヂルホルムアミド、ジメチルアセトア
ミド、ジメチルスルホオキシド等の溶剤に溶解したもの
、またポリイミド樹脂の前駆体であるポリアミド酸を上
記の溶剤等に溶解しだらの等が使用できる。後者の場合
、乾燥工程で加熱することにより脱水、イミド閉環を行
う。更にまた耐熱性が多少、犠牲になるが、水可溶性の
変性ポリイミド樹脂を用いてもよく、この場合取扱いが
比較的容易となる。
The polyimide resin solution used in the present invention includes a polyimide resin dissolved in a solvent such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, etc., and a polyamic acid, which is a precursor of the polyimide resin, dissolved in the above-mentioned solvent. Darano etc. can be used. In the latter case, dehydration and imide ring closure are performed by heating in the drying step. Furthermore, a water-soluble modified polyimide resin may be used, although the heat resistance is sacrificed to some extent, and in this case, handling becomes relatively easy.

本発明に使用されるアルキルケイ酸エステルの加水分解
縮合物は、アルキルシリケートを適当な溶媒中で酸触媒
等の存在下に加水分解されたものが用いられる。加水分
解の度合9よ部分的に加水分解されたものでも、完全に
加水分解された乙のを用いでもよいが、中でも部分的に
加水分解されたものを、更に加水分解を進めた2段加水
分解を行なったものが好ましい。
The hydrolyzed condensate of alkyl silicate used in the present invention is obtained by hydrolyzing an alkyl silicate in a suitable solvent in the presence of an acid catalyst or the like. A partially hydrolyzed product with a degree of hydrolysis of 9 or a completely hydrolyzed product with a degree of hydrolysis of Those that have been decomposed are preferred.

従来、アルキルケイ酸エステル、例えばエチルシリケー
トは、亜鉛粒子を含有させた防錆塗料のバインダーとし
て知られており、バインダーの中には、予め完全に加水
分解されたエチルシリケートがあることも知られている
Conventionally, alkyl silicate esters, such as ethyl silicate, have been known as binders for anti-rust paints containing zinc particles, and it is also known that some binders include ethyl silicate that has been completely hydrolyzed in advance. ing.

近年この加水分解されたエチルシリケートを接着剤とし
て応用する提案も試みられている。
In recent years, proposals have been made to apply this hydrolyzed ethyl silicate as an adhesive.

例えば、特開昭60−72970号公報には、部分的に
加水分解されたアルキルケイ酸エステルと酸化ブータン
のアル」−ル溶液に、酸化マグネシウム、酸化亜鉛等の
二価金属の一酸化物の少なくとも一種を混合して、酸化
ケイ素−酸化チタン系の無機系線形」ロイド状接着剤が
開示され、従来の無機接着剤に比べて接着強度及び曲げ
強度を向上し、殊に高温の部位に材質や環境を問わず接
着剤として使用できることを特徴と1ノている。
For example, in JP-A-60-72970, divalent metal monoxides such as magnesium oxide and zinc oxide are added to an alcohol solution of partially hydrolyzed alkyl silicate ester and butane oxide. Disclosed is an inorganic linear "loid-like adhesive based on silicon oxide and titanium oxide, which is a mixture of at least one type of silicon oxide and titanium oxide, and has improved adhesive strength and bending strength compared to conventional inorganic adhesives, and is particularly suitable for use in high-temperature areas. One of its characteristics is that it can be used as an adhesive in any environment.

また、特開昭60−161460号公報の発明は、萌述
の無償系線形−ロイド状接着剤と類似した部分的に加水
分解されたアルキルケイ酸エステルのアルコール溶液に
シリカ粉末を混合した無閂質高分子:」−ティング剤で
あり、従来のフルキルケイ酸エステルに金属亜鉛粉末を
混合した6料が膜厚を厚くできないこと及び耐熱性の不
足などの問題を解消するものである。
Furthermore, the invention disclosed in JP-A No. 60-161460 discloses a non-barrel adhesive in which silica powder is mixed with an alcoholic solution of a partially hydrolyzed alkyl silicate ester, which is similar to Moe's free linear-loid adhesive. It is a high-quality polymer coating agent that solves the problems of the conventional material 6, which is a mixture of fullyl silicate ester and metal zinc powder, such as the inability to thicken the film and the lack of heat resistance.

更に特開昭61−236630号公報にも、前述2件の
発明と類似した部分的に加水分解されたアルキルケイ酸
エステルのアルコール溶液に、四面体構造を持つシリカ
粉末を加水分解及び縮重合触媒として加えた無機スラリ
ー型バインダー組成物を接着剤として使用する無機質断
熱ファイバー成型体の接着方法が開示されているが、こ
の発明は、前記特開昭60−161460号公報の応用
発明で、高温の雰囲気で使用する無機質断熱ファイバー
相互あるいは無機質断熱ファイバーと金属材料または他
の断熱材・耐火材との接着に効果を有するとするもので
ある。
Furthermore, JP-A No. 61-236630 also discloses that silica powder having a tetrahedral structure is added to an alcoholic solution of a partially hydrolyzed alkyl silicate ester similar to the above two inventions as a catalyst for hydrolysis and polycondensation. A method for adhering an inorganic heat insulating fiber molded body using an inorganic slurry-type binder composition added as an adhesive is disclosed, but this invention is an applied invention of the above-mentioned Japanese Patent Application Laid-Open No. 161460/1983, and It is said to be effective in adhering inorganic heat insulating fibers used in an atmosphere or bonding inorganic heat insulating fibers to metal materials or other heat insulating/refractory materials.

これらアルキルケイ酸エステルの利用に関する提案は、
塗料又は物と物との接着に主眼がおかれ、本発明のよう
に耐熱性繊維のシート化のための接着剤として用いるこ
とを示唆したものはない。
Proposals regarding the use of these alkyl silicate esters are as follows:
The main focus is on adhesion between paints or objects, and there is no suggestion of use as an adhesive for forming heat-resistant fibers into sheets, as in the present invention.

本発明に用いられるアルキルケイ酸エステル、すなわち
アルキルシリケートとしては、例えばメチルシリケート
、エチルシリケート、プロビルシリケ−1−、ブブルシ
リケート、2−メトニ1−ジエチルシリケートなどがあ
げられる。
Examples of the alkyl silicate ester, that is, the alkyl silicate used in the present invention include methyl silicate, ethyl silicate, probyl silicate-1-, bubble silicate, and 2-methoni-1-diethyl silicate.

また、本発明で用いられるアルキルシリケートの溶媒と
しては、例えばメチルアルコール、エチルアルコール、
イソプロピルアルコール、ブチルアルコール、アミルア
ール−ルなど及びその混合物があげられる。
Further, examples of the solvent for the alkyl silicate used in the present invention include methyl alcohol, ethyl alcohol,
Examples include isopropyl alcohol, butyl alcohol, amyl alcohol, and mixtures thereof.

また本発明の耐熱性繊維不織布に含有されるケイ酸ゲル
はアルカリケイ酸塩を脱アルカリ処理したケイ酸水溶液
またはアルカリケイ酸塩のアルノJりをアンモニアで置
換したケイ酸アンモニウム水溶液から乾燥工程において
脱水または脱アンモニアして生成されるものである。ケ
イ酸水溶液は、原料であるアルカリケイ酸塩の稀薄水溶
液を陽イオン交換樹脂と接触処理さけることにより脱ア
ルカリしたもので、シリカIロイド粒子の生長処理は特
に行なわないため、活性が高く不安定であるので調製後
、直ちに結合剤として使用覆る。ケイ酸アンモニウム水
溶液は、原料であるアルカリケイ酸塩の稀薄水溶液を予
め調製したアンモニア型陽イオン交換樹脂と接触処理さ
せることにより、アルカリをアンモニア置換したもので
ある。出発原料であるアルカリケイ酸塩は特に限定され
るものではないが、水硝子が生産量も多くコストその他
の点で6好ましい。
In addition, the silicic acid gel contained in the heat-resistant fibrous nonwoven fabric of the present invention is obtained in a drying process from a silicic acid aqueous solution obtained by dealkalizing an alkali silicate or an ammonium silicate aqueous solution obtained by replacing the alkali silicate with ammonia. It is produced by dehydration or deammonia. Silicic acid aqueous solution is made by dealkalizing the raw material, a dilute aqueous solution of alkali silicate, by contacting it with a cation exchange resin, and since no special growth treatment of silica Iroid particles is performed, it is highly active and unstable. Therefore, after preparation, it is immediately covered to be used as a binder. The aqueous ammonium silicate solution is obtained by replacing alkali with ammonia by contacting a dilute aqueous solution of an alkali silicate as a raw material with a previously prepared ammonia-type cation exchange resin. The alkali silicate as a starting material is not particularly limited, but water glass is preferred from the viewpoint of high production volume, cost, and other aspects.

アルカリケイ酸塩は水で稀釈されて脱アルカリまたはア
ンモニア置換処理を受けるが、その際アルカリケイ酸塩
の′a度が高いとイオン交換樹脂層内でゲル化を起重こ
とがあるので、アルカリケイ酸塩の濃度は5wt%以下
が望ましい。
Alkali silicate is diluted with water and subjected to dealkalization or ammonia replacement treatment, but at this time, if the alkali silicate has a high degree of a, gelation may occur within the ion exchange resin layer, so the alkali silicate The concentration of silicate is preferably 5 wt% or less.

脱アルカリ処理は強酸型陽イオン交換樹脂を塩酸または
硫酸と接触処理し、H型としたものが使用でき、アンモ
ニア置換処理は上述のように IR型とした陽イオン交
換樹脂にアンモニア水を充分接触処理したアンモニア型
陽イオン交換樹脂が使用できる。これらの接触処理は常
法に従い、カラムを用いて実施するのが好ましい。
For the dealkalization treatment, a strong acid type cation exchange resin can be contacted with hydrochloric acid or sulfuric acid to form the H type, and for the ammonia replacement treatment, as described above, the IR type cation exchange resin must be brought into sufficient contact with ammonia water. A treated ammonia type cation exchange resin can be used. These contact treatments are preferably carried out using a column according to a conventional method.

また、市販の強酸型陽イオン交換樹脂としては例えばA
mberlite IR−120(Rohm & Ha
as Co、 )、ダイヤイオン5K−IB  (三菱
化成(株))等が使用できるが、弱酸型陽イオン交換樹
脂はアルカリケイ酸塩を充分に脱アルカリまたはアンモ
ニア置換処理することができない。
In addition, examples of commercially available strong acid type cation exchange resins include A
amberlite IR-120 (Rohm & Ha
As Co, ), Diaion 5K-IB (Mitsubishi Kasei Corporation), etc. can be used, but weakly acidic cation exchange resins cannot sufficiently dealkalize or ammonia-substitute an alkali silicate.

耐熱性繊維不織布へのポリイミド樹脂、アルキルケイ酸
エステルの加水分解縮合物又はケイ酸ゲルの付着量は特
に限定するものではないが、耐熱性繊維不織布の車量に
対し、5〜30wt%のときに、特に良好な結果が19
られる。付着量が少ないと耐熱性繊維不織布の引張強度
が小さく、積層成形時に基材切れを起ず恐れがあり、付
着量が多いと耐熱性繊維不織布の柔軟性が失われ、折損
し易くなる。
The amount of polyimide resin, hydrolyzed condensate of alkyl silicate ester, or silicic acid gel attached to the heat-resistant fibrous non-woven fabric is not particularly limited, but when it is 5 to 30 wt% based on the weight of the heat-resistant fibrous non-woven fabric. Particularly good results were found in 19
It will be done. If the amount of adhesion is small, the tensile strength of the heat-resistant fibrous non-woven fabric will be low, and there is a risk that the base material will not break during lamination molding, while if the amount of adhesion is large, the heat-resistant fibrous non-woven fabric will lose its flexibility and become prone to breakage.

:作  用] ポリイミド樹脂は硬化物の耐熱性が有機物中で最も高い
樹脂の−・つであり、アルキルケイ酸エステルの加水分
解縮合物およびケイ酸ゲルは無機物であるから、これら
の接着剤を用いた耐熱性I&I維不織布は、熱間強度が
強く、フッ素樹脂を用いた積層板の高温高圧成形の際、
接着j−リの熱分解による着色、絶縁性の低下、基材切
れ等を起こすことはない。また、不織布であるため、従
来の耐熱性繊維織布と比べて密度が低く、そのため積層
板中のフッ素樹脂比率を高めることが可能となり、フッ
素樹脂積層板の低誘電率化に寄与することができる。
: Effect] Polyimide resin has the highest heat resistance of the cured product among organic substances, and hydrolyzed condensates of alkyl silicate esters and silicic acid gels are inorganic substances, so these adhesives are The heat-resistant I&I fiber nonwoven fabric used has strong hot strength, and during high-temperature and high-pressure molding of laminates using fluororesin,
There will be no discoloration, deterioration of insulation, or breakage of the base material due to thermal decomposition of the adhesive. In addition, since it is a non-woven fabric, it has a lower density than conventional heat-resistant fiber woven fabrics, which makes it possible to increase the fluororesin ratio in the laminate, contributing to lower dielectric constant of the fluororesin laminate. can.

[実施例] 次に本発明の実施例について述べる。[Example] Next, embodiments of the present invention will be described.

実施例1 17r1.のパルパーにm維分散剤としてポリエチレン
オギザイド(製鉄化学(株)製、PE0−18 )を0
.02%水溶液濃度となるように溶解し、次に石英ガラ
ス繊維(旭硝子(株)製、石英ガラスファイバーチョツ
プドストランド137mφ×8M)を2g/lの温度と
なるよう゛に分散して石英ガラス繊維分散液とした。
Example 1 17r1. Polyethylene ogizide (manufactured by Steel Chemical Co., Ltd., PE0-18) was added as an m-fiber dispersant to the pulper.
.. Then, quartz glass fibers (manufactured by Asahi Glass Co., Ltd., quartz glass fiber chopped strand 137 mφ x 8 M) were dispersed at a temperature of 2 g/l to form quartz glass. A fiber dispersion was prepared.

この石英ガラス繊維分散液を用い、円網式抄紙機で石英
ガラス繊維不織布ウェアを抄造した。
Using this quartz glass fiber dispersion, quartz glass fiber nonwoven fabric wear was made using a circular mesh paper machine.

次いでポリイミド樹脂(三井東圧化学(株)!!1、L
ARC−TPI )を石英ガラス繊維不織布ウェブに対
して10*t%になるように含浸し、120℃、5分間
乾燥した。更にポリアミド酸に脱水反応をおこさせるた
めに、不織布ウェブを乾燥機に入れ、徐々に300℃ま
でシフ温し、次に350℃、5分間加熱し、脱水環化を
完了させて坪m50ri/麓のも英ガラス繊維不織布を
得た。
Next, polyimide resin (Mitsui Toatsu Chemical Co., Ltd.!! 1, L
The quartz glass fiber nonwoven fabric web was impregnated with ARC-TPI to a concentration of 10*t%, and dried at 120°C for 5 minutes. Furthermore, in order to cause a dehydration reaction in the polyamic acid, the nonwoven fabric web was placed in a dryer and gradually heated to 300°C, and then heated at 350°C for 5 minutes to complete the dehydration and cyclization. A glass fiber non-woven fabric was also obtained.

かかる方法で得た6英ガラス繊維不織布に四フッ化エヂ
レン樹脂ディスバージョン(三井フロロケミカル(株)
製、テフロン30−J )を含浸、溶融、冷Ul t、
たプリプレグを得、このプリプレグを8枚重ねた上、片
面に厚さ35庫の接着剤付銅箔を重ねて、成形圧力20
に9/crA、400℃で40分分間病成形して厚さ1
.6Mの石英ガラス繊維不織布基材フッ素樹脂積層板を
得た。
Tetrafluoroethylene resin dispersion (Mitsui Fluorochemical Co., Ltd.) was applied to the 6-E glass fiber nonwoven fabric obtained by this method.
impregnated with Teflon 30-J), melted, cooled,
8 sheets of this prepreg were stacked, and on one side, a 35mm thick adhesive coated copper foil was stacked, and a molding pressure of 20mm was applied.
9/crA, molded at 400℃ for 40 minutes to a thickness of 1
.. A 6M quartz glass fiber nonwoven fabric base fluororesin laminate was obtained.

実施例2 実施例1において、石英ガラス繊維の代りに、ガラス繊
維(旭フフイバーグラス(株)製、C806JA−86
1A 9μφX 6 m >を用いた以外は実施例1と
同様にしてガラス繊維不織布ウェブを抄造した。
Example 2 In Example 1, glass fiber (manufactured by Asahi Fiberglass Co., Ltd., C806JA-86) was used instead of quartz glass fiber.
A glass fiber nonwoven fabric web was made in the same manner as in Example 1 except that 1A 9 μφ× 6 m> was used.

次いで水可溶性ポリイミド樹脂(日東電気工2(株)製
1ラコートX−600W)をガラス繊維不織布に対して
10wt%になるように含浸し、200℃、5分間の乾
燥工程を経て坪量509/rdのガラス繊維不織布を得
た。
Next, the glass fiber nonwoven fabric was impregnated with water-soluble polyimide resin (1 Lacote rd glass fiber nonwoven fabric was obtained.

かかる方法で14だガラス繊維不織布を用いて実施例1
と同様な方法でフッ素樹脂積層板を得た。
Example 1 was carried out using a glass fiber non-woven fabric using this method.
A fluororesin laminate was obtained in the same manner as above.

実施例3 実施例1において、石英ガラス繊維の代りに実施例2で
用いたガラス繊維を用い、ポリイミド樹脂の代りに、エ
チルシリケートの加水分解縮合物(=+ル」−ト(株)
製、11^S−10)を用いてガラス繊維不織布ウェブ
を含浸し、150℃、3分間乾燥する以外は実施例1と
全く同様に1ノで坪m50!Z/mのガラス繊維不織布
を得た。これを用いて実施例1と同様にしてフッ素樹脂
積層板を得た。
Example 3 In Example 1, the glass fibers used in Example 2 were used instead of the quartz glass fibers, and a hydrolyzed condensate of ethyl silicate (=+Ruto Co., Ltd.) was used instead of the polyimide resin.
A glass fiber nonwoven fabric web was impregnated with 11^S-10) manufactured by J.D. Co., Ltd. and dried at 150°C for 3 minutes in the same manner as in Example 1. A glass fiber nonwoven fabric of Z/m was obtained. Using this, a fluororesin laminate was obtained in the same manner as in Example 1.

実施例4 実施例1と同一の石英ガラス繊維を用いて石英ガラス繊
維不織布ウェアを抄造した。次いで、実施例2と全く同
様にして水可溶性ポリイミド樹脂を含浸して石英ガラス
繊維不織布を得た。
Example 4 Using the same quartz glass fiber as in Example 1, a quartz glass fiber nonwoven fabric garment was made. Next, in exactly the same manner as in Example 2, a water-soluble polyimide resin was impregnated to obtain a quartz glass fiber nonwoven fabric.

このようにして得た石英ガラス繊維不織布を用いて実施
例1と同様な方法でフッ素樹脂積層板を1qだ。
Using the quartz glass fiber nonwoven fabric thus obtained, a fluororesin laminate of 1 q was made in the same manner as in Example 1.

実施例5 実施例4において、接着剤の付着間を25%とした以外
は実施例4と全く同様にしてフッ素樹脂積層板を得た。
Example 5 A fluororesin laminate was obtained in exactly the same manner as in Example 4, except that the adhesive adhesion interval was changed to 25%.

実施例6 実施例3においてガラスIM紺の代りに石英ガラスII
帷(実施例1と同一・のちの)を用いる以外は、実施例
3と全く同様にして土チルシリケートを含浸1ノだ石英
ガラス繊維不織布を得た。
Example 6 In Example 3, quartz glass II was used instead of glass IM navy blue.
A quartz glass fiber nonwoven fabric impregnated with clay silicate was obtained in exactly the same manner as in Example 3, except that the cloth (same as in Example 1, later) was used.

得られた石英ガラス繊維不織布を用いて実施例1と同様
にしてフッ素樹脂積層板を得た。
A fluororesin laminate was obtained in the same manner as in Example 1 using the obtained quartz glass fiber nonwoven fabric.

実施例7 実施例6において、接着剤の付着間を25%とした以外
は実施例6と全く同様にしてフッ素樹脂積層板を得た。
Example 7 A fluororesin laminate was obtained in exactly the same manner as in Example 6, except that the adhesive adhesion interval was changed to 25%.

実施例8 実施例2において、耐熱性繊維として芳香族ポリアミド
(アラミド)48M(デュポン製、ケブラー49,2d
 x 3m)を用いる以外は、実施例2と同様な方法で
芳香族ポリアミド繊維不織布を得、これを用いて実施例
1と同様にしてフッ素樹脂積層板を得た。
Example 8 In Example 2, aromatic polyamide (aramid) 48M (manufactured by DuPont, Kevlar 49,2d) was used as the heat-resistant fiber.
An aromatic polyamide fiber nonwoven fabric was obtained in the same manner as in Example 2, except that a non-woven fabric having a diameter of 3 m) was used, and a fluororesin laminate was obtained in the same manner as in Example 1 using this.

参考例1(ケイ酸水溶液の調製) 予め塩酸で再生したスチレン系強酸型陽イオン交換樹脂
(Rohm & 1laas Co、 ’Ml Amb
erlite[R−120) 1 Kgに3号ケイ酸ソ
ーダ500gを水5000gで稀釈した水溶液を常温で
通液して脱アルカリ処理を行い、2,5%ケイ酸水溶液
を得た。
Reference Example 1 (Preparation of silicic acid aqueous solution) A styrene-based strong acid type cation exchange resin (Rohm & 1laas Co, 'Ml Amb) which was regenerated in advance with hydrochloric acid
An aqueous solution prepared by diluting 500 g of No. 3 sodium silicate with 5000 g of water was passed through 1 kg of erlite [R-120) at room temperature to perform a dealkalization treatment to obtain a 2.5% silicic acid aqueous solution.

このケイ酸水溶液は不安定である゛ため、直ちにバイン
ダーとして使用1ノだ。
Since this silicic acid aqueous solution is unstable, it must be used immediately as a binder.

実施例9 実施例3においてエチルシリケートの加水分解縮合物の
代りに、参考例1で得たケイ酸水溶液を用いる以外は実
施例3と同様にしてフッ素樹脂積層機を得た。
Example 9 A fluororesin laminated machine was obtained in the same manner as in Example 3, except that the silicic acid aqueous solution obtained in Reference Example 1 was used instead of the hydrolyzed condensate of ethyl silicate.

実施例10 実施例6において、エチルシリケートの加水分解縮合物
の代りに、参考例1で得たケイ酸水溶液を用いる以外は
実施例6と同様にしてフッ素樹脂積層板を得た。
Example 10 A fluororesin laminate was obtained in the same manner as in Example 6, except that the silicic acid aqueous solution obtained in Reference Example 1 was used instead of the hydrolyzed condensate of ethyl silicate.

実施例11 実施例8において、水可溶性ポリイミド樹脂の代りに、
参考例1で得たケイ酸水溶液を用いて、150℃、3分
乾燥する以外は実施例8と同様にしてフッ素樹脂積層機
を得た。
Example 11 In Example 8, instead of the water-soluble polyimide resin,
Using the silicic acid aqueous solution obtained in Reference Example 1, a fluororesin laminating machine was obtained in the same manner as in Example 8, except that the silicic acid aqueous solution obtained in Reference Example 1 was dried at 150° C. for 3 minutes.

参考例2(ケイ酸アンモニウム水溶液の調製)予め塩酸
で再生したスチレン系強酸型陽イオン交換樹脂(Roh
m & 1laas Co、製^mber l i t
cIR−120) 1 Kgに10%7ンモ二7水5a
を流下させ、交換基をNH3型とし、更にイオン交換水
で流出液が中性になるまで洗浄した。このようにして調
製したN1−h型陽イオン交換樹脂に、3号ケイ酸ソー
ダ500gを水5000Ljで稀釈した水溶液を常温で
通液してアンモニア置換処理を行い、2.5%ケイ酸ア
ンモニウム水溶液を得た。
Reference Example 2 (Preparation of ammonium silicate aqueous solution) Styrenic strong acid type cation exchange resin (Roh
Manufactured by M & 1Laas Co.
cIR-120) 1 Kg 10% 7 ammonium 7 water 5a
was allowed to flow down to change the exchange group to NH3 type, and the solution was further washed with ion-exchanged water until the effluent became neutral. The thus prepared N1-h type cation exchange resin was subjected to ammonia substitution treatment by passing an aqueous solution prepared by diluting 500 g of No. 3 sodium silicate with 5000 Lj of water at room temperature, and then replacing the resin with 2.5% ammonium silicate aqueous solution. I got it.

実施例12 実施例3において、エチルシリケートの加水分解縮合物
の代りに参考例2で得たケイ酸アンモニウム水溶液を用
いる以外は実施例3と同様にしてフッ素樹脂積層板を得
た。
Example 12 A fluororesin laminate was obtained in the same manner as in Example 3, except that the aqueous ammonium silicate solution obtained in Reference Example 2 was used instead of the hydrolyzed condensate of ethyl silicate.

実施例13 実施例6において、エチルシリケートの加水分解縮合物
の代りに参考例2で得たケイ酸アンモニウム水溶液を用
いる以外は実施例6と同様にしてフッ素樹脂積層板を(
qた。
Example 13 In Example 6, a fluororesin laminate (
It was.

実施例14 実施例8において、水可溶性ポリイミド樹脂の代りに参
考例2で得たケイ酸アンモニウム水溶液を用いて150
℃3分乾燥する以外は実施例8と同様にしてフッ素樹脂
積層板を得た。
Example 14 In Example 8, the ammonium silicate aqueous solution obtained in Reference Example 2 was used instead of the water-soluble polyimide resin.
A fluororesin laminate was obtained in the same manner as in Example 8 except that it was dried for 3 minutes at °C.

比較例1 実施例2において、水可溶性ポリイミド樹脂の付着量を
3 WtXとした以外は実施例2と同様にしてガラス繊
維不織布を得、これを用いて実施例1と同様にしてフッ
素樹脂積層板を得た。
Comparative Example 1 A glass fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the amount of water-soluble polyimide resin attached was changed to 3 WtX, and using this, a fluororesin laminate was prepared in the same manner as in Example 1. I got it.

比較例2 実施例2において、水可溶性ポリイミド樹脂の付着量を
40wt%とした以外は実施例2と同様にしてガラス繊
維不織布を得、これを用いて実施例1と同様にしてフッ
素樹脂積層板を(!また。
Comparative Example 2 A glass fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the amount of water-soluble polyimide resin attached was 40 wt%, and using this, a fluororesin laminate was prepared in the same manner as in Example 1. (! Again.

比較例3 実施例3において、エチルシリケートの加水分解縮合物
の付@母を3wt%とじた以外は実施例3と同様にして
ガラス繊維不織布を得、これを用いて実施例1と同様に
してフッ素樹脂積層板を得た。
Comparative Example 3 A glass fiber nonwoven fabric was obtained in the same manner as in Example 3, except that 3 wt% of the hydrolyzed condensate of ethyl silicate was added, and using this, a glass fiber nonwoven fabric was prepared in the same manner as in Example 1. A fluororesin laminate was obtained.

比較例4 実施例3において、エチルシリケートの加水分解縮合物
の付着量を40W(%とじた以外は実施例3と同様にし
てガラス繊維不織布を得、これを用いて実施例1と同様
にしてフッ素樹脂積層板を得た。
Comparative Example 4 A glass fiber nonwoven fabric was obtained in the same manner as in Example 3 except that the amount of the hydrolyzed condensate of ethyl silicate was reduced to 40 W (%), and using this, a nonwoven fabric was prepared in the same manner as in Example 1. A fluororesin laminate was obtained.

比較例5 実施例2において、水可溶性ポリイミド樹脂の代りにエ
ポキシ樹脂エマルジョン(大日本インキ(株)製、EH
−85−75−とEΔ−1011−EHの等4混合物)
を用いて、150℃3分乾燥する以外は実施例2と同様
にIノでガラス11雑不織布を得、これを用いて実施例
1と同様にしてフッ素樹脂積層板を作成したが、バイン
ダーであるエポキシ樹脂が熱分解され、フッ素樹脂積層
板を得ることはできなかった。
Comparative Example 5 In Example 2, epoxy resin emulsion (manufactured by Dainippon Ink Co., Ltd., EH
4 mixtures of -85-75- and EΔ-1011-EH)
A glass 11 miscellaneous nonwoven fabric was obtained in the same manner as in Example 2 except that it was dried at 150°C for 3 minutes using A certain epoxy resin was thermally decomposed and a fluororesin laminate could not be obtained.

比較例に れまでの実施例、比較例で用い1〔ガラス繊維不織布の
代りに、市販のガラス織布(日東紡V4製、 W[18
に104)を用いて実施例1と同様にしてガラス織布基
材フッ素樹脂積層板を得た。
Comparative Examples Previous Examples and Comparative Examples 1 [Instead of the glass fiber non-woven fabric, a commercially available glass woven fabric (manufactured by Nittobo V4, W[18
A glass woven fabric base fluororesin laminate was obtained in the same manner as in Example 1 using 104).

比較例7 実施例9において、ケイ酸水溶液の付着mを3wt%と
した以外は実施例9と同様にしてガラス繊維不織布を得
、これを用いて実施例1と同様にしてフッ素樹脂積層板
を得た。
Comparative Example 7 A glass fiber nonwoven fabric was obtained in the same manner as in Example 9 except that the adhesion m of the silicic acid aqueous solution was changed to 3 wt%, and using this, a fluororesin laminate was made in the same manner as in Example 1. Obtained.

比較例8 実施例9において、ケイ酸水溶液の付着量を4owt%
とした以外は実施例つと同様にしてガラス繊維不織布を
得、これを用いて実施例1と同様にしてフッ素樹脂積層
板を得た。
Comparative Example 8 In Example 9, the adhesion amount of the silicic acid aqueous solution was changed to 4wt%.
A glass fiber nonwoven fabric was obtained in the same manner as in Example 1, except that a fluororesin laminate was obtained in the same manner as in Example 1.

比較例9 実施例12において、ケイ酸アンモニウム水溶液の付着
Mを3wt%とした以外は、実施例12と同様にしてガ
ラス繊維不織布を得、これを用いて実施例1と同様にし
てフッ素樹脂積層板を得た。
Comparative Example 9 A glass fiber nonwoven fabric was obtained in the same manner as in Example 12, except that the adhesion M of the ammonium silicate aqueous solution was 3 wt%, and using this, fluororesin lamination was performed in the same manner as in Example 1. Got the board.

比較例10 実施例12において、ケイ酸アンモニウム水溶液の付着
量を40wt%とした以外は、実施例12と同様にして
ガラス繊維不織布を得、これを用いて実施例1と同様に
してフッ素樹脂積層板を(qlこ 。
Comparative Example 10 A glass fiber nonwoven fabric was obtained in the same manner as in Example 12, except that the adhesion amount of the ammonium silicate aqueous solution was 40 wt%, and using this, fluororesin lamination was performed in the same manner as in Example 1. Board (qlko.

実施例1〜14、比較例1〜10における実験条件及び
積層板の性能試験を行なった結果を表に示す。
The experimental conditions and the results of the performance tests of the laminates in Examples 1 to 14 and Comparative Examples 1 to 10 are shown in the table.

性能試験方法 誘電5¥/ JIS C6481による。Performance test method Dielectric ¥5/ According to JIS C6481.

表中のC−96/20/65は、20℃、65%R11
雰囲気中で96時間放置後、測定。D−48150は5
0℃の蒸留水中に48時間浸漬した後、測定。
C-96/20/65 in the table is 20℃, 65% R11
Measured after being left in the atmosphere for 96 hours. D-48150 is 5
Measured after immersion in distilled water at 0°C for 48 hours.

基材切れ プリプレグを積層熱圧成形後、銅箔貼着側の反対側の阜
材面(不織布又は織布)を目視で観察し、llの亀裂の
入り具合で次のように判定した。
After the base material cut prepreg was laminated and hot-pressed, the material surface (non-woven fabric or woven fabric) opposite to the side to which the copper foil was attached was visually observed and judged as follows based on the degree of cracking.

○・・・ないもの △・・・周辺部に少しあるもの X・・・全面にあるもの 柔軟性 シート試料を直径30mの紙製円筒に巻き付け、次のよ
うに判定した。
○: Absent Δ: Slightly present on the periphery X: Existing on the entire surface A flexible sheet sample was wrapped around a paper cylinder with a diameter of 30 m, and judged as follows.

O・・・折損しない X・・・折10 表に示した結果から明らかなように、本発明の耐熱性不
織布は、耐熱性!!紐として石英ガラス繊維、ガラス繊
維又は芳香族ポリアミド繊維接着剤としてポリイミド、
エチルシリケート又はケイ酸ゲルをそれぞれ用いる(実
施例1〜14)ことにより誘電率が低く、高周波特性の
すぐれたフッ素樹脂積層板を製造上のトラブルなく得る
こができる。
O: No breakage X: Folded 10 As is clear from the results shown in the table, the heat-resistant nonwoven fabric of the present invention is heat-resistant! ! Quartz glass fiber, glass fiber or aromatic polyamide fiber as string, polyimide as adhesive,
By using ethyl silicate or silicate gel (Examples 1 to 14), a fluororesin laminate having a low dielectric constant and excellent high frequency characteristics can be obtained without any trouble in manufacturing.

これに対し、ガラス繊維に従来のエポキシ樹脂エマルジ
ョン接着剤を用いる(比較例5)と接着剤の耐熱性不足
で不織布の熱間強度が弱いため、接活剤の熱分解による
着色、絶縁性の低下、基材切れ等を起し、ガラス織布を
用いた従来品(比較例6)は基材の密度が高いため、積
層板中のフッ素樹脂比率が低くなり、従って誘電率が高
くなり、本発明の目的を達することはできない。また、
本発明における耐熱性繊維不織布ウェブに対する接着剤
の付着量は3%では(比較例1.3.7.9)基材切れ
が発生し、40%では(比較例2.4.8.10)基材
の柔軟性がなくなり、基材が折損しやすくなるので、付
着量としては5〜30%が好ましいと見られる。
On the other hand, when a conventional epoxy resin emulsion adhesive is used for glass fibers (Comparative Example 5), the hot strength of the nonwoven fabric is weak due to the lack of heat resistance of the adhesive. The conventional product using glass woven fabric (Comparative Example 6) has a high base material density, so the fluororesin ratio in the laminate is low, and the dielectric constant is high. The purpose of the invention cannot be achieved. Also,
In the present invention, when the amount of adhesive adhered to the heat-resistant fibrous nonwoven web is 3% (Comparative Example 1.3.7.9), substrate breakage occurs, and when it is 40% (Comparative Example 2.4.8.10) The adhesion amount is considered to be preferably 5 to 30%, since the flexibility of the base material is lost and the base material is likely to break.

〔発明の効果] 本発明の耐熱性m絹不織布は、耐熱性繊維に耐熱性接着
剤としてポリイミド樹脂、アルキルシリケートの加水分
解縮合物又はケイ酸ゲルを用いることにより、従来のエ
マルジフン接着剤或いはガラス織布を用いたフッ素樹脂
積層板で起っていた基材切れ或いは低誘電率化の困難性
を克服し、誘電率が低く蟲周波特性のすぐれた総合的に
優位な特性を有するフッ素樹脂積層板を19ることがで
きる。
[Effects of the Invention] The heat-resistant m-silk nonwoven fabric of the present invention uses a polyimide resin, a hydrolyzed condensate of alkyl silicate, or a silicic acid gel as a heat-resistant adhesive for the heat-resistant fibers, thereby making it easier to use than conventional emulsion adhesives or glass. A fluororesin laminate that overcomes the problems of base material breakage and the difficulty of lowering the dielectric constant that occurred with fluororesin laminates using woven fabric, and has comprehensively superior properties such as a low dielectric constant and excellent low frequency characteristics. You can make 19 plates.

また、本発明の耐熱性接着剤11’Fliは、加工温度
が200℃を越えるポリイミド樹脂をマトリックス樹脂
とするポリイミド樹脂積層板に有効に使用することかで
きる。
Furthermore, the heat-resistant adhesive 11'Fli of the present invention can be effectively used for polyimide resin laminates whose matrix resin is polyimide resin whose processing temperature exceeds 200°C.

Claims (1)

【特許請求の範囲】 1 耐熱性繊維に、接着剤としてポリイミド樹脂を含有
する積層板用耐熱性繊維不織布。 2 耐熱性繊維に、接着剤としてアルキルケイ酸エステ
ルの加水分解縮合物を含有する積層板用耐熱性繊維不織
布。 3 耐熱性繊維に、接着剤としてケイ酸ゲルを含有する
積層板用耐熱性繊維不織布。 4 耐熱性繊維が石英ガラス繊維、ガラス繊維、芳香族
ポリアミド繊維、セラミック繊維、アルミナ繊維から選
ばれる第1項、第2項又は第3項記載の積層板用耐熱性
繊維不織布。 5 積層板がフッ素樹脂積層板である第1項、第2項又
は第3項記載の積層板用耐熱性繊維不織布。
[Claims] 1. A heat-resistant fiber nonwoven fabric for a laminate, which contains heat-resistant fibers and a polyimide resin as an adhesive. 2. A heat-resistant fiber nonwoven fabric for a laminate, which contains heat-resistant fibers and a hydrolyzed condensate of an alkyl silicate ester as an adhesive. 3. A heat-resistant fiber nonwoven fabric for laminates containing heat-resistant fibers and silicic acid gel as an adhesive. 4. The heat-resistant fiber nonwoven fabric for a laminate according to item 1, item 2, or item 3, wherein the heat-resistant fiber is selected from quartz glass fiber, glass fiber, aromatic polyamide fiber, ceramic fiber, and alumina fiber. 5. The heat-resistant fiber nonwoven fabric for a laminate according to item 1, 2, or 3, wherein the laminate is a fluororesin laminate.
JP63067141A 1987-09-01 1988-03-23 Heat resistant fiber nonwoven fabric Granted JPH01162853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067141A JPH01162853A (en) 1987-09-01 1988-03-23 Heat resistant fiber nonwoven fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-216473 1987-09-01
JP21647387 1987-09-01
JP63067141A JPH01162853A (en) 1987-09-01 1988-03-23 Heat resistant fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JPH01162853A true JPH01162853A (en) 1989-06-27
JPH0236705B2 JPH0236705B2 (en) 1990-08-20

Family

ID=26408319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067141A Granted JPH01162853A (en) 1987-09-01 1988-03-23 Heat resistant fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH01162853A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239143A (en) * 2006-03-09 2007-09-20 Shinetsu Quartz Prod Co Ltd Method for producing quartz glass nonwoven fabric
JP2008019534A (en) * 2006-07-14 2008-01-31 Shinetsu Quartz Prod Co Ltd Dry staple fiber web and nonwoven fabric containing quartz glass fiber
CN106245130A (en) * 2016-08-26 2016-12-21 宜兴润德纺织品制造有限公司 A kind of for the abrasion resistant fibrous and preparation method thereof of cloth braiding of weaving
CN106245137A (en) * 2016-08-26 2016-12-21 宜兴润德纺织品制造有限公司 A kind of compound anti-crack fiber for cloth braiding of weaving and preparation method thereof
CN115073864A (en) * 2022-07-05 2022-09-20 陕西生益科技有限公司 Magnetic-dielectric non-woven fabric prepreg, copper-clad plate comprising same and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853063A (en) * 1971-10-20 1973-07-25
JPS4867556A (en) * 1971-12-17 1973-09-14
JPS62216473A (en) * 1986-03-17 1987-09-24 Fujitsu Ltd Facsimile equipment
JPS6477700A (en) * 1987-06-13 1989-03-23 Honshu Paper Co Ltd Inorganic sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853063A (en) * 1971-10-20 1973-07-25
JPS4867556A (en) * 1971-12-17 1973-09-14
JPS62216473A (en) * 1986-03-17 1987-09-24 Fujitsu Ltd Facsimile equipment
JPS6477700A (en) * 1987-06-13 1989-03-23 Honshu Paper Co Ltd Inorganic sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239143A (en) * 2006-03-09 2007-09-20 Shinetsu Quartz Prod Co Ltd Method for producing quartz glass nonwoven fabric
JP2008019534A (en) * 2006-07-14 2008-01-31 Shinetsu Quartz Prod Co Ltd Dry staple fiber web and nonwoven fabric containing quartz glass fiber
CN106245130A (en) * 2016-08-26 2016-12-21 宜兴润德纺织品制造有限公司 A kind of for the abrasion resistant fibrous and preparation method thereof of cloth braiding of weaving
CN106245137A (en) * 2016-08-26 2016-12-21 宜兴润德纺织品制造有限公司 A kind of compound anti-crack fiber for cloth braiding of weaving and preparation method thereof
CN115073864A (en) * 2022-07-05 2022-09-20 陕西生益科技有限公司 Magnetic-dielectric non-woven fabric prepreg, copper-clad plate comprising same and application
CN115073864B (en) * 2022-07-05 2023-11-10 陕西生益科技有限公司 Magneto-dielectric non-woven fabric prepreg, copper-clad plate containing same and application

Also Published As

Publication number Publication date
JPH0236705B2 (en) 1990-08-20

Similar Documents

Publication Publication Date Title
US5002637A (en) Composite material reinforced by para-oriented aramide fiber sheet and process for preparing the same
JPS6175880A (en) Size agent
JP2000054224A (en) Aromatic polyamide fiber and paper using the same
CN106147227B (en) High-frequency copper-clad plate, prepreg and manufacturing method thereof
EP0115399A2 (en) Synthetic mica products
US4865910A (en) Glass fiber product for use in the reinforcement of fluororesin
CN108472831A (en) FRP precursors, plywood, metal-clad, printed wiring board, semiconductor package body and their manufacturing method
JPH01162853A (en) Heat resistant fiber nonwoven fabric
US5397847A (en) Heat-resistant laminate materials and preparation thereof
WO2021212314A1 (en) Thermosetting resin composition
JPH0395232A (en) Improved composite material made from base material comprising para-oriented aramid fiber and its manufacture
US4678820A (en) Amorphous hydrated metal oxide primer for composite fibers
JPS5857446B2 (en) Resin-impregnated base material and its manufacturing method
EP0392128B1 (en) Sizing for fibres in composites
US5328566A (en) Process for producing inorganic fiber-based prepreg sheet and process for producing insulating laminate
JP3327366B2 (en) Manufacturing method of laminated board
JPH01500894A (en) A method of treating a glass surface with a coupling agent and a resin to provide an improved surface for bonding to the final resin.
JPH03167357A (en) Production of glass non-woven fabric for laminate and production of laminate
EP0387468A2 (en) Stable amorphous hydrated metal oxide sizing for fibres in composites
JPS63226B2 (en)
JPS6244914A (en) Heat resistant electrically insulated sheet
KR102656640B1 (en) Ceramic Paper and Manufacturing Method Thereof
JPH11200218A (en) Heat-resistant nonwoven fabric
JP3034636B2 (en) Flame retardant cone paper
TW202140601A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees