JPH01162302A - Manufacture of alloy powder for bonded magnet - Google Patents

Manufacture of alloy powder for bonded magnet

Info

Publication number
JPH01162302A
JPH01162302A JP62321686A JP32168687A JPH01162302A JP H01162302 A JPH01162302 A JP H01162302A JP 62321686 A JP62321686 A JP 62321686A JP 32168687 A JP32168687 A JP 32168687A JP H01162302 A JPH01162302 A JP H01162302A
Authority
JP
Japan
Prior art keywords
alloy
powder
coercive force
boron
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62321686A
Other languages
Japanese (ja)
Inventor
Hiroshi Saito
博 斉藤
Hiroyasu Fujimori
藤森 啓安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP62321686A priority Critical patent/JPH01162302A/en
Publication of JPH01162302A publication Critical patent/JPH01162302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PURPOSE:To obtain the title alloy powder to be used for a highly efficient anisotropic bonded magnet by a method wherein the powder having a small distortion is obtained by finely grinding a spontaneously pulverized alloy by occluding hydrogen, and an annealing is conducted to recover coercive force in a low temperature state. CONSTITUTION:When rare-earth R of 10-30atomic% containing Y manufactured by conducting a high frequency melting method, an arc melting method and the like, boron of 4-10atomic%, and iron type alloy ingot of 60-86atomic% are reduced to powder, hydrogen gas is occluded into the alloy under the pressure of 1-50kg/cm<2>, and after it has been spontaneously pulverized into 10-100mum, it is finely ground into 2-10mum using a ball mill and the like. The powder of 2-10mum obtained by pulverizing is dehydrogenated in a vacuum atmosphere or in the inert gas such as argon gas and the like at the atmosphere of 300-600 deg.C. At the same time, annealing is conducted at a low temperature. As a result, an R-rich phase is precipitated on the surface of grains, and the alloy powder for a highly efficient anisotropic bonded magnet having a smallest decrease of coercive force due to the pulverization can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 Sm−Co系に代表される希土類遷移金属系ボンド永久
磁石は、従来のフェライト磁石やアルニコ磁石に比べて
はるかに大きな磁気エネルギーを有することから、その
需要は急激に伸びている。
[Detailed Description of the Invention] [Industrial Application Field] Rare earth transition metal-based bonded permanent magnets, represented by Sm-Co-based permanent magnets, have much greater magnetic energy than conventional ferrite magnets and alnico magnets. , and its demand is growing rapidly.

前記の希土類遷移金属系ボンド磁石は、当初原料費が高
価なため音響用ピックアップ、ウォッチ。
The above-mentioned rare earth transition metal bonded magnets are initially used in audio pickups and watches due to their high raw material costs.

クロックなど超小型製品に使用範囲が限定されていたが
、近年各種産業及び民生用電気、電子機器の主要材料と
して重要な役割を示すようにな9た。
Its use was limited to ultra-small products such as clocks, but in recent years it has come to play an important role as a main material in various industries and consumer electrical and electronic devices9.

具体的には音響関係を初めとする電子機器の小型化、高
性能化、省エネルギー化等のニーズにより、小型モータ
ー、小型スピーカー、ヘッドホン、ステップモーター等
へ応用分野を広げており、今後もOA、FA、自動車電
装品、医療機器へと需要が拡大していくものと考えられ
ている。
Specifically, due to the need for miniaturization, higher performance, and energy savings in audio-related and other electronic equipment, we are expanding the field of application to small motors, small speakers, headphones, step motors, etc., and will continue to use OA, Demand is expected to expand to include FA, automotive electrical components, and medical equipment.

〔発明の概要〕[Summary of the invention]

本発明はR,ボロン、鉄系ボンド磁石用合金粉末を製造
するにあたり、Yを含む10〜30at%のR,4〜1
0a t%のボロン、60〜86at%の鉄、及び製造
上不可避な不純物からなる合金を粉砕する工程の少なく
とも1つ以上の工程で合金に1〜50kg/cdの圧力
下で水素ガスを吸蔵させ所定の粒径に粉砕した後、真空
中又はアルゴンガス雰囲気中で300℃〜600℃に加
熱し脱水素及びアニールすることにより、粉砕による合
金粉末の残留歪の発生を極力少なくするとともに、粉末
表面にR−rich相を析出させ、従来避けられなかっ
た粉砕による保磁力の低下を防止し、高性能希土類。
In producing R, boron, iron-based bonded magnet alloy powder, the present invention uses 10 to 30 at% of R, 4 to 1 containing Y.
In at least one step of pulverizing an alloy consisting of 0 at% boron, 60 to 86 at% iron, and impurities unavoidable in manufacturing, the alloy is made to absorb hydrogen gas under a pressure of 1 to 50 kg/cd. After pulverizing to a predetermined particle size, the alloy powder is heated to 300°C to 600°C in vacuum or in an argon gas atmosphere to dehydrogenate and anneal, thereby minimizing residual strain in the alloy powder due to pulverization and improving the powder surface. The R-rich phase is precipitated to prevent the coercive force from decreasing due to pulverization, which was previously unavoidable, making it a high-performance rare earth.

ボロン、鉄系異方性ボンド磁石用合金粉末を製造するこ
とにある。
Our purpose is to produce boron and iron-based anisotropic bonded alloy powder for magnets.

〔従来の技術〕[Conventional technology]

R,ポロン、鉄系ボンド磁石用合金は従来溶湯超急冷法
で製造したNd−Fe−B系磁石用合金のみが実用化さ
れていた。しかし、この方法で得られるボンド磁石では
非晶質相中に析出する主相(Ndz  Fez  B)
の結晶粒径が20〜1100nと、粉末粒径(約0.1
m)に比べて非常に小さく、かつそれぞれの容易磁化方
向がランダムである。そのため、磁場配向ができず等方
性であり、最大エネルギー積で8〜9 M G Oeと
SmCo系異方性ボンド磁石の最大エネルギー積12〜
16MGOeに比べて低い。
Conventionally, only Nd-Fe-B alloys for R, Poron, and iron-based bonded magnets manufactured by a molten metal super-quenching method have been put into practical use. However, in the bonded magnet obtained by this method, the main phase (Ndz Fez B) precipitated in the amorphous phase
The crystal grain size is 20 to 1100n, and the powder grain size (approximately 0.1
m), and each easy magnetization direction is random. Therefore, magnetic field orientation is not possible and it is isotropic, with a maximum energy product of 8-9 M G Oe and a maximum energy product of 12-9 M G Oe for SmCo-based anisotropic bonded magnets.
It is lower than 16MGOe.

上記の理由で複雑な着磁方向を要求されるような等方性
磁石でなければならないもの以外は利用価値が低い。
For the above-mentioned reasons, the utility value is low unless it is an isotropic magnet that requires a complicated magnetization direction.

又、Nd、Prなどの軽希土類、ボロン、鉄系の合金を
従来のSmCo系ボンド磁石用合金粉末と同様の方法で
溶解粉砕したものは、磁場配向は可能で異方性磁石とな
るが、保磁力が1oooo e以下であり高性能磁石と
して使用できない。これは、前記軽希土類、ポロン、鉄
系合金の保磁力発生の主要因である結晶粒界のR−ri
ch相が粉砕のス1ヘレスにより、破壊されるためであ
ることが知られている。又、粉砕のストレスによる結晶
歪を除去するため600〜700℃でアニールするとあ
る程度保磁力は回復するが粒同士が溶着するため磁場配
向が困難になる。
In addition, light rare earth elements such as Nd and Pr, boron, and iron-based alloys melted and ground in the same manner as conventional SmCo-based bonded magnet alloy powders can be oriented in a magnetic field and become anisotropic magnets, but Since the coercive force is less than 1ooooe, it cannot be used as a high-performance magnet. This is due to the R-ri of grain boundaries, which is the main factor in the generation of coercive force in light rare earth, poron, and iron alloys.
It is known that this is because the ch phase is destroyed by the crushing process. Further, when annealing is performed at 600 to 700° C. to remove crystal distortion caused by crushing stress, the coercive force is recovered to some extent, but the grains are welded together, making magnetic field orientation difficult.

ただし、軽希土類をDyなど重希土類に置き換えた合金
を従来のSmCo系ボンド磁石と同様の方法で溶解粉砕
したものは、歪取りアニールをしなくとも保磁力が10
0000 eを超え粒同士の溶着も発生しない場合もあ
る。しかし、Brが非常に低く、これも高性能磁石とし
て使用できない。
However, alloys in which light rare earths are replaced with heavy rare earths such as Dy, which are melted and crushed in the same manner as conventional SmCo bonded magnets, have a coercive force of 10% even without strain relief annealing.
0000 e and no welding of grains occurs in some cases. However, Br is very low, and this also cannot be used as a high-performance magnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記、従来の技術で説明したように、溶湯急冷法で製造
した合金は磁場配向ができず、SmC。
As explained above in the prior art section, alloys manufactured by the molten metal quenching method cannot be oriented in a magnetic field, and SmC.

系ボンド磁石と同様の方法で製造した合金は保磁力が低
いことから、両者とも異方性ボンド磁石用合金粉末とな
り得ない。本発明ではSmCo系ボンド磁石と同様の方
法で製造した磁石合金について、粉砕のための結晶粒の
歪による保磁力の低下を防ぎ、さらに歪除去のためのア
ニールにより発生する粉末の溶着を防止することで、高
性能異方性ボンド磁石用合金を得ようとするものである
Since alloys manufactured in the same manner as the bonded magnets have low coercive force, neither of them can be used as alloy powder for anisotropic bonded magnets. In the present invention, for magnet alloys manufactured in the same manner as SmCo-based bonded magnets, reduction in coercive force due to distortion of crystal grains due to crushing is prevented, and furthermore, powder welding caused by annealing to remove distortion is prevented. This is an attempt to obtain a high-performance anisotropic bonded magnet alloy.

〔問題点を解決するための手段〕[Means for solving problems]

R,ポロン、鉄系磁石は1−5系SmCo磁石と同様な
ニュークリエイジョンタイプの磁石であり保磁力発生機
構は、主相であるNdz −Fe12−B及び主相を取
り囲むように析出しているR−rich相に、歪、欠陥
などのない完全性に起因している。
R, Poron, and iron-based magnets are nucleation type magnets similar to 1-5-based SmCo magnets, and the coercive force generation mechanism consists of the main phase Ndz-Fe12-B and precipitation surrounding the main phase. This is due to the completeness of the R-rich phase, which has no distortion or defects.

本発明では、高周波溶解、アーク溶解などで製造したR
、ボロン、鉄系合金インゴットを粉砕する際合金に水素
ガスを吸蔵させ、10〜100μmに自然粉化した後、
ボールミルなどで2〜10μmに微粉砕することにより
、機械的粉砕では不可避な粉砕による結晶粒の歪を極力
少なくすることを第1の手段とした。この状態では粉末
は殆ど単結晶の状態まで粉砕されており、粒内に結晶粒
界は存在せず粉末保磁力は1000’Oe以下となるこ
とが分かった。そこで、第2の手段として微粉砕で得ら
れた2〜10μmの粉末を真空中又はアルゴンガスなど
の不活性ガス中300〜600℃の雰囲気で脱水素を行
うと共に従来考えられていた温度より低い温度でのアニ
ールを行うことにより、磁場配向に不都合な粒同士の溶
着が起きない状態で結晶粒に僅かに残留する内部歪を完
全に除去し粒表面にR−ri ch相を析出させ、粉砕
による保磁力の低下を極力少なくした高性能異方性ボン
ド磁石用合金粉末を得ようとするものである。
In the present invention, R manufactured by high frequency melting, arc melting, etc.
, boron, When grinding an iron-based alloy ingot, hydrogen gas is absorbed into the alloy, and after natural powdering of 10 to 100 μm,
The first method was to reduce as much as possible distortion of crystal grains due to pulverization, which is inevitable in mechanical pulverization, by pulverizing the crystal grains to a size of 2 to 10 μm using a ball mill or the like. It was found that in this state, the powder was pulverized to almost a single crystal state, there were no grain boundaries within the grains, and the powder coercive force was 1000'Oe or less. Therefore, as a second method, the powder of 2 to 10 μm obtained by pulverization is dehydrogenated in a vacuum or an inert gas such as argon gas at a temperature of 300 to 600°C, and the temperature is lower than previously thought. By performing annealing at high temperature, the internal strain that remains slightly in the crystal grains is completely removed without welding of grains that is unfavorable to magnetic field orientation, and the R-rich phase is precipitated on the grain surface, resulting in pulverization. The objective is to obtain a high-performance alloy powder for anisotropic bonded magnets that minimizes the decrease in coercive force due to

〔作用〕[Effect]

本発明によれば前記、問題を解決する手段に記した通り
水素吸蔵で自然粉化した合金を微粉砕することにより、
粉砕による歪が小さい粉末が得られること及び粒同士の
溶着が起きないような低温下での保磁力回復のためのア
ニールが可能となる。
According to the present invention, as described in the above-mentioned means for solving the problem, by finely pulverizing an alloy that has been naturally powdered by hydrogen absorption,
It is possible to obtain powder with small distortion due to pulverization, and to perform annealing to recover coercive force at a low temperature where welding of particles does not occur.

〔実施例−1〕 fllNd+s  Feqq  B6及びNd1g−F
e7S−B6となるように配合しアルゴンガス中でアー
ク溶解した合金を出発合金とした。この時Ndは、95
%以上の純度のもの、Bはクリスタルボロン、Feは9
9.9%以上の電解鉄を使用した。
[Example-1] fllNd+s Feqq B6 and Nd1g-F
The starting alloy was prepared by blending e7S-B6 and arc melting it in argon gas. At this time, Nd is 95
% purity or higher, B is crystal boron, Fe is 9
Electrolytic iron of 9.9% or more was used.

(2)アーク溶解した合金はタラソシャーミル、ディス
クミルなどで32メンシユスルーに粗粉砕し、さらにボ
ールミルで平均粒径4μmに微粉砕した。
(2) The arc-melted alloy was coarsely pulverized to 32-mesh through using a Thalasso shear mill, a disk mill, etc., and further finely pulverized to an average particle size of 4 μm using a ball mill.

(3)得られた合金粉末に体積比で20%のエポキシ樹
脂を混合し、2ton/cfflの圧力で成形固化した
。このサンプルの磁気特性を表1に示す。
(3) Epoxy resin of 20% by volume was mixed with the obtained alloy powder, and the mixture was molded and solidified at a pressure of 2 tons/cffl. Table 1 shows the magnetic properties of this sample.

表−1 〔実施例−2〕 (11Nd+s  Fe、q  Bb及びNd、g −
Fe75−B6となるように配合しアルゴンガス中でア
ーク溶解した合金を出発合金とした。この時Ndは、9
5%以上の純度のもの、Bはクリスタルボロン、Feは
99.9%以上の電解鉄を使用した。
Table-1 [Example-2] (11Nd+s Fe, q Bb and Nd, g −
An alloy blended to give Fe75-B6 and arc melted in argon gas was used as a starting alloy. At this time, Nd is 9
Crystal boron with a purity of 5% or more was used for B, and electrolytic iron with a purity of 99.9% or more was used for Fe.

(2)アーク溶解した合金はクラッシャーミル、ディス
クミルなどで32メンシユスルーに粗粉砕し、さらにボ
ールミルで平均粒径4μmに微粉砕した。
(2) The arc-melted alloy was coarsely pulverized to 32-mesh through using a crusher mill, a disk mill, etc., and further finely pulverized to an average particle size of 4 μm using a ball mill.

(3)粉砕した合金を石英管にいれ2 xto−s t
 o rrの真空度で550℃、20時間の熱処理をほ
どこした。
(3) Put the crushed alloy into a quartz tube 2xto-st
Heat treatment was performed at 550° C. for 20 hours at a vacuum degree of o rr.

(4)得られた合金粉末に体積比で20%のエポキシ樹
脂を混合し2ton/cn+の圧力で成形固化した。
(4) Epoxy resin of 20% by volume was mixed with the obtained alloy powder and molded and solidified at a pressure of 2 ton/cn+.

このサンプルの磁気特性を表2に示す。Table 2 shows the magnetic properties of this sample.

〔実施例−3〕 (1)N d 15  F e 7g  B b及びN
d19  Fe75−B6となるように配合しアルゴン
ガス中でアーク溶解した合金を出発合金とした。この時
Ndは、95%以上の純度のもの、Bはクリスタルボロ
ン、Feは99.9%以上の電解鉄を使用した。
[Example-3] (1) N d 15 Fe 7g B b and N
An alloy blended to give d19 Fe75-B6 and arc melted in argon gas was used as a starting alloy. At this time, Nd was used with a purity of 95% or more, B was crystal boron, and Fe was electrolytic iron with a purity of 99.9% or more.

(2)アーク溶解した合金はタラソシャーミルで1〜5
顛に粗粉砕し密閉容器に納め、真空中で300℃30分
間活性化処理した後、50kg/cJの圧力で1時間水
素ガスを吸収させ真空中300℃で30分脱水素を行い
50〜500μmに粉末化し、さらにボールミルで平均
粒径4μmに微粉砕した。
(2) The arc-melted alloy is 1 to 5 in a Thalasso shear mill.
After that, it is coarsely ground, placed in a sealed container, and activated in a vacuum at 300°C for 30 minutes, then absorbed hydrogen gas at a pressure of 50 kg/cJ for 1 hour, and dehydrogenated in a vacuum at 300°C for 30 minutes to a size of 50 to 500 μm. The mixture was pulverized into powder and further finely ground to an average particle size of 4 μm using a ball mill.

(3)得られた合金粉末に体積比で20%のエポキシ樹
脂を混合し2ton/+fflの圧力で成形固化した。
(3) The obtained alloy powder was mixed with 20% by volume epoxy resin and molded and solidified under a pressure of 2 tons/+ffl.

このサンプルの磁気特性を表3に示す。Table 3 shows the magnetic properties of this sample.

表−3 〔実施例−4〕 (1)Nd+s  Fet、 Bb及びNd+q  F
e7s−B6となるように配合しアルゴンガス中でアー
ク溶解した合金を出発合金とした。この時Ndは、95
%以上の純度のもの、Bはクリスタルボロン、Feは9
9.9%以上の電解鉄を使用した。
Table-3 [Example-4] (1) Nd+s Fet, Bb and Nd+q F
The starting alloy was prepared by blending e7s-B6 and arc melting it in argon gas. At this time, Nd is 95
% purity or higher, B is crystal boron, Fe is 9
Electrolytic iron of 9.9% or more was used.

(2)アーク溶解した合金はタラソシャーミルで1〜5
1mに粗粉砕し密閉容器に納め、真空中で300℃で3
0分脱水素を行い50〜500μmに粉末化し、ボール
ミルで平均粒径4μmに微粉砕した。
(2) The arc-melted alloy is 1 to 5 in a Thalasso shear mill.
Coarsely pulverize to 1 m, store in a sealed container, and heat at 300°C in vacuum for 30 minutes.
It was dehydrogenated for 0 minutes and powdered to 50 to 500 μm, and finely pulverized to an average particle size of 4 μm using a ball mill.

(3)粉砕した合金を石英管にいれ2 xio−5t 
o rrの真空度で550℃、30時間の熱処理をほど
こし(4)得られた合金粉末に体積比で20%のエポキ
シ樹脂を混合し2ton/cJの圧力で成形固化した。
(3) Put the crushed alloy into a quartz tube 2 xio-5t
A heat treatment was performed at 550° C. for 30 hours at a vacuum degree of o rr. (4) The obtained alloy powder was mixed with 20% by volume epoxy resin and molded and solidified at a pressure of 2 ton/cJ.

このサンプルの磁気特性を表4に示す。Table 4 shows the magnetic properties of this sample.

表−4 〔実施例−5〕 実施例−4により本発明の効果が顕著であることが判明
したので、さらに磁気特性の向上を図るべく検討した結
果、粉砕後の熱処理条件により磁気特性がさらに向上す
ることを見出した。そこで、Nd16  Feqe  
Bbとなるように配合した合金を実施例−4に従って水
素吸蔵〜微粉砕した粉末について熱処理温度を450℃
〜650℃、熱処理時間を20〜40時間の間の条件で
熱処理し、体積比で20%のエポキシ樹脂を混合し2t
on/aJの圧力で10kOeの磁場中成形固化したサ
ンプルの磁気特性((B H) m’a x)を図1に
示す。
Table 4 [Example 5] As it was found in Example 4 that the effect of the present invention was remarkable, we conducted a study to further improve the magnetic properties. I found that it can be improved. Therefore, Nd16 Feque
A heat treatment temperature of 450°C was applied to a powder obtained by hydrogen storage and pulverization of an alloy blended to become Bb according to Example-4.
Heat-treated at ~650℃ for 20-40 hours, mixed with 20% epoxy resin by volume, and made 2 tons.
FIG. 1 shows the magnetic properties ((B H) m'a x) of a sample molded and solidified in a magnetic field of 10 kOe at a pressure of on/aJ.

〔実施例−6〕 Ndを15a t%〜19at%になるように配合した
合金を実施例−4に従って水素吸蔵〜微粉砕し実施例−
5での最適条件である600℃40時間で熱処理した粉
末に体積比で20%のエポキシ樹脂を混合し、2ton
/cIilの圧力で10kOeの磁場中成形固化したサ
ンプルの磁気特性((BH)maX)を図2に示す。
[Example-6] An alloy containing 15 at% to 19 at% of Nd was hydrogen-absorbed and pulverized according to Example-4.
The powder was heat-treated at 600°C for 40 hours, which is the optimum condition in step 5, and 20% by volume of epoxy resin was mixed with it, and 2 tons of
FIG. 2 shows the magnetic properties ((BH) ma

実施例−5及び6により明らかなようにNd−Fe−B
を水素吸蔵粉砕後熱処理することにより磁気特性が著し
く改善されることが分かった。又、600℃以上の熱処
理では、保磁力は向上するものの(BH)ma xはや
や低下することが分かった。
As is clear from Examples 5 and 6, Nd-Fe-B
It was found that the magnetic properties were significantly improved by heat treatment after hydrogen storage pulverization. It was also found that when heat treated at 600° C. or higher, although the coercive force was improved, (BH)max was slightly lowered.

その理由として、 ■水素吸蔵粉砕により、結晶粒の粉砕による歪が少なく
なる。
The reason for this is: (1) Hydrogen storage pulverization reduces distortion caused by pulverization of crystal grains.

■低温熱処理により粉砕による残留歪が、完全に除去さ
れるとともに、粒表面にR−rich相を析出させ保磁
力の低下を防止する。
(2) Residual strain caused by pulverization is completely removed by low-temperature heat treatment, and an R-rich phase is precipitated on the grain surface to prevent a decrease in coercive force.

■熱処理温度が600℃を超えると粒表面に析出したR
−rfc)1相同士が溶着するため磁場配向が困難にな
り磁気特性が低下する。ということが分かった。
■When the heat treatment temperature exceeds 600℃, R precipitates on the grain surface.
-rfc) Since one phase is welded together, magnetic field orientation becomes difficult and magnetic properties deteriorate. That's what I found out.

〔発明の効果〕〔Effect of the invention〕

前記、発明の詳細な説明で分かる通り本発明によれば、
従来不可能だった希土類、ボロン、鉄系異方性ボンド磁
石を製造することができ、従来Smco、系の焼結磁石
でしか達成できなかった。
As can be seen from the above detailed description of the invention, according to the present invention,
It is now possible to produce rare earth, boron, and iron-based anisotropic bonded magnets, which was previously impossible, and could only be achieved with Smco-based sintered magnets.

(BH)ma x16〜20MGoeの性能をボンド磁
石で達成できる。
(BH) A performance of max 16 to 20 MGoe can be achieved with a bonded magnet.

一般に知られているように、焼結磁石は焼結による収縮
が太き(、希土類磁石の主な市場である精密部品に使用
する場合は研削、ラッピング等の仕上げ加工が必要であ
り、製造コストが増加する。
As is generally known, sintered magnets have a large shrinkage due to sintering (and when used in precision parts, which is the main market for rare earth magnets, finishing processes such as grinding and lapping are required, which increases manufacturing costs. increases.

ボンド磁石は成形後殆ど収縮しないため、仕上げ加工を
不用とすることも可能となり、製造コストが大幅に削減
できる。更に実施例に示したように、希土類にNdを使
用した場合、資源含存量がSmの10倍以上あり、鉄は
coに比べれば、無限に存在すると言って良く、原料供
給が長期的に安価で安定して得られることが期待できる
Since bonded magnets hardly shrink after molding, it is possible to eliminate the need for finishing processing, which can significantly reduce manufacturing costs. Furthermore, as shown in the example, when Nd is used as a rare earth, the resource content is more than 10 times that of Sm, and compared to cobalt, it can be said that iron exists infinitely, making the raw material supply cheap in the long term. It is expected that stable results will be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNd+b−Feq8 Bbの合金粉末を各種温
度及び時間でアニールした時の磁気特性図(実施例5)
、 第2図はNdx−Fe、4−x−Bbの合金のXを15
〜19at%の間で変化させた時の磁気特性図(実施例
6)である。 以上 出願人 セイコー電子部品株式会社 代理人 セイコー電子工業株式会社
Figure 1 shows the magnetic characteristics of Nd+b-Feq8Bb alloy powder annealed at various temperatures and times (Example 5).
, Figure 2 shows that X of Ndx-Fe, 4-x-Bb alloy is 15
It is a magnetic characteristic diagram (Example 6) when changing between ~19at%. Applicant: Seiko Electronic Components Co., Ltd. Agent: Seiko Electronics Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  希土類,ボロン,鉄系のボンド磁石用合金粉末の製造
で、Yを含む10〜30at%の希土類、4〜10at
%のボロン、60〜86at%の鉄からなる合金を粉砕
する工程の少なくとも1つ以上の工程で、合金に1〜5
0kg/cm^2の圧力下で水素ガスを吸蔵させ、所定
の粒径に粉砕した後、真空中又はアルゴンガス雰囲気中
で、300℃〜600℃に加熱し粉末表面に希土類(以
下Rと記す)−rich相を析出しすることを特徴とす
る、R,ボロン,鉄系のボンド磁石用合金粉末の製造方
法。
In the production of alloy powder for rare earth, boron, and iron-based bonded magnets, 10 to 30 at% of rare earth including Y, 4 to 10 at.
In at least one step of grinding an alloy consisting of 60 to 86 at% boron and 60 to 86 at% iron, the alloy contains 1 to 5 at%
After absorbing hydrogen gas under a pressure of 0 kg/cm^2 and pulverizing it to a predetermined particle size, it is heated to 300°C to 600°C in vacuum or in an argon gas atmosphere to coat the powder surface with rare earth elements (hereinafter referred to as R). )-Rich phase is precipitated, a method for producing R, boron, iron-based alloy powder for bonded magnets.
JP62321686A 1987-12-18 1987-12-18 Manufacture of alloy powder for bonded magnet Pending JPH01162302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321686A JPH01162302A (en) 1987-12-18 1987-12-18 Manufacture of alloy powder for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321686A JPH01162302A (en) 1987-12-18 1987-12-18 Manufacture of alloy powder for bonded magnet

Publications (1)

Publication Number Publication Date
JPH01162302A true JPH01162302A (en) 1989-06-26

Family

ID=18135290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321686A Pending JPH01162302A (en) 1987-12-18 1987-12-18 Manufacture of alloy powder for bonded magnet

Country Status (1)

Country Link
JP (1) JPH01162302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626703A2 (en) * 1993-05-28 1994-11-30 Rhone-Poulenc Specialty Chemicals Co. Magnetically anisotropic spherical powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101004A (en) * 1985-10-28 1987-05-11 Seiko Epson Corp Rare earth-iron group permanent magnet
JPS62137808A (en) * 1985-12-12 1987-06-20 Mitsubishi Metal Corp Manufacture of rare earth bonding magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101004A (en) * 1985-10-28 1987-05-11 Seiko Epson Corp Rare earth-iron group permanent magnet
JPS62137808A (en) * 1985-12-12 1987-06-20 Mitsubishi Metal Corp Manufacture of rare earth bonding magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626703A2 (en) * 1993-05-28 1994-11-30 Rhone-Poulenc Specialty Chemicals Co. Magnetically anisotropic spherical powder
EP0626703A3 (en) * 1993-05-28 1995-01-25 Rhone Poulenc Spec Chim Magnetically anisotropic spherical powder.

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
CN105469917B (en) High temperature hybrid permanent magnet and method of forming the same
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
EP0626703A2 (en) Magnetically anisotropic spherical powder
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH01132106A (en) Rare earth-fe-b alloy magnet powder
JPS6348805A (en) Manufacture of rare-earth magnet
JPH01162302A (en) Manufacture of alloy powder for bonded magnet
JPS6181607A (en) Preparation of rare earth magnet
JP2001006911A (en) Manufacture of rare earth permanent magnet
JPH0733521B2 (en) Method for producing alloy powder for anisotropic bonded magnet
JPS62169403A (en) Manufacture of polymer composite type rare earth magnet
JPS6233402A (en) Manufacture of rare-earth magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JP3222919B2 (en) Method for producing nitride-based magnetic material
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JP2992808B2 (en) permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH0119461B2 (en)
JPH0426524B2 (en)
JPH01171207A (en) Manufacture of parmanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder