JPH01161786A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPH01161786A
JPH01161786A JP62318772A JP31877287A JPH01161786A JP H01161786 A JPH01161786 A JP H01161786A JP 62318772 A JP62318772 A JP 62318772A JP 31877287 A JP31877287 A JP 31877287A JP H01161786 A JPH01161786 A JP H01161786A
Authority
JP
Japan
Prior art keywords
film
oxide superconductor
superconducting element
metal film
josephson junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62318772A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Jiro Yoshida
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62318772A priority Critical patent/JPH01161786A/en
Publication of JPH01161786A publication Critical patent/JPH01161786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a superconducting device which can operate at a higher temperature than liquid nitrogen temperature and stably, by a structure wherein each of Josephson junctions in a Josephson junction device, which operates in a phase mode, is composed of a multilayer structure which is formed on a substrate and consists of either an oxide superconductor film/a metal film or a semiconductor film/an oxide superconductor film. CONSTITUTION:In a superconducting device which has Josephson junctions J1-J4 and operates in a phase mode, each of said Josephson junctions J1-J4 is composed of a multilayer structure which is formed on a substrate 1 and consists of either an oxide superconductor film 2/a metal film 3 or a semiconductor film/an oxide superconductor film 4. For example, two DC SQUIDs Q1 and Q2 each of which has two Josephson junctions in a loop are formed on a SrTiO3 crystal substrate 1 by employing YBa2Cu3O7-delta films. And, these DC SQUIDs Q1 and Q2 are coupled each other by resistance coupling, thereby a phase mode superconducting device is formed. For each of the Josephson junctions J1-J4, an Au film 3 as a metal film is laminated on the end section of a first YBa2Cu3O7-delta film 2 which is patterned, and further the end section of a second YBa2Cu3O7-delta film 4 which is patterned is laminated on the Au film 3, thereby a multilayer structure is produced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体膜を用いて構成されたジョセ
フソン接合をもち、位相モードで動作する超電導素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting element having a Josephson junction constructed using an oxide superconductor film and operating in a phase mode.

(従来の技術) 超高密度電子素子や超高速電子素子の開発は、これまで
、シリコンおよび化合物半導体を中心として進められて
来た。従来の半導体素子の高密度化、高速化は、高度の
微細加工技術、均質で完全性の高い結晶作成技術および
シミュレーションを利用した素子設計技術によりなし遂
げられてきた。
(Prior Art) The development of ultra-high-density electronic devices and ultra-high-speed electronic devices has so far focused on silicon and compound semiconductors. High density and high speed conventional semiconductor devices have been achieved through advanced microfabrication technology, homogeneous and highly perfect crystal creation technology, and device design technology using simulation.

半導体素子の更なる高密度化、高速化を図る上で今後ま
すます重要になる問題は、発熱である゛。これは、結晶
の完全性や微細加工技術とは別に、半導体素子の高密度
化や高速化の限界を与える大きい要因になると考えられ
る。
Heat generation is an issue that will become increasingly important in the future as the density and speed of semiconductor devices are further increased. This is considered to be a major factor that limits the ability to increase the density and speed of semiconductor devices, in addition to crystal perfection and microfabrication technology.

電子素子の発熱の点で、半導体素子に比べて優れている
のは、ジョセフソン接合素子に代表される超電導素子で
ある。しかし、超電導素子はこれまでのところ、本格的
な実用化の目途が立っていない、その理由は、液体ヘリ
ウム温度という超低温でないと動作しないこと、超電導
材料として金属或いは金属間化合物を用いるため酸化さ
れ易いこと、ジョセフソン接合素子の場合は、その絶縁
膜として用いる金属酸化物の時間的、空間的−様性が得
られないこと、等にある。
Superconducting devices, such as Josephson junction devices, are superior to semiconductor devices in terms of heat generation. However, so far, there is no prospect of full-scale practical use of superconducting elements.The reason is that they only operate at extremely low temperatures, such as the temperature of liquid helium, and because they use metals or intermetallic compounds as superconducting materials, they cannot be oxidized. In the case of a Josephson junction element, the temporal and spatial characteristics of the metal oxide used as the insulating film cannot be obtained.

最近発見された、希土類元素を含有するペロブスカイト
構造の酸化物超電導体は、高い臨界温度をもち、これら
のジョセフソン接合素子の欠点を解消するものとして期
待されている。しかしながら、酸化物超電導体は800
℃以上の高温での熱処理が必要であるため、酸化物超電
導体/絶縁体/酸化物超電導体のトンネル接合を制御性
よく形成することが困難である。そこで、酸化物超電導
体膜のパターンによって、二つの超電導体バンク部とこ
れらを量子力学的に弱結合する弱結合部を構成する、弱
結合ジョセフソン素子が考えられる。
Recently discovered oxide superconductors with a perovskite structure containing rare earth elements have a high critical temperature and are expected to overcome the drawbacks of these Josephson junction devices. However, oxide superconductors have 800
Since heat treatment at a high temperature of .degree. C. or higher is required, it is difficult to form an oxide superconductor/insulator/oxide superconductor tunnel junction with good controllability. Therefore, a weakly coupled Josephson element can be considered in which a pattern of an oxide superconductor film constitutes two superconductor bank parts and a weak coupling part that weakly couples them quantum mechanically.

しかしながら酸化物超電導体は、コヒーレンス長がC軸
方向で10人程度、C面内でも100人程変色極めて短
い。従って上述のような弱結合のジョセフソン接合を形
成するためには、[100Å以下の微細加工技術が必要
であり、現在のりソグラフィ技術では不可能である。
However, the coherence length of oxide superconductors is about 10 in the C-axis direction, and the discoloration is extremely short by about 100 in the C-plane. Therefore, in order to form a weakly coupled Josephson junction as described above, a microfabrication technique of 100 Å or less is required, which is impossible with the current lamination lithography technique.

一方、酸化物超電導体膜/金属膜/酸化物超電導体膜、
或いは酸化物超電導体膜/半導体膜/酸化物超電導体膜
の積層構造により弱結合ジョセフソン接合を形成するこ
ともできる。この場合は、弱結合部を構成する金属膜ま
たは半導体膜の厚みを数100人〜数1000人とする
ことで、比較的制御性よく形成することができる。しか
しこの構造では、オフ時の抵抗が低いため、通常の電圧
モー″ド・ジョセフソン素子には使用できない。
On the other hand, oxide superconductor film/metal film/oxide superconductor film,
Alternatively, a weakly coupled Josephson junction can be formed using a laminated structure of oxide superconductor film/semiconductor film/oxide superconductor film. In this case, by setting the thickness of the metal film or semiconductor film constituting the weak coupling portion to several hundred to several thousand layers, it is possible to form the weak coupling portion with relatively good controllability. However, this structure cannot be used as a normal voltage-mode Josephson device because its off-state resistance is low.

(発明が解決しようとする問題点) 以上のjうに超電導素子は、発熱が少ない点で従来の半
導体素子の高密度化や高速化の限界を越えるものとして
注目されるが、主として材料特性による制約から実用化
に至っていない。
(Problems to be Solved by the Invention) The above-described superconducting device is attracting attention as a device that exceeds the limits of high density and high speed of conventional semiconductor devices in that it generates little heat, but it is mainly limited by material properties. Since then, it has not been put into practical use.

本発明は上記の点に鑑み、液体窒素温度以上の高温で動
作可能で、安定な動作をする超電導素子を提供すること
を目的とする。
In view of the above points, it is an object of the present invention to provide a superconducting element that can operate at a high temperature higher than the liquid nitrogen temperature and operates stably.

[発明の構成コ (問題点を解決するための手段) 本発明にかかる超電導素子は、位相モードで動作するジ
ョセフソン接合素子であって、ジョセフソン接合を、基
板上に形成された酸化物超電導体膜/金属膜または半導
体膜/酸化物超電導体膜の積層構造により構成したこと
を特徴とする。
[Configuration of the Invention (Means for Solving the Problems) The superconducting device according to the present invention is a Josephson junction device that operates in a phase mode, in which the Josephson junction is formed using an oxide superconductor formed on a substrate. It is characterized by having a laminated structure of body film/metal film or semiconductor film/oxide superconductor film.

本発明における酸化物超電導体膜としては、希土類元素
を含むペロブスカイト構造の各種酸化物を用い得る。金
属膜としては、金、銀、白金等の貴金属、ニオブ、タン
タル、タングステン、イリジウムなどの高融点金属が好
ましい。
As the oxide superconductor film in the present invention, various oxides having a perovskite structure containing rare earth elements can be used. As the metal film, noble metals such as gold, silver, and platinum, and high melting point metals such as niobium, tantalum, tungsten, and iridium are preferable.

(作用) 酸化物超電導体膜/金属膜または半導体膜/酸化物超電
導体膜の積層構造からなるジョセフソン接合は、金属膜
または半導体膜のコヒーレンス長が大きいために1μm
程度以下で弱結合部を構成することができる。従って微
細加工を要せず、高温で動作し、且つ安定したジョセフ
ソン接合特性を示す。ただこの積層構造は、絶縁膜を用
いたものと異なり、オフ時の抵抗が数10μΩ以下と極
めて小さい。そのため、電圧モードで用いることはでき
ない。本発明ではこの様な積層構造のジョセフソン接合
を用い、磁束量子を信号媒体とする動作モード即ち、フ
ラクソイドの運動時のみ電圧が発生する位相モードで動
作させることにより、安定した特性を示す低消費電力の
超電導素子が得られる。
(Function) A Josephson junction consisting of a stacked structure of oxide superconductor film/metal film or semiconductor film/oxide superconductor film has a coherence length of 1 μm due to the large coherence length of the metal film or semiconductor film.
It is possible to form a weak coupling portion with less than a certain degree. Therefore, it does not require microfabrication, operates at high temperatures, and exhibits stable Josephson junction characteristics. However, unlike those using insulating films, this laminated structure has an extremely low resistance of several tens of μΩ or less when off. Therefore, it cannot be used in voltage mode. In the present invention, a Josephson junction with such a laminated structure is used, and by operating in an operation mode in which magnetic flux quanta are used as a signal medium, that is, in a phase mode in which voltage is generated only when the fluxoid moves, low power consumption with stable characteristics can be achieved. A power superconducting element is obtained.

(実施例) 以下、本発明の詳細を図面を参照して説明する。(Example) Hereinafter, details of the present invention will be explained with reference to the drawings.

具体的な実施例の説明に先だって、本発明で用いる位相
モード超電導素子即ちフラクソイド論理回路の原理を、
第5図および第6図により説明する。前述のように本発
明でのジョセフソン接合はオフ時の抵抗が低いため、電
圧モードでは動作できない。第5図に示すように、弱結
合ジョセフソン接合Sに対してインダクタンスLを負荷
として接続した論理回路を構成すると、フラクソイド(
端子電圧の時間積分)に対して電流は第6図のように変
化する。従って、A点とB点を安定点として、電力を消
費することなく論理動作ができる。
Prior to explaining specific embodiments, the principle of the phase mode superconducting element, that is, the fluxoid logic circuit used in the present invention, will be explained as follows.
This will be explained with reference to FIGS. 5 and 6. As described above, the Josephson junction according to the present invention has a low resistance when off, so it cannot operate in voltage mode. As shown in Fig. 5, when a logic circuit is constructed in which an inductance L is connected as a load to a weakly coupled Josephson junction S, a fluxoid (
The current changes as shown in FIG. 6 with respect to the time integral of the terminal voltage. Therefore, with point A and point B as stable points, logic operations can be performed without consuming power.

これが位相モード論理回路の原理である。This is the principle of phase mode logic circuits.

第1図は、一実施例の論理回路であ、す、2個の直流ス
クイド(dcsQU I D)Ql、Q2を構成し、こ
れらを抵抗結合したものである。第1図は概略平面図で
あり、第2図はそのA−A−断面図である。基板1はこ
の実施例ではSr Ti 03結晶基板であり、この上
に酸化物超電導体膜としてY B a2 Cui O7
−J膜を用いて回路が構成されている。即ち、二つのd
cs QU I D−Ql 、  Q2を構成する超電
導ループは、第1のY B a2 CL13O7−4膜
2と第2のY B a2 Cus O7−4膜4により
形成されている。これらの膜形成は、酸素含有率25%
のArガス雰囲気中(10m torr)で、基板を6
50℃に加熱した状態でスパッタリングにより行い、こ
れをEBレジストを用いて塩素ガスを含むドライエツチ
ングによりパターン形成する。各超電導ループの線幅は
20μmである。一方のdcsQUID−Qlを構成す
るループ内には二つのジョセフソン接合Jl、J2が形
成され、他方のd+esQUID−Q2を構成するルー
プ内にも同様にジョセフソン接合J3.J4が形成され
ている。各ジョセフソン接合部は、第2図に示したよう
に第1のY B azc u3O7−J膜2のパターン
形成された端部に上に金属膜としてAuusを積層し、
更にこの上に第2のY B a2c u、、0□−6膜
4のパターン形成された端部が積層された構造としてい
る。Auusは、一方のdcsQUID−Ql側で80
0人とし、他方のdesQUID−Q2側では1700
人としている。二つのdeSQUID−Ql、Q2は、
結合抵抗Rにより結合されている。
FIG. 1 shows a logic circuit of one embodiment, which includes two DC SQUIDs Q1 and Q2, which are resistance-coupled. FIG. 1 is a schematic plan view, and FIG. 2 is a sectional view taken along the line AA. In this example, the substrate 1 is a Sr Ti 03 crystal substrate, on which Y B a2 Cui O7 is deposited as an oxide superconductor film.
-A circuit is constructed using the J film. That is, two d
The superconducting loop constituting cs QUID-Ql, Q2 is formed by the first YBa2 CL13O7-4 film 2 and the second YBa2 Cus O7-4 film 4. These films are formed at an oxygen content of 25%.
In an Ar gas atmosphere (10 m torr), the substrate was
Sputtering is performed in a state heated to 50° C., and a pattern is formed using an EB resist by dry etching containing chlorine gas. The line width of each superconducting loop is 20 μm. Two Josephson junctions Jl and J2 are formed in the loop constituting one dcsQUID-Q1, and similarly Josephson junctions J3. J4 is formed. Each Josephson junction is formed by depositing Auus as a metal film on the patterned end of the first YBazc u3O7-J film 2 as shown in FIG.
Furthermore, the patterned end portion of the second YBa2cu, 0□-6 film 4 is laminated thereon. Auus is 80 on one dcsQUID-Ql side
0 people, and 1700 people on the other desQUID-Q2 side.
I'm with people. The two deSQUID-Ql, Q2 are
They are coupled by a coupling resistor R.

結合抵抗Rはこの実施例では、Auln合金膜5により
形成している。各deSQUID−Ql。
In this embodiment, the coupling resistor R is formed of an Auln alloy film 5. Each deSQUID-Ql.

Q2の電流端子部は、Y B a2 C03O7−J膜
2,4をパッド状にパターン形成し、ここに図では省略
したが端子電極を形成している。各dcs、QUIDQ
lおよびQ2の臨界磁界LIcはそれぞれ、磁束量子を
Φ。とじて、1.8Φ0および0.3Φ0であった。
The current terminal portion of Q2 is formed by patterning the YB a2 C03O7-J films 2 and 4 into a pad shape, and a terminal electrode is formed here, although not shown in the figure. Each dcs, QUIDQ
The critical magnetic fields LIc of l and Q2 each define a flux quantum of Φ. The total diameter was 1.8Φ0 and 0.3Φ0.

第3図は、この様に構成された位相モード超電導論理回
路の等価回路である。この論理回路では、各dcsQ 
IUD−Q+ 、Q2ゲート電流を制御することによっ
て、一方に侵入した磁束を結合抵抗Rを介して他方に転
送する、という動作ができる。
FIG. 3 shows an equivalent circuit of the phase mode superconducting logic circuit constructed in this manner. In this logic circuit, each dcsQ
By controlling the IUD-Q+ and Q2 gate currents, it is possible to transfer the magnetic flux that has entered one to the other via the coupling resistor R.

スタティック方法によりこの論理動作を確認した実験結
果を説明する。先ず、左側のdcsQUID−Qtにゲ
ート電流1gbを与え、n−0の状態に設定する。次い
でゲート電流1 gcを印加することにより、このdc
sQUID−Qlは、n−1の状態にスイッチする。こ
れは、左側のジョセフソン接合J1から磁束が侵入した
ことを示す。次に、I gcを0に戻すと、ジョセフソ
ン接合J2から磁束が追出され、他方のdesQUID
−Q2に侵入する。各dcs QU I D−Ql、 
Q2内の磁束の有無は、第4図に示すしきい値特性を観
測することにより、確認できた。
We will explain the experimental results that confirmed this logical operation using a static method. First, a gate current of 1 GB is applied to the left dcsQUID-Qt to set it to the n-0 state. Then, by applying a gate current of 1 gc, this dc
sQUID-Ql switches to state n-1. This indicates that magnetic flux has entered from the Josephson junction J1 on the left. Then, returning I gc to 0 forces the flux out of Josephson junction J2 and forces the other desQUID
- Infiltrate Q2. Each dcs QU I D-Ql,
The presence or absence of magnetic flux in Q2 could be confirmed by observing the threshold characteristics shown in FIG.

こうしてこの実施例によれば、二つの dcsQUIDを抵抗結合した、位相モードで動作する
フラクソイド論理回路が得られる。この実施例によれば
、ジョセフソン接合を構成する弱結合部が金属膜である
ため、オフ時の抵抗が低いが、位相モードにより電力を
消費することなく、論理動作を行うことができる。そし
て薄いトンネル絶縁膜によりジョセフソン接合を構成す
る場合に比べ、製造は容易である。
Thus, according to this embodiment, a fluxoid logic circuit operating in phase mode is obtained in which two dcsQUIDs are resistively coupled. According to this embodiment, since the weak coupling portion constituting the Josephson junction is a metal film, the resistance during off-state is low, but logic operation can be performed without consuming power due to the phase mode. Furthermore, manufacturing is easier than in the case where a Josephson junction is formed using a thin tunnel insulating film.

本発明は上記実施例に限られるものではない。例えば酸
化物超電導体薄膜として、一般にA B a2c u3
O t−a  (Aは、Y、Yb、Ho、Dy。
The present invention is not limited to the above embodiments. For example, as an oxide superconductor thin film, generally A B a2c u3
O ta (A is Y, Yb, Ho, Dy.

Eu、 Er、Tn+、Luから選ばれた一種)で表わ
される欠陥ペロブスカイト型酸化物を用いることができ
る。また、(Sr+−xLax) 2 Cu 04−y
(但し、SrをBa、Caで置換したものを含む)で表
わされる層状ペロブスカイト型酸化物を用いることもで
きる。弱結合部は金属膜に代って半導体膜を用いること
も可能である。
A defective perovskite type oxide represented by a type selected from Eu, Er, Tn+, and Lu can be used. Also, (Sr+-xLax) 2 Cu 04-y
(However, layered perovskite-type oxides represented by oxides such as those in which Sr is replaced with Ba or Ca) can also be used. It is also possible to use a semiconductor film instead of a metal film for the weak coupling portion.

その他事発明は、その趣旨を逸脱しない範囲で種々変形
して実施することができる。
Other aspects of the invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果コ 以上述べたように本発明によれば、酸化物超電導体薄膜
/金属膜または半導体膜/酸化物超電導体膜の積層構造
によるジョセフソン接合を用いて位相モード論理回路を
構成することにより、製造が容易で、高温で安定な特性
を示す低消費電力の超電導素子を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a phase mode logic circuit is constructed using a Josephson junction with a laminated structure of oxide superconductor thin film/metal film or semiconductor film/oxide superconductor film. As a result, it is possible to obtain a superconducting element that is easy to manufacture and has low power consumption and exhibits stable characteristics at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導論理回路素子を示す
平面図、第2図は第1図のA−A−断面図、第3図はそ
の論理回路の等価回路図、第4図はその論理回路の動作
を説明するための図、第5図はフラクソイド論理回路の
原理を説明するための等価回路図、第6図はその特性を
示す図である。 1・−3rTi03結晶基板、2.4−・・Y B a
2 Cui Ot−a膜、3− A u膜、5・=Au
In合金膜、Q1* 02 ”’deS QU I D
lJ 1〜J4・・・ジョセフソン接合、R・・・結合
抵抗。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a plan view showing a superconducting logic circuit element according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, FIG. 3 is an equivalent circuit diagram of the logic circuit, and FIG. is a diagram for explaining the operation of the logic circuit, FIG. 5 is an equivalent circuit diagram for explaining the principle of the fluxoid logic circuit, and FIG. 6 is a diagram showing its characteristics. 1.-3rTi03 crystal substrate, 2.4-...Y Ba
2 Cui Ot-a film, 3- Au film, 5・=Au
In alloy film, Q1*02”'deS QU I D
lJ 1-J4...Josephson junction, R...coupling resistance. Applicant's agent Patent attorney Takehiko Suzue

Claims (7)

【特許請求の範囲】[Claims] (1)ジョセフソン接合を有し、位相モードで動作する
超電導素子において、前記ジョセフソン接合は、基板上
に酸化物超電導体膜/金属膜または半導体膜/酸化物超
電導体膜の積層構造により構成されていることを特徴と
する超電導素子。
(1) In a superconducting element having a Josephson junction and operating in a phase mode, the Josephson junction is formed by a laminated structure of an oxide superconductor film/metal film or a semiconductor film/oxide superconductor film on a substrate. A superconducting element characterized by:
(2)前記基板は、チタン酸ストロンチウムであり、前
記酸化物超電導体膜は希土類元素を含むペロブスカイト
型酸化物である特許請求の範囲第1項記載の超電導素子
(2) The superconducting element according to claim 1, wherein the substrate is strontium titanate, and the oxide superconductor film is a perovskite oxide containing a rare earth element.
(3)前記酸化物超電導体膜は、 ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)で表わされる欠陥ペロブスカイト型酸化物である特許
請求の範囲第1項記載の超電導素子。
(3) The oxide superconductor film has ABa_2Cu_3O_7_-_δ (A is Y, Yb,
The superconducting element according to claim 1, which is a defective perovskite-type oxide represented by one selected from Ho, Dy, Eu, Er, Tm, and Lu.
(4)前記酸化物超電導体膜は、 (Sr_1_−_xLa_x)_2CuO_4_−_y
で表わされる層状ペロブスカイト型酸化物である特許請
求の範囲第1項記載の超電導素子。
(4) The oxide superconductor film is (Sr_1_-_xLa_x)_2CuO_4_-_y
The superconducting element according to claim 1, which is a layered perovskite type oxide represented by:
(5)前記金属膜または半導体膜は、膜厚が1000〜
5000Åである特許請求の範囲第1項記載の超電導素
子。
(5) The metal film or semiconductor film has a film thickness of 1000 to
The superconducting element according to claim 1, which has a thickness of 5000 Å.
(6)前記金属膜は、金、銀または白金である特許請求
の範囲第1項記載超電導素子。
(6) The superconducting element according to claim 1, wherein the metal film is gold, silver, or platinum.
(7)前記金属膜は、ニオブ、タンタル、タングステン
またはイリジウムである特許請求の範囲第1項記載超電
導素子。
(7) The superconducting element according to claim 1, wherein the metal film is niobium, tantalum, tungsten, or iridium.
JP62318772A 1987-12-18 1987-12-18 Superconducting device Pending JPH01161786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318772A JPH01161786A (en) 1987-12-18 1987-12-18 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318772A JPH01161786A (en) 1987-12-18 1987-12-18 Superconducting device

Publications (1)

Publication Number Publication Date
JPH01161786A true JPH01161786A (en) 1989-06-26

Family

ID=18102775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318772A Pending JPH01161786A (en) 1987-12-18 1987-12-18 Superconducting device

Country Status (1)

Country Link
JP (1) JPH01161786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098370A (en) * 1995-06-16 1997-01-10 Hitachi Ltd Oxide superconducting circuit
US5962866A (en) * 1991-01-22 1999-10-05 Biomagnetic Technologies, Inc. Microbridge superconductor device utilizing stepped junctions
CN106575667A (en) * 2014-07-02 2017-04-19 哥本哈根大学 A semiconductor josephson junction and a transmon qubit related thereto

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962866A (en) * 1991-01-22 1999-10-05 Biomagnetic Technologies, Inc. Microbridge superconductor device utilizing stepped junctions
JPH098370A (en) * 1995-06-16 1997-01-10 Hitachi Ltd Oxide superconducting circuit
CN106575667A (en) * 2014-07-02 2017-04-19 哥本哈根大学 A semiconductor josephson junction and a transmon qubit related thereto

Similar Documents

Publication Publication Date Title
US5831278A (en) Three-terminal devices with wide Josephson junctions and asymmetric control lines
RU2554612C2 (en) High-frequency superconducting memory element
JPH01161786A (en) Superconducting device
JP2641447B2 (en) Superconducting switching element
JP2644284B2 (en) Superconducting element
JPH01161785A (en) Superconducting device
JPH02391A (en) Superconductive field-effect transistor
JPS63299281A (en) Superconducting device
JPH01161880A (en) Superconductor element
RU2554614C2 (en) Josephson 0-pi switch
JP2583922B2 (en) Superconducting switching element
RU2343591C1 (en) Josephson- transition super-conducting device
JP2867956B2 (en) Superconducting transistor
JP3026482B2 (en) Superconducting element, method of manufacturing and operating method
JP2698364B2 (en) Superconducting contact and method of manufacturing the same
JP2955407B2 (en) Superconducting element
JPS6068681A (en) Superconductive transistor
JP2829173B2 (en) Superconducting element
JP2583923B2 (en) Superconducting switching element
JP2768276B2 (en) Oxide superconducting junction element
JPS63283178A (en) Superconducting transistor
JP2649808B2 (en) Current injection cryotron
JPH0249481A (en) Oxide josephson junction device
JP2583961B2 (en) Superconducting triode
JP2862706B2 (en) Superconducting element