JPH01161406A - Automatic steering control system - Google Patents

Automatic steering control system

Info

Publication number
JPH01161406A
JPH01161406A JP62320010A JP32001087A JPH01161406A JP H01161406 A JPH01161406 A JP H01161406A JP 62320010 A JP62320010 A JP 62320010A JP 32001087 A JP32001087 A JP 32001087A JP H01161406 A JPH01161406 A JP H01161406A
Authority
JP
Japan
Prior art keywords
traveling speed
vehicle body
traveling
steering control
automatic steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320010A
Other languages
Japanese (ja)
Inventor
Shigehiro Yamamoto
山本 重裕
Michirou Akao
三智郎 赤尾
Toru Hirose
徹 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP62320010A priority Critical patent/JPH01161406A/en
Publication of JPH01161406A publication Critical patent/JPH01161406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To attain automatic steering control excellent in stability and responsiveness over a wide traveling speed area by detecting a time differential value of lateral deformation and an angular speed of a vehicle body, multiplying respective detected values by gain to be the function of a traveling speed increased in accordance with the reduction of the traveling speed and feeding back the multiplied values. CONSTITUTION:When the feedback gains of the angular speed omega of the vehicle body and the time differential value dl/dt of lateral deformation are expressed as the functions Gomega(v), Gl(v) of the traveling speed and the gains are increased in accordance with the reduction of the traveling speed, the influence of the feedback values Gomega(v).omega, Gl(v).(dl/dt) to be exerted upon corresponding relation between a deviation of a traveling course to be changed with time and the rotating radius of a vehicle body provides a stability holding effect without extremely reducing the rotating radius of the vehicle body even if the traveling speed is slow. Thereby, automatic steering control excellent in stability and responsiveness over the wide traveling speed area can be attained by setting up the relation between the feedback gains Gomega(v), Gl(v) and the traveling speed to a proper value.

Description

【発明の詳細な説明】 本発明は、微速から高速までの広範囲の走行速度領域に
わたる無人殿送車の自動操舵制御方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic steering control system for an unmanned transport vehicle over a wide range of travel speeds from very slow to high speed.

従来の自動操舵制御方式では、走行コースとの偏差とし
て、横変位、横変位の進行距離による微分値、横変位の
進行距離による積分値、姿勢角を種々の組み合わせで検
出し、操舵輪により操舵を行う車体の場合には、更に操
舵状態として操舵角を検出し、各検出量に一定のゲイン
を乗じてフィードバックして操舵制御が行われていたが
、操舵指令値を決める手順の中に走行速度に応じて走行
コースとの偏差に対応する操舵状態(車体の旋回半径)
を変化させる要素がなかったため、低速領域で応答性を
確保できるフィードバックゲインの状態では、高速領域
での安定性が悪くなり、また、高速領域で安定性を確保
できるフィードバックゲインの状態では低速領域での応
答性が悪(なり、安定性、応答性とも良好な状態を保て
るのは−ぜまい走行速度領域であるという問題点があっ
た。
In conventional automatic steering control systems, various combinations of lateral displacement, differential value of lateral displacement based on traveling distance, integral value of lateral displacement based on traveling distance, and attitude angle are detected as deviations from the driving course, and the steering is performed using the steering wheels. In the case of a vehicle body that does Steering status (vehicle body turning radius) that corresponds to the deviation from the driving course depending on the speed
Because there was no element to change There was a problem in that the responsiveness of the vehicle was poor (and both stability and responsiveness could be maintained in a good state only in the -zero running speed range).

本発明は、これらの問題点を;性成するため、操舵指令
値を決める手j頭の中に走行速度に応じて走行コースと
の偏差に対応する操舵状態(車体の旋回半径)を変化さ
せる要素を導入したことを特徴とし、その目的は微速か
ら高速までの広範囲の垂杆速度領域にわたって安定かつ
応答性の良好な自動操舵制御を行なえるようにすること
にある。
In order to solve these problems, the present invention changes the steering condition (turning radius of the vehicle body) corresponding to the deviation from the traveling course according to the traveling speed during the determination of the steering command value. It is characterized by the introduction of elements, and its purpose is to enable stable and highly responsive automatic steering control over a wide range of vertical speeds from very slow to high speeds.

第1図は本発明が適用される操舵輪により操舵を行う無
人搬送車の車体(以下車体という。)の−例で、第2図
は本発明を第1図のような操舵輪により操舵を行う車体
に適用した場合の自動操舵制御系ブロック線図の一例で
ある。1は車体、2は操舵輪、3.3は車体lの左右に
配置した固定輪(操舵を行わない車輪)、4は操舵モー
タ、モータコントローラ、減速機構および操舵輪等で構
成される操舵機構、ψは車体lの操舵角、ωは車体角速
度、lは第1図に定義される横変位、ψは第1図に定義
される姿勢角、d1/dDは横変位lの検出値を走行コ
ース方向への車体1の進行距離りで微分した値、d J
/d tは横変位lの検出値を時間tで微分した値、5
l−dDはm変位lの検出値を走行コース方向への車体
lの進行距離りで積分した値、Gω(V)は走行速度減
少にともない大きくなる走行速度の関数とした車体角速
度Qのフィードバックゲイン、Gψは姿勢角ψまたは横
変位lの微分値d1/dDのフィードバックゲイン、G
 i (v)は走行速度減少にともない大きくなる走行
速度の関数とした横変位の時間微分値dA/d tのフ
ィードバンクゲイン、G1は横変位lのフィードバック
ゲイン、GsLは横変位lの積分値fβ・dDのフィー
ドバックゲイン、Sは操舵指令値(操舵モータ回転速度
指令値)である。
Fig. 1 shows an example of the vehicle body (hereinafter referred to as the vehicle body) of an automatic guided vehicle to which the present invention is applied and which is steered by the steering wheels, and Fig. 2 is an example of the vehicle body of an automatic guided vehicle to which the present invention is steered by the steering wheels as shown in Fig. 1. FIG. 2 is an example of a block diagram of an automatic steering control system when applied to a vehicle body that performs automatic steering control. 1 is a vehicle body, 2 is a steering wheel, 3.3 is a fixed wheel (wheels that do not perform steering) placed on the left and right sides of the vehicle body l, and 4 is a steering mechanism consisting of a steering motor, a motor controller, a speed reduction mechanism, a steering wheel, etc. , ψ is the steering angle of the vehicle l, ω is the vehicle angular velocity, l is the lateral displacement defined in Figure 1, ψ is the attitude angle defined in Figure 1, and d1/dD is the detected value of the lateral displacement l. Value differentiated by the traveling distance of vehicle body 1 in the course direction, d J
/d t is the value obtained by differentiating the detected value of lateral displacement l with respect to time t, 5
l-dD is the value obtained by integrating the detected value of m displacement l over the traveling distance of the vehicle body l in the traveling course direction, and Gω(V) is the feedback of the vehicle body angular velocity Q as a function of the traveling speed, which increases as the traveling speed decreases. The gain, Gψ, is the feedback gain of the differential value d1/dD of the attitude angle ψ or the lateral displacement l, G
i (v) is the feed bank gain of the time differential value dA/dt of the lateral displacement as a function of the traveling speed, which increases as the traveling speed decreases, G1 is the feedback gain of the lateral displacement l, and GsL is the integral value of the lateral displacement l. The feedback gain of fβ·dD and S are the steering command value (steering motor rotation speed command value).

車体角速度ωは、レートジャイロ等を用いて、あるいは
車体1の左右に配置した固定輪3,3の回転数をエンコ
ーダ等で検出した値からコンピュータ、電気回路等で演
算して検出する。
The vehicle body angular velocity ω is detected using a rate gyro or the like, or by calculating with a computer, an electric circuit, etc. from the rotational speed of the fixed wheels 3, 3 arranged on the left and right sides of the vehicle body 1 detected by an encoder or the like.

横変位l、姿勢角ψは、既存の種々の誘導方式に応じた
各種センサ(例えば電磁誘導方式であればピックアップ
コイル)を用いて、あるいはそのセンサ検出値からコン
ピュータ、電気回路等で演算して検出する。横変位lの
微分値dl/dD、dI!/dt、積分値/J−dDは
、横変位lの検出値、タイマー素子等による時間検出値
、車体1の左右に配置した固定輪3,3の回転数をエン
コーダ等で検出した値からコンピュータ、電気回路等で
演算して検出する。
The lateral displacement l and the attitude angle ψ can be calculated using various sensors according to various existing induction methods (for example, a pickup coil in the case of an electromagnetic induction method), or using a computer, electric circuit, etc. from the sensor detection values. To detect. Differential value of lateral displacement l dl/dD, dI! /dt, integral value /J-dD are calculated by computer from the detected value of lateral displacement l, the time detected value by timer element etc., and the value detected by encoder etc. of the rotation speed of fixed wheels 3, 3 arranged on the left and right sides of vehicle body 1. , is calculated and detected using electric circuits, etc.

第2図の自動操舵制御系では、操舵指令値(操舵モータ
の回転速度指令値)Sは(1)式のように表わされる。
In the automatic steering control system shown in FIG. 2, the steering command value (rotational speed command value of the steering motor) S is expressed as in equation (1).

S”−(GiL・1f7!・di)’)+0l−ffこ
の中で車体角速度ωの検出値と横変位lの時間微分値の
検出値df/dtは、車体1が同一の旋回半径にあって
も走行増加にともない大きくなる。従って、これらのフ
ィードバンクが時々刻々の走行コースとの偏差と車体l
の旋回半径の対応関係に及ぼす影響は、走行速度増加に
従い車体lの旋回半径を大きくするものとなる。これは
走行速度が増加するに従い安定性を保つ効果となるが、
走行速度が遅いときには、その効果は小さい。
S"-(GiL・1f7!・di)')+0l-ff Among these, the detected value of the vehicle body angular velocity ω and the detected value of the time differential value of the lateral displacement l, df/dt, are calculated when the vehicle body 1 is in the same turning radius. Therefore, these feedbanks increase the deviation from the driving course from time to time and the vehicle body l.
The effect on the correspondence relationship of the turning radius is that the turning radius of the vehicle body l increases as the traveling speed increases. This has the effect of maintaining stability as the running speed increases, but
When the traveling speed is slow, the effect is small.

そこで車体角速度ωと横変位lの時間微分値dl/dt
のフィードバンクゲインを走行速度の関数の形Gω(v
)とG i (v)とし、例えば、第3図のにように走
行速度減少にともない大きくなるようにすると、 フィードバック量Gω(v)  ・ωとG A (v)
  ・車体1の旋回半径の対応関係に及ぼす影台は、走
行速度が遅いときでも極端に車体の旋回半径が小さくな
ることがなく安定性を保つ効果となる。従って、フィー
ドバンクゲインGω(y) 、  G j (v)と走
行速度の関係(第3図)を適正な形にすれば広範囲の走
行速度領域にわたって安定かつ応答性の良好な自動操舵
制御が行なえる。
Therefore, the time differential value dl/dt of the vehicle body angular velocity ω and the lateral displacement l is
The feed bank gain of Gω(v
) and G i (v), for example, if they increase as the traveling speed decreases as shown in Figure 3, then the feedback amount Gω(v) ・ω and G A (v)
- The effect of the shadow table on the correspondence of the turning radius of the vehicle body 1 has the effect of maintaining stability by preventing the turning radius of the vehicle body from becoming extremely small even when the traveling speed is slow. Therefore, if the relationship between the feed bank gains Gω(y), Gj(v) and the running speed (Fig. 3) is set appropriately, stable and responsive automatic steering control can be performed over a wide range of running speeds. Ru.

なお、(1)式の演算はコンピュータによる演算もしく
は電気回路等による同等演算で処理される。
Note that the calculation in equation (1) is processed by a computer or an equivalent calculation by an electric circuit or the like.

以上説明したように、本発明は、走行速度に応じて走行
コースとの偏差に対応する湿舵状態(車体の旋回半径)
を任意に変化させることができるため、広範囲の走行速
度領域にわたって安定かつ応答性の良好な自動操舵制御
が行なえる利点がある。
As explained above, the present invention provides a wet steering condition (turning radius of the vehicle body) that corresponds to the deviation from the traveling course according to the traveling speed.
can be changed arbitrarily, so there is an advantage that stable and highly responsive automatic steering control can be performed over a wide range of travel speeds.

これは、種々の既存の誘導方式(電磁誘導、光学誘導、
磁気誘導、視覚誘導、自律誘導等)に適用可能である。
This is possible using various existing guidance methods (electromagnetic induction, optical induction,
It is applicable to magnetic guidance, visual guidance, autonomous guidance, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が適用される操舵輪により、操舵を行
う車体の一例、第2図は、本発明を第1図のような車体
に適用した場合の自動操舵制御系ブロック線図の一例、
第3図は、第2図中のゲインGω(v) 、 G A 
(v)の走行速度に対応する変化の一例である。 1−−−−一車 体    2−・−・−操舵輪3 −
−−−一 固定輪    4 ・・−・−・・−操舵機
構)13 図 走行速度V I4山1υ)、化、。 111  ロ 車体角速度ω 進行距離D 手続補正書坊刻 昭和63年 4月λg日 1、事件の表示  昭和62年特許願第320010号
2、発明の名称  自動操舵制御方式 3、補正をする者 事件との関係    特許出願人 住 所 ■617京都府長岡京市東神足2丁目1番1号
名 称      口木輸送機株式会社代表者 山岡錬
太部 4、代理人
FIG. 1 is an example of a vehicle body that is steered by steering wheels to which the present invention is applied, and FIG. 2 is a block diagram of an automatic steering control system when the present invention is applied to a vehicle body as shown in FIG. One case,
Figure 3 shows the gains Gω(v) and G A in Figure 2.
(v) is an example of a change corresponding to the traveling speed. 1----One vehicle body 2-・-・-Steering wheel 3-
---1 Fixed wheel 4 ・・・・・・・Steering mechanism) 13 Figure traveling speed V I4 mountain 1υ), . 111 B Vehicle body angular velocity ω Traveling distance D Procedural amendment written on April λg, 1988 1, Indication of case 1988 Patent Application No. 320010 2, Title of invention Automatic steering control system 3, Person making the amendment Related Patent Applicant Address ■617 2-1-1 Higashinashi, Nagaokakyo City, Kyoto Prefecture Name Kuchiki Yusoki Co., Ltd. Representative Rentabe Yamaoka 4, Agent

Claims (1)

【特許請求の範囲】[Claims]  走行コースとの偏差として、横変位、横変位の進行距
離による微分値、横変位の進行距離による積分値、姿勢
角を種々の組み合わせで検出し、各検出量にゲインを乗
じてフィードバックして操舵輪により自動操舵制御を行
う無人搬送車において、これらのフィードバックに加え
て、走行コースとの偏差として横変位の時間微分値を、
更に操舵状態として車体角速度を検出し、各々に走行速
度減少にともない大きくなる走行速度の関数としたゲイ
ンを乗じてフィードバックして総フィードバック量と目
標値の偏差より操舵モータの回転速度指令値を演算・出
力することによって、微速から高速までの広範囲の走行
領域にわたって安定かつ応答性の良好な自動操舵制御が
行なえることを特徴とする自動操舵制御方式。
The deviation from the driving course is detected in various combinations of lateral displacement, the differential value of the lateral displacement based on the traveling distance, the integral value of the lateral displacement based on the traveling distance, and the attitude angle, and each detected amount is multiplied by a gain and fed back for steering. In an automated guided vehicle that performs automatic steering control using wheels, in addition to this feedback, the time differential value of lateral displacement is calculated as the deviation from the traveling course.
Furthermore, the vehicle body angular velocity is detected as the steering state, each is multiplied by a gain that is a function of the traveling speed that increases as the traveling speed decreases, and then fed back, and the rotational speed command value of the steering motor is calculated from the deviation between the total feedback amount and the target value.・An automatic steering control system that is characterized by being able to perform automatic steering control with stability and good responsiveness over a wide range of driving ranges from slow speeds to high speeds by outputting output.
JP62320010A 1987-12-17 1987-12-17 Automatic steering control system Pending JPH01161406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320010A JPH01161406A (en) 1987-12-17 1987-12-17 Automatic steering control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320010A JPH01161406A (en) 1987-12-17 1987-12-17 Automatic steering control system

Publications (1)

Publication Number Publication Date
JPH01161406A true JPH01161406A (en) 1989-06-26

Family

ID=18116741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320010A Pending JPH01161406A (en) 1987-12-17 1987-12-17 Automatic steering control system

Country Status (1)

Country Link
JP (1) JPH01161406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485741B1 (en) * 1999-05-17 2005-04-27 고토부키산교가부시키가이샤 Method and apparatus for disposing of waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485741B1 (en) * 1999-05-17 2005-04-27 고토부키산교가부시키가이샤 Method and apparatus for disposing of waste

Similar Documents

Publication Publication Date Title
JPH0358949B2 (en)
JP2006107027A (en) Automatic guided vehicle
JPH0687348A (en) Slip detection device for vehicle
JPH01161406A (en) Automatic steering control system
JP2940300B2 (en) Direction indication method for autonomous guided vehicle
JP3275364B2 (en) Reverse traveling control method for automatic guided vehicles
JPH01161408A (en) Automatic steering control system
JPH01161404A (en) Automatic steering control system
JPS62210169A (en) Vehicle actual steering angle control device
JPH01161405A (en) Automatic steering control system
JPH01161412A (en) Automatic steering control system
JPH01161409A (en) Automatic steering control system
JPH01161414A (en) Automatic steering control system
JPH01161411A (en) Automatic steering control system
JP2777281B2 (en) Turning control method of automatic guided vehicle
JPH01161407A (en) Automatic steering control system
JPH01161410A (en) Automatic steering control system
JP2712739B2 (en) Steering angle control device for automatic guided vehicles
JPH01161413A (en) Automatic steering control system
JPS6247711A (en) Drive controller for unmanned carrier
JP2533490B2 (en) Control-driven vehicle and method for controlling vehicle
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JPH11231939A (en) Method and device for controlling steering of unmanned vehicle
JP2002108447A (en) Gyroscopic guidance type unmanned carrier device
JPH0811544B2 (en) Vehicle steering system controller